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Abstract

Subcortical brain structures are involved in developmental, psychiatric and neurological

disorders. We performed GWAS meta-analyses of intracranial and nine subcortical brain volumes

(brainstem, caudate nucleus, putamen, hippocampus, globus pallidus, thalamus, nucleus

accumbens, amygdala and, for the first time, the ventral diencephalon) in 74,898 participants of

European ancestry. We identified 254 independent loci associated with these brain volumes,

explaining up to 35% of phenotypic variance. We observed gene expression in specific neural cell

types across differentiation time points, including genes involved in intracellular signalling and

brain ageing-related processes. Polygenic scores for brain volumes showed predictive ability

when applied to individuals of diverse ancestries. We observed causal genetic effects of brain

volumes with Parkinson's disease and ADHD. Findings implicate specific gene expression

patterns in brain development and genetic variants in comorbid neuropsychiatric disorders,

which could point to a brain substrate and region of action for risk genes implicated in brain

diseases.
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Introduction

Subcortical brain structures are affected in most major neurological diseases, including

psychiatric and developmental brain disorders1. These brain structures are involved in crucial

daily functions, such as learning2,3, memory3,4, attention3, motor control2,3, and reward5,6. Likewise,

intracranial volume (ICV) variation has been associated with neuropsychiatric phenotypes in

observational7,8 and genetic9–11 studies. Notably, genome-wide association studies (GWAS) have

revealed a shared genetic aetiology between brain structures and behavioural, neuropsychiatric,

and other health-related phenotypes2,12–15.

While neuroimaging genetic studies have advanced our understanding of the genetic architecture

of subcortical2,16 and cortical13,17 brain structures, the most highly powered studies have

uncovered the genetic underpinnings of the global measures of the cortex and specific cortical

brain structures13,18,19. Therefore, there is a need to leverage large and diverse datasets to uncover

genetic variants that provide insights into the mechanistic pathways responsible for variation in

the volumes of intracranial and subcortical brain volumes.

We coordinated a worldwide analysis of 49 study samples from 19 countries and conducted the

largest international genetic analysis of human subcortical brain volumes and ICV. We analysed

individual and summary-level genetic data from participants across four international sources to

accomplish three goals. First, we sought to characterise the genetic and molecular underpinnings

of intracranial and nine subcortical brain volumes ( i.e. the brainstem, caudate nucleus, putamen,

hippocampus, globus pallidus, thalamus, nucleus accumbens, amygdala and, for the first time, the

ventral diencephalon). We performed GWAS meta-analyses including over 70,000 individuals,

investigated the genetic overlap among these structural brain volumes, and conducted

gene-based tests, eQTL mapping with transcriptome-wide association studies, and the integration

of single-cell RNA sequencing data with GWAS summary statistics. Second, we evaluated the

predictive utility of polygenic scores for these brain volumes in a diverse ancestral population.

Finally, we investigated the overlap and potential causal genetic effects between the observed

brain-associated genomic loci and genomic markers implicated in major neurological and

psychiatric diseases to examine structure-specific genetic associations with major brain diseases.
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This work is crucial, as it can point to a brain substrate and region of action for risk genes

implicated in brain diseases.
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Results

Genome-wide association analyses

We identified 529 genome-wide significant loci (p-value < 5x10-8) associated with human

intracranial or subcortical brain volumes (Table 1 and Supplementary Figures 1 - 20), of which

367 survived a multiple testing correction for the total number of phenotypes (p-value <

6.25x10-9). Of the 529 genome-wide significant loci (Supplementary Tables 1 and 2), 254 were

independent unique loci across structures (Supplementary Table 3). Brainstem volume showed

the largest number of independent genetic associations, whereas the amygdala volume had the

fewest (Figure 1 and Table 1). SNP-based heritability estimates indicated that common genetic

variants explained a substantial proportion of the phenotypic variation of intracranial and

subcortical brain volumes, ranging from 17% for the volume of the amygdala to 35% for the

volume of the brainstem (Table 1). LD score regression intercepts close to or equal to 1

suggested that the elevated lambdas and inflation in the quantile plots (Supplementary Figures

1 - 20) were most likely due to polygenicity rather than population stratification (Table 1).

Attenuation ratios close to 0 indicated correct genomic control. Manhattan and QQ plots for

GWAS in individual cohorts are available in Supplementary Figures 21 - 60.

As a sensitivity analysis, we performed GWAS in the UK Biobank cohort for subcortical brain

volumes without adjusting for ICV (see Methods and Supplementary Figures 61 - 78.).

Direction and magnitude of SNP effect sizes were largely consistent as suggested by Pearson’s

correlations using the SNP effect sizes for the same phenotype with and without the adjusting for

ICV (correlations range = 0.81 - 0.92). Moreover, we split the UK Biobank sample into two

randomised subsamples (N ~ 18,047 each) in an attempt to investigate replicability for

intracranial and subcortical brain volumes (Supplementary Figures 79 - 118). Direction and

magnitude of SNP effect sizes were for the most part consistent as suggested by Pearson’s

correlations using the effect sizes for the same phenotype for both subsamples (correlations

range = 0.67 - 0.84).

Functional annotation and gene prioritisation
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We used MAGMA (v1.08) to perform gene-based association analyses. GWAS meta-analysis for

ICV and the volumes of the brainstem and caudate nucleus showed the largest number of genes

associated with each structure, followed by the volumes of the putamen, hippocampus, ventral

diencephalon, globus pallidus, thalamus, and nucleus accumbens (Supplementary Table 4).

Amygdala volume was associated with the fewest genes. No single gene was associated with all

intracranial or subcortical brain volumes, which reflects the correction for ICV. The Forkhead Box

O3 (FOXO3) gene was associated with the volume of five brain structures. Similarly, the Geminin

Coiled-Coil Domain Containing (GMNC), A-kinase anchoring protein 10 (AKAP10), Epidermal

Growth Factor Receptor (EGFR), Microtubule Nucleation Factor (TPX2), and the Bcl-2-like Protein

1 (BCL2L1) were associated with the volume of four brain structures. Furthermore, genes from

the HOX and PAX homeobox gene families were associated with the volume of the brainstem. In

addition, genes from the WNT family were associated with brainstem, ventral diencephalon and

intracranial volumes. Other genes associated with multiple subcortical brain volumes included

BIRC6, CRHR1, IGF1, MAPT, NUP37, NUP43, KTN1, FOXS1 and COX4I2, which have been previously

reported to have roles in intracellular signalling20, autophagy21–23, and multiple brain ageing

processes, such as vascular ageing, oxidative resistance, tau pathology, and apoptosis24–27. A full list of

statistically significant gene-based test findings after Bonferroni multiple testing correction is

available in Supplementary Table 5.

We integrated our GWAS results with expression quantitative trait loci (eQTL) data from the

Genotype-Tissue Expression project (GTEx/v8) (Supplementary Table 6). We observed

consistent findings with our gene-based tests. The genes CRHR1, NUP43, and KTN1 were

associated with subcortical brain volumes. Furthermore, we observed associations for the genes

UQCC1, and COX4I2. Genes that may be linked to specific brain structures through changes in gene

expression include, among others, CRHR1 for the putamen, FAIM for the thalamus, andMAPK3 as

well as ZNF786 for the hippocampus. We prioritised potential causal genes from the associated

loci performing transcriptome-wide association studies (TWAS). Most genes were associated

uniquely with the volume of a single brain structure (91%), while others were shared across the

volumes of several brain structures. With this approach we observed associations of the genes

CRHR1, MAPT, NUP43, NUDT14, FAIM, MAPK3, and ZNF786 with subcortical brain volumes

(Supplementary Table 6), even after correcting for multiple testing using a conservative
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approach (p-value < 3.06x10-4, see Methods). Likewise, we revised eQTLs in developmental

datasets to identify genes involved in brain development (Supplementary Table 7) and

observed associations of brainstem, caudate nucleus, putamen, thalamus, ventral diencephalon,

and intracranial volumes with the genes LRRC37A, LRRC37A2, KANSL1, RPS26, ARL17B, PILRB,

PILRA, and EFCAB13 after correcting for multiple testing using a conservative approach (p-value

< 1.26x10-3, see Methods).

We integrated single-cell RNA-sequencing data28 with GWAS summary statistics to identify critical

cell types and cellular processes influencing intracranial and subcortical brain volumes variation.

From the prioritised genes across MAGMA and TWAS analyses, we identified nine expressed

genes (TUFM, CRHR1, NUP43, MAPK3, LRRC37A2, FAIM, ZNF786, YIPF4 and PSMC3) across seven

different cell types, including pluripotent floor progenitor plate cells (FPP), proliferating floor

progenitor plate cells (P_FPP), dopaminergic neurons (DA), ependymal-like 1 (Epen1),

serotonergic-like neurons (Serts), and astrocyte-like cells (Astro), influencing brain volume

variation. Our gene expression findings in cell types mentioned previously cover up to 52 days of

differentiation. Most of the expressed genes at day 11 were observed in FPP and P_FPP; at day 30

in FPP, DA, and ependymal-like 1 cells; and at day 52 in DA, serotonergic-like neurons,

astrocyte-like, ependymal-like 1 cells. Full results surviving multiple testing correction (p-value <

1.19x10-3, see Methods) are available in Supplementary Table 8.

As a sensitivity analysis, we performed MAGMA analyses for subcortical brain volumes using data

from the UK Biobank with and without adjusting for ICV (Supplementary Tables 9 and 10).

Identified genes were consistent with and without the adjustment for ICV. However, these genes

were associated with more subcortical brain volumes when GWAS were not adjusted for ICV.

Polygenic scores predict phenotypic brain volumes

We tested the predictive capability of our genome-wide results by performing the meta-analyses

leaving out the ABCD cohort (N = 5,267) to determine whether polygenic scores from European

ancestry samples are associated with intracranial and subcortical brain volumes in the more

diverse ABCD cohort. The polygenic scores for all brain volumes were strongly associated with

intracranial and subcortical volumes in participants of European, African, and non-European
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ancestries, as well as across all ancestral groups (Figure 2 and Supplementary Figures 119-

124). Overall, results remained consistent with additional adjustments for cryptic relatedness.

While polygenic prediction was most accurate for participants of European ancestry (variance

explained ranging from 2.1 to 8.5%), we observed that the variance explained in non-European

ancestry groups was also significant and ranged from 0.8 to 9.8% (Figure 2 and Supplementary

Table 11). Sensitivity analyses included linear regressions among participants of European

ancestry for subcortical volumes using ICV as a covariate. The results were consistent and

remained essentially unchanged. As expected, polygenic scores for ICV did not explain residual

variance above phenotypic ICV (Supplementary Table 12, Supplementary Table 13, and

Supplementary Figure 125).

Genetic overlap between subcortical brain structures

Using LD score regression, we estimated genetic correlations among intracranial and the nine

subcortical brain volumes under study. We adopted a conservative approach to multiple testing

and corrected for the total number of genetic correlations, including those for other complex

human phenotypes [0.05 / 320 [total number of genetic correlation tests] = 1.56x10-4]. We

observed substantial genetic overlap among intracranial and subcortical brain volumes (Figure 3

and Supplementary Tables 14 - 15). The thalamus volume showed genetic correlations with the

other eight brain volumes. The volume of the brainstem, amygdala, and the caudate nucleus, with

four significant genetic correlations, showed the fewest. Components of the striatum, including

the caudate nucleus and putamen, were strongly correlated with the nucleus accumbens.

Within-phenotype genetic correlations across cohorts were large (rg > 0.60) and statistically

significant after multiple testing correction (Supplementary Table 16).

We further explored polygenic overlap between the GWAS summary statistics, including all

cohorts, for the subcortical brain volumes using MiXeR. We estimated the number of causal

variants influencing each subcortical brain volume (median n causal variants = 1.92K,

Supplementary Table 17). The volume of the hippocampus was the least polygenic (1.000K

causal variants, SE = 0.13K), whilst thalamus volume was the most polygenic (2.58K causal

variants, SE = 0.15K). We then estimated the number of causal variants shared between

subcortical brain volumes, finding substantial polygenic overlap between them (median n shared
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causal variants = 1.24K, Supplementary Table 18). The largest overlap was observed between

the volumes of the thalamus and globus pallidus (2.08K variants, SE = 0.22K), while the smallest

was between the thalamus and hippocampus (0.53K variants, SE = 0.04K). We identified

polygenic overlap between three pairs of brain structures: brainstem-amygdala (0.97K variants,

SE = 0.09K), brainstem-caudate nucleus (0.87K variants, SE = 0.10K), and caudate-ventral

diencephalon (1.01K variants, SE = 0.12K), despite their genetic correlation being close to zero

(Figure 3).

Genetic clustering of subcortical brain structures

We used genomic structural equation modelling (SEM)29 to examine whether and how subcortical

brain structures cluster together at a genetic level. We first tested a common factor model, which

provided a poor fit to the data (CFI = 0.70, SRMR = 0.13, AIC = 828.03; Supplementary Table

19). To explore other possible factor structures underlying subcortical brain structures, we

conducted genetic exploratory factor analyses (EFA) based on the genetic correlation matrix of

the 9 subcortical structures (Supplementary Table 20). A two-factor model (Supplementary

Table 21) and three-factor model (Supplementary Table 22) explained 43% and 53% of the

total genetic variance, respectively. Follow up confirmatory factor analyses (CFA) were specified

in genomic SEM (retaining standardised loadings greater than 0.25). While the two-factor model

did not provide adequate fit (CFI = 0.84, SRMR = 0.09, AIC = 482.97), the three-factor model

provided good fit to the data (CFI = 0.91, SRMR = 0.06, AIC = 299.33, Figure 4).

Genetic correlations with brain disorders

We estimated genetic correlations between the brain volumes investigated and 22 complex

human phenotypes (Figure 3 and Supplementary Tables 14 - 15). Parkinson’s disease,

attention-deficit/hyperactivity disorder (ADHD), neuroticism score, birth weight, birth head

circumference, height, and insomnia showed statistically significant associations after correction

for multiple testing. Parkinson’s disease showed several positive genetic correlations with

intracranial and subcortical brain volumes, including those of the nucleus accumbens, brainstem,

caudate nucleus, globus pallidus, putamen, thalamus, and ventral diencephalon. We observed

negative genetic overlap for ICV with ADHD, insomnia, and neuroticism scores. Conversely, we
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identified a positive genetic correlation of birth weight, birth head circumference, and height with

ICV.

We further investigated the relationship between brain volumes and complex human phenotypes

with a statistically significant genetic correlation using the pairwise-GWAS (GWAS-PW) method.

With this approach, we identified 338 genomic segments with genetic variants influencing both

the volume of a brain structure and a human complex phenotype (Supplementary Table 23).

Genomic segments with shared genetic variants were identified for all traits that displayed a

significant genetic correlation after multiple testing correction, except for the ventral

diencephalon and ADHD.

As a sensitivity analysis, we investigated whether adjusting or not adjusting for ICV had an effect

on genetic correlations with complex human phenotypes. We used the GWAS for subcortical brain

volumes from the UK Biobank with and without adjusting for ICV and estimated genetic

correlations with complex human traits. We observed more statistically significant genetic

correlations with complex human phenotypes when not adjusting subcortical brain volumes for

ICV. However, the direction and magnitude of the genetic correlations remained for the most part

consistent regardless of the adjustment for ICV (Supplementary Tables 24 - 29;

Supplementary Figures 126 and 127).

Potential causal genetic effects

We estimated the genetic causal proportion (GCP) with the latent causal variable method (LCV)

and leveraged the Latent Heritable Confounder Mendelian Randomisation (LHC-MR) method to

assess potential causal genetic effects of intracranial and subcortical brain volumes with complex

human traits that displayed a statistically significant genetic correlation after Bonferroni multiple

testing correction. We observed putative causal genetic effects for a larger putamen volume

influencing a higher risk for Parkinson’s disease after multiple testing correction using the LCV

[0.05 / 16 [total number of genetic causal proportion tests in the present study] = 3.13x10-3] and

LHC-MR [0.05 / 32 [total number of LHC-MR tests in the present study] = 1.56x10-3] methods.

With both methods, we observed that a larger ICV could reduce the likelihood of developing

ADHD. Potential causal genetic effects suggesting that a larger ICV could reduce the likelihood of
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developing insomnia were observed with LCV, but not with LHC-MR. We observed several

potential causal genetics effects of nominal significance (p-value < 0.05), which are fully

described in Supplementary Table 30 and Supplementary Table 31
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Discussion

We performed the largest GWAS meta-analysis of intracranial and subcortical brain volumes to

date across international datasets from 19 countries. Here, we complement and extend work

from a previous GWAS meta-analysis that identified 48 significantly associated loci with seven

subcortical brain volumes2. Our results implicated more than 254 independent genetic variants,

at the common genome-wide threshold (p-value < 5x10-8), associated with ICV or the volumes of

the brainstem, caudate nucleus, putamen, hippocampus, globus pallidus, thalamus, nucleus

accumbens, amygdala and for the first time, the ventral diencephalon, in over 70,000 individuals.

Of these 254 independent genetic variants, 161 have not been reported in previous

studies2,14–16,30. From the independent genome-wide genetic variants reported in previous

studies2,14–16,30, we replicated 39% (N = 167) in the genome-wide loci in our meta-analysis at the

common genome-wide threshold (p-value < 5x10-8). Our findings provide insights into genes that

influence variation in human intracranial and subcortical brain volumetric measures. We show

that distinct genetic variants often have a specific effect on the variation of a single brain volume.

In addition, we conducted thorough functional annotation and gene prioritisation analyses,

including gene-based tests, TWAS, and the integration of single-cell RNA sequencing data with

GWAS summary statistics. We investigated the genetic overlap and putative causal genetic effects

of intracranial and subcortical brain volumes with other complex human phenotypes. Polygenic

scores for intracranial and subcortical volumes showed predictive ability for their corresponding

phenotypic measurements, even when examined in a pre-adolescent population with individuals

of diverse ancestral backgrounds.

Previous work suggests that heritability estimates for intracranial and subcortical brain volumes

range from 33 to 86% in twin and family studies2,31,32 and from 9 to 33% using a SNP-based

heritability approach2. In our study, SNP-based heritability estimates derived from GWAS

meta-analysis results ranged from 18 to 38%. These values are consistent with prior findings in

the UK Biobank and ENIGMA cohorts2,33. Furthermore, a previous GWAS meta-analysis of ICV

identified 64 genetic variants explaining 5% of phenotypic variation in a sample of European

ancestry14. In the present study, we explained 28% (CI = 26 - 30%) of phenotypic variation and
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identified 83 significant loci associated with ICV at the common genome-wide threshold (p-value

< 5x10-8).

We explored genetic correlations among intracranial and subcortical brain volumes, including the

first ever findings for the ventral diencephalon. We identified substantial genetic overlap for

these brain volumes, consistent with previous reports, and supporting previously observed

phenotypic associations2. In contrast with previous findings2, we identified several genetic

correlations of subcortical brain volumes, including the hippocampus, globus pallidus, thalamus

and ventral diencephalon, with the brainstem. The strongest genetic correlation among all brain

volumes was observed between the volumes of brainstem and the ventral diencephalon. This

finding is consistent with brainstem anatomy and the interconnection with the ventral

diencephalon, as the brainstem can be subdivided into the diencephalon (thalamus,

hypothalamus), mesencephalon (midbrain), ventral metencephalon (pons), and myelencephalon

(medulla)34. In addition, with genomic SEM analyses we observed how subcortical brain

structures cluster together at a genetic level. The volumes of the nucleus accumbens, caudate

nucleus, putamen and globus pallidus clustered together, which is consistent with the structure of

the basal ganglia35–37 and the striatum36. Furthermore, the volume of the globus pallidus also

clustered together with those of structures strongly interconnected with the basal ganglia35, such

as the brainstem, thalamus, and ventral diencephalon, while the volumes of the amygdala and the

hippocampus, whose circuitry in the limbic system is well-known to predominantly influence

emotion-regulated memories38, constituted the third cluster.

Previous studies have aimed to investigate the genetic overlap of intracranial and subcortical

brain volumes with neuropsychiatric disorders1,2,12,39,40. Here, we identified genetic correlations

for eight subcortical brain volumes with Parkinson’s disease and three with ADHD. ICV showed

genetic overlap with both Parkinson’s disease and ADHD. ADHD and Parkinson’s disease are

predominantly young- and late-onset phenotypes, respectively41,42. However, our GWAS summary

statistics for intracranial and subcortical brain volumes do not necessarily include people

diagnosed with Parkinson’s disease, ADHD, or individuals at high risk for these disorders. Thus,

positive genetic correlations with Parkinson’s disease suggest that genetic variants influencing

larger volumes during the development of specific structures are also associated with a higher
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risk for Parkinson’s disease, consistent with previous observations in genetic studies2. In contrast,

negative genetic correlations with ADHD imply that genetic variants influencing a smaller volume

of specific structures are associated with a higher genetic susceptibility for ADHD43. We present,

for the first time, the further interrogation of the observed genetic correlations via different

methods to demonstrate putative causal genetic effects between a range of subcortical brain

volumes and various complex human phenotypes.

Identified loci for intracranial and subcortical brain volumes were annotated using gene-based

testing, eQTL mapping, TWAS and the integration of single-cell RNA sequencing data with GWAS

summary statistics. Most of the genes associated with intracranial or subcortical brain volumes

across analyses were uniquely associated with a specific brain volume, shedding light on the

independent genetic underpinnings of these structures. While the remaining genes showed

effects influencing more than one brain structure, no single gene was associated with all brain

measures assessed. We identified gene expression in different neural cell types for genes that

have been previously reported to act through pathways related to autophagy (TUFM, and

FAIM)21–23, mediation of intracellular signalling (MAPK3)20, organelle biogenesis and maintenance

(YIPF4)44, and nucleo-cytoplasmic transport of RNA and proteins (NUP43)45. Some of the

identified expressed genes (CRHR124–26 and LRRC37A246,47) have been previously associated with

neurodegenerative disorders48. For instance, it has been suggested that CRHR1 may have a

neuroprotective effect in Parkinson’s disease24–26, and may even prevent dementia-related

symptoms49.

Previous studies suggest that polygenic scores lack predictive ability on ancestral groups that do

not match the ancestry of the discovery GWAS50. However, in the present study, we observed for

the first time that polygenic scores significantly predicted the same intracranial and subcortical

brain volumes in a sample of preadolescent children of European and non-European ancestries.

Given that PRS prediction was possible in children, it is likely that the genetic variation

underlying differences in adult intracranial and subcortical brain volumes is present at an early

age. This is consistent with prior work suggesting that prenatal and postnatal development of

subcortical brain regions is influenced by genetic variants associated with subcortical brain

volumes in adults51. Furthermore, our polygenic scores account for a significant fraction of brain
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variability across ancestries. This suggests that genetic variants responsible for subcortical brain

structure could be shared across ancestries, with linkage disequilibrium and minor allele

frequency differences underlying differences in accuracy for trans-ancestry predictions52. We

observed that predictions on participants of African ancestry outperformed those for participants

of Asian ancestry. This is inconsistent with previous studies demonstrating that LD patterns in

Asians are more similar to those in Europeans when compared with those of African ancestry. We

attribute our observations to the difference in sample sizes, which is larger for participants of

African ancestry (N = 1,833) than for those of Asian ancestry (N = 152). Overall, our findings

point towards polygenic score generalisability across individuals of diverse ancestral

backgrounds, and could be leveraged to study brain development in young populations. Well

powered polygenic predictors, will potentially enable to boost power of future neuroimaging

GWAS performed in samples of underrepresented ancestries53, an important endeavour to

narrow the ancestry biases in current genetic studies.

When performing GWAS on any brain measurements, the inclusion of ICV as a covariate in the

model is frequently used and widely accepted to adjust for differences in head size among

participants2,13,16,30. However, this practice remains open for discussion as there is potential for

collider bias. Correcting for a heritable, correlated covariate, such as ICV, can bias estimates,

which could potentially limit the interpretability of gene-identification and other downstream

analyses54. In the present study, we performed GWAS for subcortical brain volumes in the UK

Biobank cohort with and without adjusting for ICV to investigate potential differences. We

estimated genetic correlations with complex human phenotypes and performed gene-based tests.

For these analyses, we observed more statistically significant associations for the GWAS that were

not adjusted for ICV. We suggest that the effect of ICV is driving these associations. For instance,

ICV is correlated with head birth circumference and birth weight. When not adjusting for ICV,

most if not all of the subcortical brain volumes were genetically correlated with head birth

circumference and birth weight after multiple testing correction. Consistently, when adjusting for

ICV, a few subcortical brain volumes were barely genetically correlated with these phenotypes.

Similar observations were made for gene-based tests. Lastly, when a correction for ICV is not

included in volumetric studies using magnetic resonance imaging, sex differences are observed55.

We consider that for the analyses of brain size-related measurements, the adjustment for ICV is
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necessary to account for differences in head size and sex, which will directly influence the

measurements. We consider this crucial in our study since we leveraged data from different

cohorts, such as ABCD and the UK Biobank, which include participants of different age, sex, and

total brain size. Future studies should aim to fully investigate the effect of ICV on neurogenomic

analyses.

The limitations of this study must be acknowledged. As we mentioned in the methods section, the

imaging analysis and visualisation of structural data in all cohorts was performed using the

publicly available FreeSurfer package tool, which includes the superior cerebellar peduncle as

part of the brainstem. The superior cerebellar peduncle is a structure that connects the

cerebellum to the brainstem56. However, anatomically, the cerebellar peduncle is not a putative

structure of the brainstem56. Therefore, we note that the inclusion of the cerebellar peduncle as

part of the volume of the brainstem is a limitation of the segmentation performed by the

FreeSurfer package tool, which we are unable to address. Furthermore, our GWAS meta-analyses

included only participants of European ancestry in the discovery phase. Therefore, the genetic

loci associated with intracranial and subcortical brain volumes in the present study are only

representative of individuals of European ancestry until confirmed in samples of other ancestral

populations.

We provide evidence for the polygenic architecture of intracranial and subcortical brain volumes,

presenting findings for the volume of the ventral diencephalon for the first time, and show that

polygenic scores could be useful in predicting or imputing brain volume measures in future

studies. Multiple genes were associated with the brain volumes investigated in this, the largest

and most geographically diverse genetic study to date. Genes identified were expressed in specific

neural cell types that influence intracranial and subcortical brain volumes and are involved in

autophagy, intracellular signalling and transport, organelle biogenesis and maintenance, or the

aetiology of neurodegenerative disorders. Our findings point towards the generalisability of

intracranial and subcortical brain volumes’ polygenic scores to non-European ancestry

individuals, suggesting a shared genetic basis of these brain volumes across diverse ancestral

groups. We observed genetic overlap and putative causal genetic effects of intracranial and
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subcortical brain volumes with neuropsychiatric conditions, including Parkinson’s disease and

ADHD. Overall, our findings advance the understanding of the brain's complex and polygenic

genetic architecture, implicating multiple molecular pathways in human brain structure and

suggesting that multiple genetic variants of small effect size are likely to be involved in the

development of specific brain volumes. These studies also facilitate our understanding of shared

genetic pathways underlying the aetiology of brain disorders and the formation and adaptation of

the human brain.
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Tables

Table 1. Summary of GWAS meta-analysis results per subcortical brain volume and intracranial

volume (ICV).

Brain volume Number of genome-wide significant loci
h2SNP

(SE)
Intercept (SE)

Attenuation

ratio (SE)

Brainstem 96 0.35 (0.03) 1.00 (0.01) < 0

ICV 83 0.28 (0.02) 1.00 (0.02) 0.006 (0.04)

Caudate

nucleus 78 0.27 (0.02) 1.00 (0.01) 0.001 (0.03)

Putamen 71 0.29 (0.03) 1.00 (0.01) 0.006 (0.03)

Hippocampus 47 0.21 (0.02) 1.00 (0.01) 0.001 (0.04)

Ventral

diencephalon 36 0.33 (0.03) 1.00 (0.01) 0.01 (0.04)

Thalamus 35 0.22 (0.01) 1.00 (0.01) < 0

Globus pallidus 32 0.22 (0.02) 1.00 (0.01) < 0

Nucleus

accumbens 29 0.21 (0.01) 1.00 (0.01) 0.003 (0.03)

Amygdala 22 0.17 (0.01) 1.00 (0.01) < 0

Total 529 NA NA NA

Number of genome-wide loci is reported at the common genome-wide significance threshold (p-value <

5x10-8, r2 threshold to define independent significant loci ≥ 0.6, second r2 threshold to define lead loci ≥

0.05). A full list of independent significant loci is reported in Supplementary Table 1.
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Figures

Figure 1. Meta-analyses results overview. Phenogram illustrating loci associated with each of

the brain volumes under study at the common genome-wide significance threshold (p-value <

5x10-8). ICV = Intracranial volume, A = Left Hemisphere interior, B = Left Hemisphere exterior, C

= Right hemisphere interior, D = Right hemisphere exterior, E = Both hemispheres upper. The

p-values referenced here correspond to a two-tailed Z-test test as implemented in MTAG.

Figure 2. Polygenic prediction in the ABCD cohort.

Barplots show the variance explained by intracranial and subcortical brain volume polygenic

scores using the SBayesR approach with a linear mixed effects model implemented in GCTA for

the whole sample (N = 10,440), and individuals of European (N = 5,267), Non-European (N =

5,173), African-only (N = 1,833), and Asian-only (N = 152) ancestry. The p-value of the

association is shown at the top of each bar; those with an asterisk (*) were significant after

Bonferroni multiple testing correction [0.05 / 50 [total number of tests] = 1x10-3]. Non-European

ancestry individuals include, but are not limited to, African-only and Asian-only ancestries as

individuals with admixed ancestry were also included. P-values in this figure correspond to

wald-tests (2-sided) derived from the linear mixed model results.

Figure 3. Genetic overlap with neuropsychiatric traits and disorders

Heatmap depicting genetic correlations (rG) of intracranial and subcortical brain volumes with

complex human phenotypes. *p-value < 0.05; **p-value significant after Bonferroni multiple

testing correction (0.05 / 320 [total number of genetic correlation tests] = 1.56x10-4). Genetic

correlations were estimated using LD score regression. P-values correspond to chi-squared tests

with one degree of freedom as implemented in LD score regression.

Figure 4. Genetic structure of subcortical brain volumes

Path diagram of a three-factor model estimated with genomic structural equation modelling. Blue

rectangles represent the genetic component of each subcortical brain volume. Green circles

represent latent factors. Standardised path coefficients are presented.
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Methods

Statistics

This study performed several statistical approaches including linear regression, linear mixed

effects associations, genome-wide association studies, LD-score regression, bivariate gaussian

mixture models, genomic structural equation modelling, and MTAG-based meta analysis of GWAS

summary statistics. Each approach is described in detail below.

Cohorts and GWAS

ENIGMA and CHARGE. GWAS summary statistics for the MRI-derived volume of seven subcortical

brain structures of interest (nucleus accumbens, amygdala, brainstem, caudate nucleus, globus

pallidus, putamen, and thalamus) were obtained from the ENIGMA website following the

application and approval of this project. These GWAS summary statistics are detailed elsewhere2.

This compilation of GWAS summary statistics is the product of a meta-analysis including 48

European ancestry samples from the ENIGMA consortium57, the CHARGE consortium58 and the

first release (N~8,312) of the UK Biobank neuroimaging traits. Individual cohorts conducted

quality control on their genotypic data (including SNP and sample level quality for MAF,

missingness and heterozygosity), and phenotypic data (including outlier screening and

distribution checks) prior to imputation. GWAS followed standardized ENIGMA/CHARGE analysis

plans. Quality control before the meta-analysis of these samples included removing SNPs with

poor imputation quality, removal of non-common SNPs (minor allele frequency > 0.01) and SNPs

with a low effective minor allele count (< 20) or not represented across the meta-analysis (i.e.

present in less than 70% of the total sample size for the discovery GWAS). Furthermore, a sample

size (Z-score) weighted meta-analysis was used, as cohorts used different methods for

acquisition, processing and adjustment of GWAS. The UK Biobank sample was adjusted for total

brain volume, whereas ENIGMA and CHARGE consortium data were adjusted for total ICV2.

Results from a previous GWAS meta-analysis for ICV15 and hippocampal volume16 were obtained

via a public access repository through application and approval

(https://enigma.ini.usc.edu/research/download-enigma-gwas-results/). Strict MRI-scan protocol

procedures were followed to ensure high data quality as described thoroughly elsewhere2.
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UK Biobank. We performed GWAS for intracranial and nine subcortical brain volumes with data

from the UK Biobank59. The UK Biobank genotyping and phenotyping have been described

elsewhere60. Briefly, our GWAS includes 36,095 participants of European ancestry passing

standard quality control procedures as described elsewhere60. The subcortical brain structures

included the nucleus accumbens, amygdala, brainstem, caudate nucleus, hippocampus, globus

pallidus, putamen, thalamus, and ventral diencephalon. We also performed a GWAS on ICV. We

excluded outlier measures that were at least four standard deviations from the mean. GWASs

were performed using BOLT-LMM (v2.3.2)61, which accounts for relatedness via a linear mixed

model. This method includes a random effect with a variance-covariance structure specified by a

genetic-relatedness matrix (GRM) derived from a subset of SNPs across the genome61. The GWAS

was adjusted for genotyping array, sex, age, sex*age, age-squared, sex*age-squared, and the first

20 genetic principal components to adjust further for population stratification. We included the

neuroimaging data collection site (Data Field 54) as a covariate in the model to account for

potential bias due to the use of different scanners across data collection sites. GWASs for

subcortical brain volumes were further adjusted for ICV. We excluded variants with a low minor

allele frequency (<0.01) or a low-quality imputation score (<0.60) from the analysis. Strict

MRI-scan protocol procedures were followed to ensure high data quality as described thoroughly

elsewhere62.

In the present study, we did not have an independent sample to perform replication analyses.

Nonetheless, we leveraged the total sample from the UK Biobank included in our meta-analyses

to create two subsamples of N ~ 18,047. These subsamples were created by randomly splitting

the main sample N = 36,095 into two sets of data. We used these subsamples to conduct GWAS for

intracranial and subcortical brain volumes as an alternative replication method to compare GWAS

findings between these samples and with the meta-analyses. We included the same covariates as

described above and performed the same quality control procedure.

Throughout the main set of GWAS analyses and for the meta-analyses we included ICV as a

covariate in the GWAS to account for inter-individual variation in subcortical brain volume due to

head size differences, which is crucial when using samples including participants from different
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age groups. However, as previous studies have suggested54, adjusting for heritable covariates,

such as ICV, could bias effect estimates in GWAS. Therefore, as a sensitivity analysis, we also

performed GWAS in the full sample of the UK Biobank cohort (N = 36,095) as described above for

nine subcortical brain volumes, but without including ICV as a covariate in the model. This

allowed us to understand potential differences in GWAS with and without correcting for ICV.

ABCD. The ABCD study is a longitudinal resource that includes children aged nine and ten at

recruitment63. Conducted in the United States, neuroimaging measures were obtained by the

ABCD Data Analysis and Information (DAIC) and the Image Acquisition workgroups.

Neuroimaging was performed across 21 sites using three different scanner types. Further

information on image acquisition and postprocessing is available elsewhere64,65. Brain volumes

analysed in this cohort included ICV, hippocampus, ventral diencephalon, brainstem, nucleus

accumbens, caudate nucleus, thalamus, globus pallidus, amygdala, and putamen—volumes of the

left and right measures (where relevant)— were averaged for each individual. We excluded

outlier measures that were at least four standard deviations from the mean. Saliva samples were

obtained at a baseline visit, and genotyping was performed using a Smokescreen array following

standard DNA extraction protocols. Quality control removed genetic variants with a low call rate

(less than 99% of the sample) and samples with a missing rate greater than 20% or conflicting

identifiers. This quality-controlled dataset was imputed to the 1000G Phase 3 reference panel

using the Michigan Imputation Server 66. Imputed genotype probabilities were extracted from the

imputed data using QCTOOL v2 (https://www.well.ox.ac.uk/~gav/qctool_v2/). PLINK v2 was

used to generate a subset of genetic files as a genetic relatedness matrix (GRM) for GWAS

analysis. Briefly, a random list of 500,000 variants passing QC (minor allele frequency >= 0.01; CR

>= 0.9 and INFO >= 0.6) was generated and used to create a new set of PLINK files (.bed, .bim,

.fam) from the imputed genotype probability files. Ancestry was inferred by projecting the ABCD

samples onto the principal components of the 1000 Genomes project using PLINK v1.90b6.8 and

the flag --pca-clusters (Supplementary Figure 128). The Euclidean distance between the

centroids for the first three principal components of each 1000G super population and each

sample was calculated using Python (v3.5). To assess the validity of this approach, a receiver

operating characteristic (ROC) curve was used to investigate whether this distance (multiplied by

-1) was able to classify samples according to self-reported white race (which could be considered
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a proxy for European ancestry). Participants were deemed outliers (i.e., non-Europeans) if they

were more than three standard deviations from the super population centroid. Importantly, this

cutoff value was close to Youden's J, which could be considered (post-hoc) the optimal cutoff for

binary classification (Supplementary Figure 129). The final GWAS included 5,267 participants

of European ancestry who passed genetic and neuroimaging quality control. The GWAS was

performed using BOLT-LMM (v2.3.2) adjusting for age, sex*age, age-squared, sex*age-squared,

and the first 20 genetic principal components to adjust further for population stratification. We

included the imaging device serial number under the variable name

‘mri_info_deviceserialnumber’ as a covariate in the model, as suggested in previous studies64, to

account for potential bias due to the use of different scanners across data collection sites.

Subcortical volumes GWAS were further adjusted for ICV. We excluded variants with a low minor

allele frequency (<0.01) or a low-quality imputation score (<0.60) from the analysis. Strict

MRI-scan protocol procedures were followed to ensure high data quality as described thoroughly

elsewhere67.

Intracranial and subcortical brain volumes GWASmeta-analyses

We performed a GWAS meta-analysis for each brain volume phenotype across the

ENIGMA-CHARGE published summary statistics and the GWAS in the UK Biobank and ABCD

performed here, yielding a total sample size of up to 74,898 unique participants of European

ancestry across all samples (Supplementary Table 32). All participants included in the present

study provided written informed consent and the investigators on the participating studies

obtained approval from their institutional review board or equivalent organisation. Individual

GWAS for subcortical brain volumes were adjusted for ICV, as this reduces inter-individual

variation in subcortical brain volume simply due to head size differences68. The meta-analyses

were performed using MTAG v1.0.869. Meta-analyses were performed, assuming equal heritability

and perfect genetic covariance. Independent loci for human intracranial and subcortical brain

volumes were determined by combining lead SNPs for all brain volumes under study and

performing a conservative clumping procedure in PLINK 1.970 (p1 = 1x10-8, p2 = 1x10-5, r2 = 1x10-3,

kb = 1000). Independent genome-wide loci not reported in previous studies are claimed based on

a comparison of the independent unique loci identified in the present study across intracranial

and subcortical brain volumes with independent genome-wide significant loci for intracranial14,15
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or subcortical brain2,16,30 volumes reported in previous studies. We considered

linkage-disequilibrium information in the definition of the independent genome-wide loci not

reported in previous studies by performing a clumping procedure using PLINK 1.970 (p1 = 1x10-8,

p2 = 1x10-5, r2 = 1x10-3, kb = 1000). We report results at the common genome-wide significance

threshold. In addition, we performed multiple testing correction using matSpD to account for the

total number of phenotypes as performed in previous studies12. We observed that the effective

number of independent traits in our analysis was 8. Thus, we set a significance threshold of

p-value < 5x10-8 / 8 = 6.25x10-9 .

The imaging analysis and visualization of structural data in all cohorts was performed using the

publicly available FreeSurfer71 package tool (https://surfer.nmr.mgh.harvard.edu/) developed by

the Laboratory for Computational Neuroimaging at the Athinoula A. Martinos Center for

Biomedical Imaging. Details regarding border definition for specific brain structures is available

on the wiki (https://surfer.nmr.mgh.harvard.edu/fswiki/FreeSurferWiki). In particular, the

ventral diencephalon contains the following structures: the hypothalamus, basal forebrain, the

sublenticular extended amygdala (SLEA), and a portion of the ventral tegmentum, which can also

be considered a part of the midbrain71,72. These specific substructures do not overlap with the

brainstem borders, which is constituted by the medulla oblongata, pons, midbrain and superior

cerebellar peduncle71.

The phenogram in Figure 1 was created using the Ritchie Lab Visualization online tool

(https://visualization.ritchielab.org/phenograms/plot). Subcortical brain images in Figure 1

were created using publicly available tutorials

(https://surfer.nmr.mgh.harvard.edu/fswiki/CorticalParcellation and

https://bookdown.org/u0243256/tbicc/freesurfer.html) in MATLAB (R2023b). The ENIGMA

consortia also provides tutorials on the creation of brain-related figures

(https://enigma-toolbox.readthedocs.io/en/latest/pages/12.visualization/index.html#subcortic

al-surface-visualization).

Functional annotation and gene prioritisation
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We performed functional annotation and gene prioritisation analyses using MAGMA, eQTL

mapping with TWAS, and by integrating single cell sequencing data with GWAS summary

statistics.

First, we performed gene-based tests using MAGMA73 v(1.08) as implemented in FUMA (v1.5.2)74

(https://fuma.ctglab.nl/). The MAGMA method provides aggregate association p-values based on

all variants within a gene and its regulatory region73. We applied a Bonferroni multiple-testing

correction based on the total number of genes and accounted for the effective number of

independent traits in our analysis, (0.05 / 17,708 [average number of tests per brain volume] * 8

[estimated number of independent phenotypes] = 2.26x10-5).

Second, we conducted an in-depth analysis of genetically regulated gene expression using FUSION

(http://gusevlab.org/projects/fusion/), a software tool for TWAS75. FUSION leverages SNP-gene

expression associations to construct predictive linear models tailored to each gene. The model

demonstrating superior predictive performance in cross-validation trials was subsequently

employed for predictive applications within the GWAS. Available tissue specimens sourced from

five distinct subcortical regions from GTEx v8 (specifically, Accumbens, Amygdala, Hypothalamus,

Hippocampus, and Putamen) were included in the analysis. For this, we used a Mendelian

randomization framework employing summary-data-based Mendelian Randomisation (SMR)

v1.3.176 to assess gene expression in multiple cell lines across the nine subcortical and

intracranial volumes (ICV). We also incorporated data from RNA splicing sequencing, based on

single-tissue gene expression derived from the brain. We applied Bonferroni multiple testing

correction and accounted for the effective number of independent traits in our analysis (0.05 /

1,308 [average number of annotations per brain volume] * 8 [estimated number of independent

phenotypes] = 3.06x10-4). Moreover, we utilised an eQTL dataset derived from 120 human fetal

brains77, employing the SMR method to identify genes involved in the development of subcortical

brain structures. We applied Bonferroni multiple testing correction and accounted for the

effective number of independent traits in our analysis (0.05 / 317 [average number of

annotations per brain volume] * 8 [estimated number of independent phenotypes] = 1.26x10-3).
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Genes prioritised through MAGMA and FUSION analyses from single and multiple brain tissues

were further assessed by integrating GWAS summary data with single-cell RNA-sequencing data,

which included over 1 million cells at three different stages of the differentiation process.

Single-cell RNA-Seq analysis was based on eQTL data of Jerber et al. from 215 human induced

pluripotent stem cell lines as they progressed towards a midbrain neural-like fate28. This process

encompasses the generation of dopaminergic neurons, serotonin transporters, astrocyte-like

cells, ependymal cells, and neuron-differentiated clusters. We filtered results for those involving

genes associated with intracranial or subcortical brain volumes across MAGMA and TWAS

analyses. Then, we applied Bonferroni multiple testing correction technique, considering the

effective number of independent traits in our analysis (0.05 / 337 [total number of gene-brain

volume associations] * 8 [estimated number of independent phenotypes] = 1.19x10-3).

As a sensitivity analysis, we sought to understand potential differences in GWAS for subcortical

brain volumes with and without correcting for ICV. Therefore, we performed gene-based tests

using MAGMA73 v(1.08) as implemented in FUMA74 for GWAS in the UK Biobank cohort with and

without adjusting for ICV. For each set of GWAS summary statistic (i.e., with and without

adjusting for ICV), we applied Bonferroni multiple testing correction technique, considering the

effective number of independent traits in our analysis (0.05 / 1097 [total number of gene-brain

volume associations] * 8 [estimated number of independent phenotypes] = 3.64x10-4).

SNP-based heritability and genetic correlations

LD score regression (LDSC)78 was used to estimate the heritability for each subcortical brain

structure. Briefly, this method leverages the expected relationship between the

linkage-disequilibrium variant tags and their expected degree of association with a given

phenotype to estimate the heritability. It distinguishes between confounding bias and

polygenicity78. We processed our meta-analysis results using the munge function from LDSC

v.1.0.1 and performed LD score regression to estimate the percentage of variance explained by

the SNPs in the meta-analysis.

The genetic correlation between a pair of phenotypes depicts the relationship of genetic effect

sizes at mutual genetic variants across phenotypes79. In the present study, we used LD score

41

 . CC-BY-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted August 20, 2024. ; https://doi.org/10.1101/2024.08.13.24311922doi: medRxiv preprint 

https://paperpile.com/c/Im8eff/PmqMy
https://paperpile.com/c/Im8eff/nfHBe
https://paperpile.com/c/Im8eff/JVCrY
https://paperpile.com/c/Im8eff/dTHdZ
https://paperpile.com/c/Im8eff/dTHdZ
https://paperpile.com/c/Im8eff/jtiBx
https://doi.org/10.1101/2024.08.13.24311922
http://creativecommons.org/licenses/by-nd/4.0/


regression to perform genetic correlation analyses among subcortical brain structures and

between complex human phenotypes, including neuropsychiatric disorders and anthropometric

measurements, with subcortical brain structures. Details for the GWAS summary statistics for

neuropsychiatric and subcortical brain structures are provided in the Supplementary Table 33

and Supplementary Methods. These complex human phenotypes were selected based on

criteria applied in previous studies by the ENIGMA consortium, which relies on the public

availability of well-powered summary statistics of previously reported brain-related phenotypes

and anthropometric measurements2,15. These criteria are limited and restricted in the present

study by the data transfer agreement with the CHARGE cohort, for which we are not allowed to

leverage CHARGE data to investigate any relationships involving substance-related disorders and

cognitive or intelligence-related phenotypes. We accounted for multiple testing using Bonferroni

correction (0.05 / 320 [total number of genetic correlation tests] = 1.56x10-4).

As a sensitivity analysis, we sought to understand potential differences in GWAS for subcortical

brain volumes with and without correcting for ICV. Therefore, we estimated the genetic

correlation between the GWAS for subcortical brain volumes in the UK Biobank cohort with and

without adjusting for ICV. In addition, we estimated genetic correlations for both sets of GWAS

summary statistics (i.e., with and without adjusting for ICV) with complex human phenotypes.

Pairwise GWAS

We leveraged the pairwise-GWAS (v.0.3.6) method80 to identify segments of the genome with

genomic variants influencing the aetiology of a brain volume and a human complex phenotype.

For each pair of genetically correlated phenotypes after multiple testing correction according to

our LD score regression results, we conducted GWAS-PW analyses. This method splits the

genome into 1703 independent segments and, for each segment, GWAS-PW estimates the

posterior probability of association (PPA) for four different models. These models include (i) the

genomic segment is uniquely associated to phenotype A, (ii) the region is uniquely associated to

phenotype B, (iii) the segment of the genome is influencing the aetiology of both phenotypes

through the same genetic variants, and (iv) the genomic segment is involved in the aetiology of

both phenotypes via different genetic variants. We provide findings for segments of the genome

where model three (the genomic segment is influencing the aetiology of both phenotypes through

42

 . CC-BY-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted August 20, 2024. ; https://doi.org/10.1101/2024.08.13.24311922doi: medRxiv preprint 

https://paperpile.com/c/Im8eff/1rsgr+I0TyM
https://paperpile.com/c/Im8eff/46ayC
https://doi.org/10.1101/2024.08.13.24311922
http://creativecommons.org/licenses/by-nd/4.0/


the same genetic variants) had a PPA > 0.5, given that this threshold has been used in previous

studies81,82.

Bivariate MiXeR

We conducted bivariate MiXeR analyses using MiXeR v1.383 to quantify polygenicity among the

nine subcortical brain volumes under study. This analysis has been thoroughly described

elsewhere83. Briefly, MiXeR leverages GWAS summary statistics and a univariate gaussian mixture

model to estimate the degree of polygenicity (irrespective of genetic correlation), which is

commonly referred to as the number of trait-influencing genetic variants. Then, with a bivariate

gaussian mixture model, the additive genetic effect of four components is estimated for every pair

of phenotypes: (i) genetic variants that do not influence either phenotype, (ii) genetic variants

that only influence phenotype A (iii) genetic variants that only influence phenotype B, and (iv)

genetic variants that influence both phenotypes83. Thus, MiXeR provides information about the

genetic associations between two complex phenotypes as it estimates the total number of shared

and phenotype-specific causal variants.

Genetic factor analyses

To examine genetic clustering of the nine subcortical brain structures we conducted exploratory

factor analyses (EFA) based upon the LDSC-derived genetic correlation matrix. The R (v3.5.1)

package ‘psych’ was used to conduct the EFAs, with a maximum likelihood extraction method and

oblimin rotation method. The factor models identified in the EFA (retaining factor loadings >

0.25) were subsequently carried forward in a confirmatory factor analysis (CFA) in genomic SEM.

This was done to assess the fit of the factor model to the data while taking into account

uncertainty in covariance estimates. The default diagonally weighted least squares estimator was

used.

Potential causal genetic effects

We leveraged the latent causal variable (LCV)84 and Latent Heritable Confounder Mendelian

Randomisation (LHC-MR v0.0.0.9000)85 methods to investigate potential causal genetic effects

between brain volumes under study and those complex human traits that displayed a statistically

significant genetic correlation after Bonferroni multiple testing correction.
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We employed the LCV method, which has been thoroughly described elsewhere79,84, to assess

whether the genetic correlations identified in the present study could be explained by putative

causal genetic effects and accounted for multiple testing using a Bonferroni correction [0.05 / 16

[total number of genetic causal proportion tests in the present study] = 3.13x10-3]. Advantages of

the LCV method include that (i) is it less susceptible to confounding by horizontal pleiotropic

effects, (ii) it leverages aggregated information across the entire genome (i.e., full genome-wide

data) to increase statistical power, and (iii) it is robust to sample overlap84.

In the LCV method, the sign of the GCP parameter denotes the direction of potential causal

genetic effects84. The GCP parameter ranges from -1 to 1, where GCP = 1 suggests full putative

causal genetic effects of phenotype A on phenotype B. Conversely, GCP = -1 suggests full putative

causal genetic effects of phenotype B on phenotype A. Moreover, a GCP = 0 implies the detection

of horizontal pleiotropy, suggesting that an intervention on one phenotype would not affect the

other due to the absence of causal genetic effects. Overall, to interpret LCV findings one must

consider three important factors: (i) the magnitude of the genetic correlation, (ii) the GCP

estimate, and (iii) the direction (positive or negative) of the GCP estimate84,86–88.

LHC-MR leverages full GWAS summary statistics (not only genome-wide independent loci like

traditional MR methods) to investigate potential causal genetic effects between a pair of

genetically correlated phenotypes. LHC-MR has been reported to improve statistical power to

estimate bi-directional putative causal genetic effects, direct heritabilities, and confounder effects

while accounting for sample overlap. LHC-MR has been suggested to outperform a number of

traditional MR methods85. Full details for the LHC-MR method are described elsewhere85. We

accounted for multiple testing using a Bonferroni correction [0.05 / 32 [total number of LHC-MR

tests in the present study] = 1.56x10-3]. We performed LHC-MR analyses with R (v3.5.1).

Polygenic scores estimation and association analyses

We performed the meta-analysis again but without the ABCD cohort to ensure sample

independence and test polygenic prediction in European (N = 5,267), non-European (N = 5,173),

African-only (N = 1,833), Asian-only (N = 152), and all samples (N = 10,440). Non-European
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ancestry individuals include, but are not limited to african-only and asian-only ancestries as

individuals with admixed ancestry were also considered. To avoid bias due to the correlation

between SNPs arising from linkage-disequilibrium (LD), a Bayesian analysis was used to

approximate the results of a conditional GWAS (i.e. one estimating the effect for all SNPs

simultaneously). This was performed using SBayesR89 implemented within the Genome-wide

Complex Trait Bayesian analysis (GCTB v2.0) software tool90. Polygenic scores for intracranial and

subcortical brain volumes were estimated by multiplying the multivariate effect size (obtained

from SBayesR) times the allelic dosage of the effect allele and summing across all loci for each

participant. Only SNPs passing quality control (minor allele frequency > 0.01, call rate > 0.9 and

imputation score > 0.6) were included in the derived polygenic scores. To test for the association

between intracranial and subcortical brain volumes polygenic scores with their corresponding

phenotype and estimate the percentage of phenotypic variance explained, we performed a linear

mixed effects model, in GCTA version 1.91.7 beta1, with a random effect and with a

variance-covariance specified by a genetic relatedness matrix to account for cryptic relatedness

among participants of the ABCD cohort. The results were plotted in Python (v3.5) using seaborn,

matplotlib and in-house scripts. Sensitivity analyses assessed whether differential variance

explained within the ABCD cohort was due to differential ancestry, sample size differences, or

cryptic relatedness. These analyses consisted of (i) using a clumping and thresholding approach

to derive polygenic scores with a linear mixed effects model implemented in GCTA to perform the

prediction; (ii) performing the association analyses using a multivariate linear regression in

Python (v3.5), and the library statsmodels. Additional covariates included in the model were sex,

age, and the first twenty genetic ancestry components to adjust for population stratification. The

percentage of variance explained was estimated as the difference in R2 between the full model

(i.e., including the polygenic scores) and a reduced model including only covariates; and (iii)

Using SBayesR derived polygenic scores to perform associations analyses with multivariate linear

regressions among participants of European ancestry including ICV as one of the covariates.
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