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Abstract: The Laplace distribution of random processes was observed in numerous situations that
include glasses, colloidal suspensions, live cells, and firm growth. Its origin is not so trivial as in the
case of Gaussian distribution, supported by the central limit theorem. Sums of Laplace distributed
random variables are not Laplace distributed. We discovered a new mechanism leading to the Laplace
distribution of observable values. This mechanism changes the contribution ratio between a jump
and a continuous parts of random processes. Our concept uses properties of Bernstein functions and
subordinators connected with them.
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1. Introduction

Based on a myriad of examples in the physical sciences, 1963 Nobel Prize winner in physics
H.P. Wigner emphasized the exceptional role of mathematics in understanding the physical structure of
the world around us [1]. Indeed, mathematics is a kind of mental tool created for this purpose, and the
world is organized in a logical pattern very similar to mathematics [2]. Thus, mathematics turns out to
be the language of science and technology. In many experiments the single-molecule motion manifests
anomalous diffusion, absolutely not like the classical Brownian diffusion having the mean-squared
displacement (MSD) linear in time [3]. To describe the data, a number of theoretical models was developed.
The most popular of them are: continuous-time random walk (CTRW) and Fractional Fokker–Planck
equation (FFPE) [4–7], fractional Klein–Kramers equation [8], obstructed diffusion (OD) [9,10], random
walk on random walk (RWRW) [11,12], fractional Brownian motion (FBM) [13–16], fractional Lévy
α-stable motion (FLSM) [17–19], fractional Langevin equation (FLE) [20,21] and autoregressive fractionally
integrated moving average (ARFIMA), see [22] and references therein. The ARFIMA model [23–25]
is a discrete time analogue of the overdamped fractional Langevin equation [26] responsible for the
non-Gaussian law (Lévy α-stable) and a long memory. Moreover, the ARFIMA process is a universal and
simple discrete time model for fractional dynamics of empirical data. Recall also that the celebrated FBM
and FLSM is nothing but the limiting case of ARFIMA. Since the ARFIMA models were successful
in analyzing data from other fields (econometrics, see 2003 Nobel Prize in Economic Sciences for
C.W.J. Granger and R. Engel; finance and engineering [27–29]), many statistical tools (and computer
packages, e.g., ITMS [24]) are widely available for users, see [25,30].

A relation beetwen physical environment and mathematical models is crucial [1,30]:

– Trapping, crowded environment (CTRW, FFPE, subordinated BM);
– Labyrinthine environment (OD, percolation, RWRW);
– Viscoelastic system (FBM, FLSM, FLE, ARFIMA);
– System with time-dependent diffusion (scaled BM, scaled FBM, ARFIMA);
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– System with transient diffusion (BM with transient subordinators).

By using the conjugated Bernstein function theory [31] for a subordinated diffusion, we uncover
here a general universal behavior for the pairs of conjugated subordinators. Namely, one can connect
the tempered subdiffusion with the diffusion-limited aggregation. Moreover, for the pure Brownian
motion this is the Laplace distribution whereas for the Lévy flights is its generalization, the Linnik
distribution. It should be also noticed that a large part of well-known anomalous diffusion processes
can be represented as time-changed Brownian motion. Thus, by employing the I. Monroe result [32]
we find that an anomalous diffusion process is represented as time-changed Brownian motion if and
only if it is a semimartingale, [33]. Randomizing the time of the Brownian motion B(t) by using the
independent random process U(t), we obtain a new process X(t) = B(U(t)). Such an operation is
called subordination, first introduced by S. Bochner [34], and see also [35]. The process B, called the
parent process, is directed by the new operational time clock U called subordinator. The first reasonable
usage of subordination in physics dates back to [36], see also [37,38]. Later, physicists developed a
considerable intuition on subordination [39,40]. For the very recent results, see [41].

In the method of single-particle tracking (SPT) a major result is that motion in cell membranes is
not limited to pure diffusion. Several modes of motion have been detected including such as immobile,
confined, tethered, directed, normal diffusion, and anomalous diffusion [42]. After an ensemble average,
the time dependence of the MSD for pure modes of motion is well recognized from others [43,44]. One of
important phenomena related to the classification of modes of motion is that practically all experimental
results show apparent transitions among modes of motion [45]. If a transition is real, it causes this
nonclassical behavior to be different. Their studies are of great interest [46–48]. In cell membranes,
anomalous diffusion is most likely the result of both obstacles to diffusion and traps with a distribution of
binding energies or escape times [49]. Confined motion may result from corrals formed by cytoskeletal
proteins near the membrane, from tethering to immobile species, or from restrictions to motion imposed
by lipid domains [50]. The confined diffusion of plasma membrane proteins or lipids can be regarded as
a special case of subdiffusion [51]. Analytical treatments have been provided for certain shapes of the
confinement zones and the characteristic mobilities [52]. The motion of single biomolecules inside a living
cell often exhibits subdiffusion in the confined and crowded environment [53]. For the interpretation of
experimental results and quantitative predictions of the diffusion behavior, theoretical models can be
extremely helpful. One of them is presented in this paper. It describes the transition from subdiffusion to a
confined state. It is interesting that the model has a one-to-one connection with the well-known tempered
subdiffusion which demonstrates the transition from subdiffusion to normal diffusion in condensed
matter physics [54] and geophysics [55], respectively. Such characteristic crossover from subdiffusion to
normal diffusion has been observed also in lipid bilayer systems [56–58]. The tempered stable process
in different guises has been intensively researched recently [59–67]. The aim of this work is to get the
stochastic representation of anomalous diffusion tending to the confinement. We compare its properties
with similar ones for the tempered subdiffusion. Finally, our results are applied for relaxation processes
with non-exponential decay as well as for the analysis of the experimental data with confined random
trajectories of G proteins and receptors in living cells.

2. Conjugate Laplace Exponents and Stochastic Representation of Anomalous Diffusion

The subdiffusive dynamics is fruitfully modeled as a diffusive motion X(τ) subordinated by a
wide class of random processes subject to infinitely divisible distributions. If the stochastic process
X(τ) has the probability density function (PDF) h(x, τ), it is a solution of the ordinary Fokker–Planck
(FP) equation

∂h(x, τ)/∂τ = L̂(x) h(x, τ) . (1)

where L̂(x) is the time-independent FP operator (for example, − ∂
∂x F(x) + D ∂2

∂x2 with a force F).
Generally, the operator L̂ can be both multidimensional and fractional in space, but with no loss
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of generality we will consider the one-dimensional case. Infinitely divisible distributions, following
the Lévy–Khintchine formula [68], are characterized by the exponentially weighted function

〈e−u TΨ(τ)〉 = e−τΨ(u) =
∫ ∞

0
e−ut gΨ(t, τ) dt , (2)

where Ψ(u) is called the Laplace exponent, and gΨ(t, τ) is the PDF of this process. Note, the Laplace
exponents may be only Bernstein functions. This is a very extensive class of functions [31]. In the
theory of Bernstein functions a special role is played by so-called conjugate pairs [69]. If one of them is
Ψ(s), then another will take the form Φ(s) = s/Ψ(s). The parent process X(τ) may be subordinated by
SΨ(t) = inf{τ > 0 : TΨ(τ) > t} as well as SΦ(t) = inf{τ > 0 : TΦ(τ) > t}, where TΦ is a conjugate
subordinator. Both cases lead to the FP equation in a general form

p(x, t) = q(x) +
∫ t

0
dτ M(t− τ) L̂(x) p(x, τ) , (3)

where M(t) is the memory function [54,70]. The kernel M(t) has a simple expression after the Laplace
transform. Denote the inverse Laplace transform L−1

t . This gives

MΨ(t) =
1

2πi

∫ c+i∞

c−i∞
est ds

Ψ(s)
= L−1

t
1

Ψ(s)
, (4)

MΦ(t) =
1

2πi

∫ c+i∞

c−i∞
est Ψ(s)

ds
s

= L−1
t

Ψ(s)
s

, (5)

where c is large enough that 1/Ψ(s) (for the first case) and Ψ(s)/s (for the second) are defined for
<s ≥ c, and i2 = −1. The PDF of the operational time SΦ(t) is simply written as a Laplace image

f̃ (τ, s) =
1

Ψ(s)
e−τs/Ψ(s) . (6)

The solution (propagator) of Equation (3) takes the form of a subordination integral

p(x, t) =
∫ ∞

0
h(x, τ) f (τ, t) dτ . (7)

Using the Brownian motion as a parent process

hB(x, τ) =
1√

2πDτ
exp

(
− x2

2Dτ

)
, (8)

the Laplace image p̃(x, s) is written as the tabulated integral [71], expressed in terms of the modified
Bessel function of the third kind. As its index is equal to 1/2, we get the following propagator

p̃(x, s) =
1√
2D

1√
sΨ(s)

exp

(
−2

|x|
√

s√
2DΨ(s)

)
. (9)

Similar calculations can be fulfilled for SΨ(t), which we will not present here. If the moments of
a parent process X(τ) are known exactly, as in the case of the Brownian motion, the moments of
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the process X[SΦ(t)] can be found analytically. Using the MSD of Brownian motion in the form〈
B2(τ)

〉
= Dτ, where D is a diffusive constant, the MSD of Y(t) = B[SΨ(t)] and Y(t) = B[SΦ(t)] reads

〈
B2[SΨ(t)]

〉
= D L−1

t
1

sΨ(s)
= D

∫ t

0
MΨ(y) dy , (10)〈

B2[SΦ(t)]
〉

= D L−1
t

Ψ(s)
s2 = D

∫ t

0
MΦ(y) dy . (11)

It is clear that the MSD is depended on the function Ψ(s), but in different ways it manifests in
a conjugate pair. Similar analysis of two different forms of the Fokker–Planck equation where
the memory kernels are conjugate pairs has been done in [72,73]. When the memory kernel is an
exponentially truncated power-law, the MSD can approach to saturation. In the next section, we will
look at specific examples.

3. Tempered α-Stable Process and Its Conjugate Partner

An important exemplar of infinitely divisible subordinators is tempered α-stable processes,
having all moments of operational time [74]. In this case the diffusive motion demonstrates an
intermediate behavior between subdiffusion and normal diffusion [54,55]. Then the Laplace exponent
is Ψtemp(s) = (s + δ)α − δα, where δ is a positive constant and 0 < α < 1. If δ equals to zero,
the tempered α-stable process becomes ordinary α-stable. Let the Brownian motion be a parent process,
and the inverse tempered α-stable process is directing. The MSD of the subordinated diffusion is〈

x2(t)
〉
= D

∫ t

0
e−δy yα−1 Eα, α(δ

αyα) dy , (12)

where Eα,β(x) = ∑∞
k=0 xk/Γ(αk + β) is the two-parameter Mittag–Lefeffler function [75]. If t � 1

(or δ → 0), this value strives for Dtα/Γ(α + 1), whereas for t � 1 (or α → 1) it is linear in time
Dδ1−αt/α as expected for normal diffusion shown in Figure 1a. From the asymptotic values for

〈
x2(t)

〉
it is easy enough to obtain the crossover time tx =

[
α δα−1/Γ(α + 1)

]1/(1−α) between the two diffusive
modes, also shown in Figure 1a. This diffusion behaves anomalous at short time and almost normal at
long times.
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Figure 1. (Color online) Mean squared displacement of tempered subdiffusion (a) and its conjugate
partner (b) with α = 0.6 and δ = 1 (for D = 1). The dashed red and dash-dot green lines show
asymptotic behavior of the values. If the panel (a) indicates a transition of the subdifussion into normal
diffusion at long times, whereas the panel (b) shows the emergence of diffusion-limited aggregation.
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Next, we study the diffusion motion with the conjugate Laplace exponent s/Ψtemp(s). Its MSD
is not difficult to find. It is expressed in terms of the three-parameter Mittag–Leffler function [75],
having the following Taylor series

Eρ
α,β(x) =

∞

∑
k=0

(ρ, k) xk

Γ(αk + β)k!
, α, β > 0 , (13)

where (ρ, k) = ρ(ρ + 1)(ρ + 2) . . . (ρ + k− 1) is the Appell’s symbol with (ρ, 0) = 1, ρ 6= 0. The MSD
has also an analytical form

〈
x2(t)

〉
= D

∫ t

0
e−δy y−α E1, 1−α(δy) dy− Dδαt

= De−δt t1−α E2
1, 2−α(δt)− Dδαt , (14)

that gives the short- and long-time behavior

〈
x2(t)

〉
=

{
Dt1−α/Γ(2− α) if t→ 0 ,

Dαδα−1 if t→ ∞ .
(15)

The interrelation in the conjugate pair between each other is quite non-trivial. If for the Laplace
exponent Ψtemp(s) the pure subduffusion evolves to normal diffusion in time, then for the conjugate
case s/Ψtemp(s) the subdiffusion transforms into diffusion-limited aggregation. Figure 1b just presents
the evolution. It has a simple explanation. As the normal diffusion is characterized by the Laplace
exponent Ψ(s) = s, its conjugate partner has Φ(s) = s/Ψ(s) = 1. This clearly implies the confinement.

Using asymptotic behavior of the MSD, we determine the crossover time t?x =
[
Γ(2− α) α δα−1]1/(1−α)

between the diffusive regimes. Consequently, the duality relation between infinitely divisible
subordinators allows one to generate a new impact scenario of traps, in which diffusion behaves
less anomalous at short time and extremely anomalous at long times.

Using numerical methods, the propagator under the conjugate Laplace exponent s/Ψtemp(s) is
shown in Figure 2. The propagator has a cusp which is saved for t → ∞. Recall that the tempered
subdiffusion loses this feature at long times. If the axis y is logarithmic, as in Figure 2, the propagator
of tempered subdiffusion goes to a parabola (see the panel a), whereas in the confined case it takes a
triangular shape (panel b). This is not surprising because for t→ ∞ the propagator of diffusion motion
with the conjugate Laplace exponent s/Ψtemp(s) can be found analytically, and its form corresponds to
the well-known Laplace (or double exponential) distribution [76,77], namely

lim
t→∞

p(x, t) =
1√

2Dαδα−1
exp

(
− 2|x|√

2Dαδα−1

)
(16)

with a location parameter µ = 0 (in general, it may be nonzero) and a scale parameter
θ =
√

αδα−1D/2 > 0. Although the PDF of the Laplace distribution is reminiscent of the normal
distribution, they are different: the normal distribution is expressed in terms of the squared difference
from the mean whereas the Laplace distribution is expressed in terms of the absolute difference
from the mean. Therefore, the Laplace distribution has fatter (more precisely, moderate) tails than
the normal distribution (with thin tails always) [68]. To get the Laplace distribution as the average
value of elementary Gaussians, the necessary (“superstatistical”) distribution of the diffusivities is
exponential [78–80]. It should be noticed that the Brownian yet non-Gaussian diffusion is not the
same considering in this paper. The stationary Laplace distribution of particles’ motion also takes
place in compartmentalized media [81]. The inverse cumulative distribution function of the Laplace
distribution is equal to xc = −θ ln(2 − 2q). The value xc is such that any observation from this
distribution with the scale parameter θ falls in the range [0 xc] with probability 0 < q < 1 [77].
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This allows one to estimate borders of the confinement region, taking into account the values D, α and
δ. The Laplace distribution as a confined case is characteristic for the Brownian motion as a parent
process. If the parent process becomes infinitely divisible, the confined distribution will be other and
presented in the next section.
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Figure 2. (Color online) Propagator p(x, t) for the tempered subdiffusion (a) and its conjugate partner
(b), tending to the confinement, with a constant potential, α = 0.5 and δ = 1, drawn for consecutive
dimensionless instances of time. Starting with the Dirac delta-function and passing to the subdiffusive
PDF, for t→ ∞ the value p(x, t) becomes the normal distribution, shown by black dotted line on the
panel (a), and the Laplace distribution (black dotted line) on the panel (b).

Note that for α = 1/2 the MSD of the tempered subdiffusion and its conjugate partner coincide
with each other at short times. The point is that the Laplace exponent s1/2 is the only one convertible
into itself by the duality relation between conjugate pairs of Laplace exponents [82]. If α > 1/2, then for
the same values α the MSD of tempered subdiffusion less anomalous than the MSD of its conjugate
partner at short times. For α < 1/2 the opposite happens. Usually the duality relation accelerates
the subdiffusion more anomalous (in the sense of α < 1/2) and slows down too fast subdiffusion
(with α > 1/2). This is especially evident for multi-scale anomalous diffusion [82].

4. Confined Distributions for Infinitely Divisible Motion

Now we apply our approach for infinitely divisible motion as a parent process, whereas the
subordinator has the Laplace exponent s/[(s + δ)α − δα] leading to a confined distribution for t→ ∞.
Without loss of generality the one-dimensional case will be represented. Consider any infinitely
divisible motion by using the characteristic function in the form

ĥ(k, t) =
∫ ∞

−∞
eikx h(x, t) dx = e−D∗t Ξ(|k|)/2 , (17)

where D∗ is a generalized diffusive constant. In the case of β-stable Lévy motion the characteristic
exponent Ξ(|k|) is equal to |k|β with β ∈ (0, 2). There are also other well-known examples of the
characteristic exponent: (i) (|k|2 + mβ/2)2/β −m, β ∈ (0, 2); (ii) log(1 + |k|β), β ∈ (0, 2]; (iii) b|k|2 + |k|β;
(iv) log((1 + |k|2) +

√
(1 + |k|2)2 − 1) and so on [69].

The next development is to consider the subordination of such parent processes. For this purpose
we use the same subordinator led to the Laplace distribution above from Brownian motion. Based on
the simple forms of ĥ(k, τ) and f̃ (τ, s), the solution (propagator) of a subordinated infinitely divisible
motion is convenient to write as the Laplace–Fourier transform, taking the form

˜̂p(k, s) =
1
s

s/((s + δ)α − δα)

[D∗Ξ(|k|)/2 + s/((s + δ)α − δα)]
. (18)
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As lims→0 s/((s + δ)α − δα) = δ1−α/α, using the final value theorem (limt−>∞ p̂(k, t) =

lims−>0 ˜̂p(k, s)), the confined characteristic function is written as

p̂(k, ∞) =
1

1 + D∗αδα−1 Ξ(|k|)/2
. (19)

For the ordinary Brownian motion it is not difficult to check this result by the inverse Fourier transform
clearly, as this is the tabulated integral [71]. Other forms of the characteristic exponent Ξ(|k|) do
not lead to so simple analytical expressions, but then they can be evaluated numerically. Note that
1/[1 + AΞ(|k|)] with A = D∗αδα−1/2 > 0 is an even function, and thus its Fourier transform is
equivalent to the cosine transform.

Taking the β-stable Lévy motion with the characteristic exponent Ξ(|k|) = |k|β under β ∈ (0, 2),
the confined characteristic function p̂β(k, ∞) manifests the characteristic function of the symmetric
Linnik distribution [83] (or the β-Laplace distribution, following Pillai [84]), namely

pβ(x, ∞) =
1
π

∫ ∞

0

cos(k|x|)
1 + Akβ

dk

=
1
π

∫ ∞

0

sin(z1/β |x|)
(1 + Az)2 dz . (20)

The last expression was obtained from the integration by parts and has a better convergence in
numerical integration. Examples are shown in Figure 3. The symmetric Linnik distribution attracted
considerable attention from researchers [85–88]. Generally, the PDF is unimodal [89], geometrically
stable [90] and can be expressed in terms of Meijer’s G-function [91]. Moreover, the peak of the density
is finite for 1 < β ≤ 2 (see Figure 3a), it becomes infinite for 0 < β ≤ 1 (shown in Figure 3b) [92].
Based on the tabular integral of [93], its value yields

pβ(0, ∞) =
1
π

∫ ∞

0

dk
1 + Akβ

=
1

βA1/β sin(π/β)
. (21)

A series expansion for small x is written as

pβ(x, ∞) =
1
β

∞

∑
n=0

(−1)n

(2n)!
x2n

A(1+2n)/β

1
sin[π(1 + 2n)/β]

. (22)

If x = 0, only the n = 0 term is saved, and one obtains the previous expression. According to [94],
the asymptotic expansion for large x reads

pβ(x, ∞) =
1
π

∞

∑
n=1

(−1)n+1 Γ(1 + nβ) An

|x|1+βn sin(πβn/2) . (23)

Consequently, the leading term of this expansion becomes

pβ(x, ∞) ∼ Γ(1 + β) sin(πβ/2)
π

A
|x|1+β

. (24)

There are some specific examples representable by tabular integrals [93] that will be
considered elsewhere.

Since Ξ(|k|) is a Bernstein function (or otherwise the function having a complete monotone
derivative), the characteristic function 1/[1 + AΞ(|k|)] is typical for a geometrically infinitely divisible
PDF [95]. In any case the PDF form is symmetric and unimodal. In dependence of Ξ(|k|) it has a finite
or infinite maximum. This is because the integral

∫ ∞
0 dk/[1 + AΞ(k)] has a single improper point,

namely k→ ∞, where the integral is convergent or divergent.
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Figure 3. (Color online) Propagators p(x, t) from the parent processes, having the β-stable Lévy
distribution: (a) 1 < β < 2; (b) 0 < β ≤ 1; under the subordinator, conjugate to a tempered random
process in the sense of Bernstein functions, for t→ ∞. The value A = D∗αδα−1/2 is taken equal to 1.

We can formulate the following Confinement Principle: Any subordinated infinitely divisible
motion, in which the subordinator is characterized by the Laplace exponent conjugate to a tempered
α-stable process, has a confined probability distribution. By the infinitely divisible motion we
mean a wide class of infinitely divisible processes, including Brownian motion (as a marginal case),
Lévy stable motion (Lévy flight) and many other processes with jumps. It is important that each case
of characteristic exponents in such an infinitely divisible motion determines its confined probability
distribution. For the pure Brownian motion this is the Laplace distribution whereas for the Lévy flights
its generalization is the Linnik distribution. This procedure covers a class of geometrically infinitely
divisible distributions as a confined case of the infinitely divisible motion subordinated by a special
subordinator responsible for the confinement.

5. Conditionally Non-Exponential Decay of Relaxation

Our comparative analysis of tempered and confined diffusion may be pretty simple extended
to relaxation processes with non-exponential decay. As is well known [96,97], the manifestations
of many-body effects in anomalous dynamics of relaxing systems, independent of the physical and
chemical structures of their interacting entities, are successfully described by stochastic tools. Then the
relaxation function of non-exponential relaxation is written as

φΨ(t) =
∫ ∞

0
e−bτ fΨ(τ, t) dτ , (25)

where b is a constant, and fΨ(τ, t) is the PDF of an inverse subordinator
SΨ(t) = inf{τ > 0 : TΨ(τ) > t}. The Laplace image φΨ(t) takes the simple form

f̃Ψ(τ, s) =
Ψ(s)

s
e−τΨ(s) . (26)

Then the Laplace transform of φΨ(t) in time yields

φ̃Ψ(s) =
1
s

Ψ(s)
Ψ(s) + b

. (27)

Similar conversions that we omit can be done for s/Ψ(s).
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Based on the Laplace exponent of tempered diffusion Ψtemp(s) = (s + δ)α − δα and its conjugate
partner s/Ψtemp(s), it is not difficult to obtain their relaxation functions numerically. They are presented
in Figure 4.
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Figure 4. (Color online) Relaxation functions, caused by the inverse tempered subordinator (a) and its
conjugate partner (b) respectively, with α = 0.6, δ = 1 and b = 1 . The first represents the tempered
relaxation, and the second is confined. The dashed red line shows a conditionally non-exponential
decay due to the confinement effect (limt→∞ φconf(t) = const 6= 0).

Using the above relationship, we have found asymptotic behavior of the functions. They read

lim
t→0

(1− φtemp(t)) = btα/Γ(α + 1) ,

lim
t→0

(1− φconf(t)) = bt1−α/Γ(2− α) (28)

at short times and accordingly

lim
t→∞

φtemp(t) = lim
t→∞

e−btδ1−α/α = 0 ,

lim
t→∞

φconf(t) =
1

1 + αδα−1b
= const (29)

at long times. Note that both types of relaxation start with 1 as a power function in time. However,
tempered relaxation tends to zero exponentially, whereas the confined relaxation does not reach zero at
all. From the physical point of view this latter model can be interpreted in the following way. Dipoles
ordered by the external field do not fall into disorder with probability 1 after removing the field as t
tends to infinity. Therefore, we believe that this model demonstrates a conditionally non-exponential
decay. In this context it should be mentioned that the conditionally exponential decay model is
a key for the concept of clusters and their dynamics to an imperfectly ordered state, used for the
explanation of relaxation in dielectric materials [98–100]. During the relaxation process the strongly
coupled local (intracluster) motions are expected to be generated first and then followed by the weakly
coupled (intercluster) motions which produce the partial long-range structure. Each of these motions,
those leading to the local structure order and those leading to the cluster ordering in general, has its
own perceptible contribution to the observed features such as the relaxation function in time domain
and the susceptibility in frequency domain.
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6. G-Proteins vs. a2AR Receptors from the Analysis of the SPT Data

As an example for detecting the Laplace confinement in experimental data, we present our
analysis of random trajectories obtained from a recent SPT study on G protein-coupled receptors,
namely the motion and interaction of individual receptors and G proteins on the surface of living
cells [44]. Two types of particles and only the basal case (without drug stimulation) data were studied:
G-protein coupled receptors (further we will call them simply receptors) and the G proteins with
which the receptors interact. The sample data consisted of 20,000 trajectories of 30 sets for G proteins
and more 35,000 trajectories of 30 sets for receptors which randomly walk along x and y coordinates.

The first aim of the data study is to classify the dynamics for both types of particles. It is based on
the standardized maximal distance Tn of random processes from its starting point [101]. This approach
is quite justified. Really, if the motion is driven by the fractional Brownian motion, then the best among
the available methods is the one based on the p-VAR test, especially for longer trajectories. But, if the
particle dynamics can be described by the Ornstein–Uhlenbeck or diffusive Brownian motion process,
then the method yielding the smallest errors is based on the MAX test [102–105]. Following the
procedure, we use the statistical test:

• H0—an observed trajectory X = {X1, X2, . . . , Xn} comes from Brownian motion,
• H1—the trajectory looks like a confined or directed diffusion.

Then Tn is estimated with respect to the quantiles of order α/2 and 1− α/2 (for example, α = 5%)
for different trajectory lengths n. The decision rule is as follows: Tn < qn(α/2) means a confined motion,
whereas Tn > qn(1− α/2) is superdiffusion (or directed motion). If qn(α/2) < Tn < qn(1− α/2),
then X = {X1, X2, . . . , Xn} is Brownian motion. Consequently, this permits us to classify the
trajectories available for processing. The results are shown in Figure 5. As seen from this figure,
the most of trajectories is Brownian motion: 69% for G proteins and 78% for receptors. The contribution
of superdiffusion is the smallest, 2%. The rest corresponds to confined motion. This part is especially
interesting to us. Next, we are going to estimate the statistics of such trajectories. It is assumed that the
confined random walks can occur in two cases. The first of them is classical, the Ornstein–Uhlenbeck
model. It gives the normal distribution for t→ ∞. The second case leads to the Laplace confinement for
t→ ∞, considered above. Possible transitions of the particles’ diffusion type within single trajectories
are noted and investigated. For example, in [104] it has been proposed a statistical procedure for
detecting transitions of the MSD exponent value within a single trajectory.

Discriminating the statistics of G-protein and receptor confined trajectories between the normal
and Laplace distribution functions, we apply the logarithm of the ratio of their maximized
likelihoods [106]. The approach leads to the calculations of means, medians, sample variances
and averages of the absolute difference between data values and the median. This statistical test
gives the ratio Q > 0 for the normal distribution, otherwise the Laplace distribution is preferred.
After applying the second statistical test, its results together with the first test results are also presented
in Figure 5. This shows that for G proteins the confined trajectories obey equally the normal and
Laplace distributions, whereas for receptors the normal distribution is approximately twice as common
as the Laplace distribution. But it should be pointed out also that the share of confined trajectories with
normal statistics remains unchanged for both G proteins and receptors. Judging by the contribution of
Brownian motion in all the sets of trajectories, the difference between the percentage ratio of confined
trajectories with the normal and Laplace distributions for G proteins and receptors can indicate greater
mobility of receptors over G proteins. It should be mentioned that Laplace distributions were detected
in the complex diffusive behavior of RNA-protein particles [107].

The occurrence of the Laplace distribution for confined trajectories in the experimental data used
by us seems to be natural. First, the most part of the trajectories is Brownian motion. What could be a
parent process for subordination in this environment? Brownian motion is preferred. Why? Since we
observe a following Competition Principle between parent processes: Brownian motion, Lévy motion or
other infinitely divisible process even for any fixed subordinator conjugated one to tempered α-stable responsible
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for confinement. If Brownian motion is parent, the confined distribution from our subordination
approach can have only the Laplace form. In the above data sets any feature, for example, typical
for Lévy motion, is not detected. If this was true, it would be a chance for the play of generalized
Laplace distributions as a confined distribution. Another case is the Ornstein–Uhlenbeck process
leading to the normal statistics in confined trajectories, it has the same (Brownian) roots too. Therefore,
the presence of normal and Laplace distributions together into confined trajectories is quite logical and
justified physically.

G-protein motion along x

69%

2%

15%

14%

Brownian motion

Superdiffusion

Laplace confinement

Normal confinement

G-protein motion along y

69%

2%

14%

15%

Receptor motion along x

78%

2%
6%

14%
Receptor motion along y

78%

2%

6%

14%

Figure 5. (Color online) Analysis of the experimental data as applied to G-protein and receptor
random-walk trajectories along the coordinates x and y with the cutoff length of trajectories more and
equal to 50.

7. Discussion

We have revealed that the conjugate property of Bernstein functions connects the tempered stable
subdiffusion with the diffusion-limited aggregation by an one-to-one mapping (in fact, a bijection).
If the pure subdiffusion is characterized by multiple trapping events with infinite mean sojourn time,
and the power function exponent of MSD is constant in time, then a truncated power-law distribution
of trapping times leads to tempered subdiffusion, in which diffusion is anomalous at short times and
normal (contribution of traps seems to disappear) at long times [45]. The interpretation of anomalous
diffusion tending to the confinement is that the trap impact has the opposite tendency, long waiting
times in traps dominate more and more so that it becomes impossible to leave such traps. This model,
just like the tempered one, is applicable for the analysis of SPT. Its effects are present in confined
random motions of G proteins and receptors in living cells. We have established that the confined
distribution form depends on the PDF of the parent process under subordination. If the parent process
is Brownian motion, the confined distribution has only the Laplace form. If the Lévy motion is directed,
the confined distribution takes the Linnik case. If the support of the parent process is changed from
(−∞, ∞) to (0, ∞), as a confined limit, the Mittag–Leffler distribution arises. All this manifests that the
presented method has ample opportunities for the study of confined random walks in complex systems.
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Concerning to relaxation phenomena, complete disorder (e. g. in the form of charge neutralization
in dielectrics) does not occur in the relaxing system with confinement features. This concept can be
used for developing new cluster models of non-exponential relaxation. It will be considered in more
detail elsewhere. Our new methodology is generally valid in a wide class of problems of transport in
random media that include live cells, relaxation in heterogeneous substances, and jump-diffusion.
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