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Clinical application of oligodendrocyte 
precursor cells for cell‑based therapy
Naohiro Egawa1,2, Hajime Takase1, Lok Josephine1,3, Ryosuke Takahashi2, Ken Arai1

Abstract:
Oligodendrocyte precursor cells (OPCs), which give rise to mature oligodendrocytes (OLs), play important roles 
in maintaining white matter function. Even during the adulthood period, OPCs comprise roughly 5% of all cells 
in the forebrain and retain a capability to become myelinated OLs. Recently, OPCs have been proposed as a 
novel source for cell‑based therapy. For the purpose, OPCs can be obtained from embryonic stem cells, induced 
pluripotent stem cells, and directly converted cells derived  from patients. Here, we will provide a brief review 
of the potential of using OPCs as a cell‑based therapy for treating various neurological diseases.

Key words:
Cell transplantation, oligodendrocyte precursor cells, stem cell therapy

Introduction

In 1983, morphologically and physiologically, 
distinct cells were purified as bipotential 

oligodendrocyte-type-2 astrocyte progenitor 
cells (O-2A cells), which were immunoreactive 
to A2B5 antibody.[1] Since the cells produced 
oligodendrocytes (OLs), they were called as 
oligodendrocyte precursor cells (OPCs). However, 
the original property of OPCs was not restricted to 
OLs, and the cells expressed NG2 chondroitin sulfate 
proteoglycan 4.[2] Therefore, the O-2A cells are now 
also referred as NG2 cells or polydendrocytes.[3] The 
existence of OPCs in central nervous system (CNS) 
has been widely recognized by utilizing of their 
immnunoreactivity to NG2 and the alpha receptor 
of platelet-derived growth factor (PDGF-Rα).[4] 
OPCs comprise 2%–8% of all cells in the human 
adult forebrain.[5,6] Under some conditions, OPCs 
also produce astrocytes and neurons.[7] Therefore, 
OPCs may work as multipotent neuronal stem 
cells and could be a source for cell-based therapy 
for neurological diseases. In this mini-review, we 
will briefly introduce the key properties of OPCs 
and discuss the therapeutic potential of OPCs as a 
source for cell transplantation.

Oligodendrocyte Precursor Cell Function 
in Central Nervous System

OPCs are active in developing CNS, and their roles 
during the developing stage have been extensively 

examined in rodents. In spinal cord, OPCs first 
appear in ventral neural tube in the embryonic 
stage day 14.5 (rat) and day 12.5 (mouse). The 
region includes p3 domain defined by the 
expression of homeodomain transcriptional factor 
Nkx2.2 and pMN/OL domain defined by the 
expression of basic helix-loop-helix transcriptional 
factor Olig2.[8-10] OPCs in the ventral neural tube are 
consisting of about 80% of total OPCs in the whole 
spinal cord. A few days later, OPC is also generated 
in the dorsal neural tube, consist of about 10% 
of OPC in the whole spinal cord.[11] In forebrain, 
OPCs appear in the ventral region of ventricular 
zone, initially in medial ganglionic eminence (GE), 
and afterward in lateral GE, which are defined 
by the expression of the transcriptional factor 
Nkx2.1 and Gsh2, respectively. GE-derived OPC 
migrates into entire parenchyma of the brain with 
proliferation. OPCs are perinatally generated in the 
dorsal region of ventricular zone defined by the 
expression of Emx1 and coexist with GE-derived 
OPCs mainly in the neocortex. In postnatal period, 
OPCs are generated from the subventricular 
zone and distributed into the neocortex and 
constitutive a small population. These indicate 
age- and region-dependent differences in OPC cell 
cycle, and therefore, OPCs originally possess the 
heterogeneity in brain development.[12]

Defined Factors Determines 
Oligodendrocyte Precursor Cells Lineage

Several specific intrinsic factors have been 
identified to promote endothelial cells in the 
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neural tube to organize the OPC population. In the spinal 
cord, sonic hedgehog (SHH) promotes the development of 
Olig2-expressing progenitor cells potential to differentiate into 
somatic motor neuron cells and OPCs.[13] Although fibroblast 
growth factor 2 (FGF2) has a positive regulatory effect on the 
proliferation of OPCs from rodent neural stem cells (NSCs), 
it blocks the transition of human pre-OPCs to OPCs by 
SHH-dependent expression of Olig2 and Nkx2.2, suggesting 
that intrinsic factors could exert its regulatory effect in different 
stage between species. Phosphorylation of Olig2 also induces to 
divergence in differentiation into OPCs.[14] Further specific cell 
fate as OPCs has been determined by intrinsic transcriptional 
factor, Sox10.[15]

Potent extrinsic factors have been identified which proliferate 
OPCs such as growth factors, neurotransmitters, signaling 
molecules, and extracellular matrix molecules. PDGF is one 
of the most potent and characterized molecules that are 
mainly secreted from astrocytes and neurons. PDGF-AA is 
a homodimer of PDGF‑A subunit, has a high‑affinity with 
PDGF-Rα highly expressed in OPCs.[4] PDGF-A-deleted mice 
exhibit depletion of OPCs[16] and PDGF-A transgenic mice 
show OPCs proliferation,[17] indicating that PDGF-Rα should 
be a major regulator of OPCs and the sequential maturation 
into OLs.

Differentiation into Oligodendrocyte Precursor Cells 
from Stem Cells

According to identified intrinsic or extrinsic factors, OPCs 
can be differentiated from stem cells. In 1999, glial precursor 
cells (GPCs) have been reported to be derived from embryonic 
stem cells (ESCs) and contribute the myelination of the 
myelin‑deficient rat.[18] In the study, ESCs were aggregated 
to embryonic bodies (EBs) and plated in a defined medium 
with epidermal growth factor (EGF), FGF2, and PDGF-AA. 
Differentiated cells were immunoreactive to A2B5 and O4 as an 
OL marker and also glial fibrillary acidic protein as an astrocyte 
marker. Recent advances using dual and Wnt/β-catenin 
inhibitors such as LDN, SB431542, XAV induce to robust 
neural lineage despite of the requirement for lengthy in vitro 
differentiation periods.[19,20] ESCs were then differentiated 
into neural epithelial cells express PAX6, pre-OPCs express 
Olig2, and NKx2.2, and OPCs express PDGF-Rα and SOX10 
under purmorphamine, a smoothened agonist of the hedgehog 
pathway.

Induced pluripotent stem cells (iPSCs) have been available 
for autologous engraftment of disease-relevant cells by 
directed differentiation using defined factors.[21] Czepiel 
et al. differentiated from iPSCs into functional OLs through 
EBs floating culture. To induce neural precursor cells, EBs 
were dissociated and cultured using FGF2 and EGF. They 
differentiated into mature OL using PDGF-AA, T3, and NT3, 
which were able to form myelin around the axon of cocultured 
dorsal root ganglion neurons in vitro and the demyelinated 
corpus callosum of cuprizone-fed mice without teratoma 
formation in vivo.[22] Wang et al. formed EBs from iPSCs and 
used FGF2 for neuroepithelial stage,   RA, B27, purmorphamine 
for pre‑OPCs and finally, differentiated into OPCs from iPSCs 
using T3, NT3, insulin-like growth factor (IGF), PDGF-AA, 
and purmophamine.[23] They furthermore isolated OPCs 

from iPSCs by fluorescence‑activated cell sorting using A2B5, 
CD140a/PDGF-Rα, and CD9 antibodies. OPCs-transplanted 
homozygous shiverer rag2‑null mice deficient in myelin lived 
almost two-time longer than control. Recipient callosa were 
densely myelinated and showed no evidence of tumorigenesis. 
OPCs readily differentiated into not only OLs but also 
astrocytes. For directing the maturation of OLs, they withdrew 
half gliogenic growth factors (PDGF-AA, IGF, and NT-3) and 
supplemented them with half neurobasal media plus B27 and 
brain-derived neurotrophic factor (BDNF). The majority of 
transplanted OPCs was OLs and remained OPCs (80%), and the 
rest of cells were astrocytes in the corpus callosum without any 
evidence of tumorigenesis in vivo. The myelination efficiency of 
implanted iPSCs-derived OPCs was as high as tissue-derived 
CD140a-sorted OPCs.[24]

OPC can be generated from fibroblasts by direct 
reprogramming[25-27] by ectopic expression of defined 
transcriptional factors. Induced OPC (iOPC) can expand in vitro 
and differentiate into mature OL ensheathing host axons and 
generating compact myelin.

Efficacy of Transplantation of Oligodendrocyte 
Precursor Cells in Rodent Demyelinated Disease

Several studies have been demonstrated that OPCs transplantation 
derived from stem cell could be effective for the rodent 
neuronal disease such as traumatic injury, radiation-induced 
demyelination, or congenital hypomyelination [Table  1]. The 
treatment could be fundamentally targeted based on three 
following principle benefits: (1) remyelination by exogenous 
OPCs, (2) Stabilization of the necrotic core cavity by placing 
proliferating OPCs into the lesion (3) enhancement of 
endogenous self-repairing mechanism by systematic regulation 
of immune response and protection by release of neurotrophins 
secreted from transplanted OPCs. Several studies suggested 
that remyelination is not always necessary for the survival of 
demyelinated axons[36,37] suggesting that the combination of 
both benefits should be required to maximize the therapeutic 
potential of OPCs for clinical application.

Spinal cord injury (SCI) is a white matter trauma that causes 
demyelination, OLs death, and remyelination. The underlying 
mechanisms such as ischemia, free radical production, 
and phagocytosis by immunoreactive cells lead to OLs cell 
death within hours and lasts for weeks after injury. OPCs 
derived from human ESCs survived, differentiated in the 
C5 midline contusion injury site of the cervical cord, and 
improve the motor function of forelimb.[30] In this study, OPCs 
histologically spared broad white and gray matter, induced 
to remyelinate and preserved motor neurons, correlated with 
movement recovery. Transplanted OPCs derived from human 
ESCs (hESCs) exhibited enhanced remyelination and promoted 
improvement locomotor ability only at early time points after 
thoracic SCI.[29] In other study, OPCs derived from hESCs 
transplanted into deep sensorimotor cortex migrated massively 
along the white matter tract and differentiated into ensheathing 
OLs,[28] indicating that OPCs can serve as a competent source 
of OLs after traumatic brain injury. NSCs derived from human 
fetal spinal cord, or human ESCs survived, differentiated, and 
filled cavity lesion in the T3 complete spinal cord transection.[38] 
The grafted cells primarily differentiated into neurons (27.5%), 
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OLs (26.6%), and astrocytes (15.9%). Graft‑derived axons in 
host white matter myelinated by host OLs and extended over 
long distances to connect the neural circuit and improved 
electrophysiological and functional outcomes. GPCs-derived 
OPC also contributes to myelination.[18] These studies suggest 
that the transplanted OPCs could functionally contribute 
to remyelinate motor neurons in the SCI site and give the 
additional protective effects other than remyelination on the 
remaining neurons.

X-irradiation therapy has been applied to many primary and 
metastatic cancers in the intracranial lesions while X-irradiation 
cause cognitive impairment as its side effect pathologically 
consisting of demyelination and necrosis in the white matter, 
and the main target of radiation is the large pool of mitotically 
active OPCs.[39,40] Although endogenous OPCs are present in 
the injured white matter region after radiation, they fail to 
remyelinate the demyelinated axons. The establishment of 
exogenous OPCs requires the condition where endogenous 
OPCs were completely depleted, and the presence of 
inflammation[40,41] implying the needs of activated immune 
response eliminates remaining aberrantly functional OPCs. 
Radiation decreased the number of OPCs accompanied with 
the decreased expression of myelin basic protein (MBP). When 
ESC-derived OPCs were grafted into the damaged cortex,  
they migrate throughout the white matter and remyelinate 
irradiated brain and ameliorates cognitive function. Moreover, 
when transplanted into the cerebellum, they improved the 
motor function.[20] It is under debate whether the improvement 
of cognitive and locomotive function by OPCs transplantation 
could be dependent on remyelination or not. Mouse-derived 
neural progenitor cells transplanted into irradiated mice 
increased the axon survival by restoring the remyelinating 
capacity. While there are no signs of axonal degeneration in the 
chronic stage of genetically mutated MBP mice.[36] Therefore, 
transplanted OPCs could contribute to compensate and repair 
the demyelinated region by some beneficial actions other than 
myelin sheath production.

Other adult disease such as metabolic disorders of myelin 
such as globoid cell leukodystrophy, Krabbe’s disease, and 

Alexander’s disease, and neurodegenerative disease associated 
with white matter loss and ischemic white matter disease 
are potential targets of OPC transplantation therapy.[31,32,42] 
Transplanted OPC promotes the BDNF and the proliferation 
of NSC, enhancing the endogenous self-repairing system in 
the ischemic brain. In regard of neural NSC transplantation, 
NSC overexpressing sphingomyelinase-induced the reduction 
in accumulated sphingomyelin in sphingomyelin‑deficient 
Niemann–Pick type A model mice.[43] Engrafted NSC also 
ameliorated lipofuscin accumulation in the mouse model 
of neuronal ceroid lipofuscinosis,[44] raising the therapeutic 
possibility of the approach to the white matter-related disease 
by combined transplantation of the NCS and the OPCs.

Overview of Clinical Application of 
Oligodendrocyte Precursor Cells Cell‑based Study

One of the challenging aspects of the clinical approach using 
stem cell-derived OPCs/OLs is the requirement for lengthy 
culture for differentiation into late OPC/OL,[45] which prevents 
the injured patient from immediate cell-based therapy using 
stem cell-derived OPCs/OLs. The previous reports showed 
that it took almost 3 months to obtain functional OPCs derived 
from ESCs and almost 4 months from iPSCs. Further, 3 months 
after transplantation ES-derived OPCs matured into OLs and 
produced dense and compact myelin in vivo. One solution is 
using dual  Smad and Wnt/β-catenin inhibitors which rapidly 
induce to neuronal lineage and shorten the differentiation 
period into OL.[46] OPCs derived from sources other than 
stem cell could be another solution for immediate OPC cell 
therapy following demyelinated neuronal disease. Bone 
marrow stromal cell-derived OPC mitigated demyelination and 
augmented remyelination in lysophosphatidylcholine-injected 
demyelinated rodent brain.[25] Extracted OPCs from fetal 
or adult brain are also available, which infiltrated into the 
forebrain when xenografted to congenitally or chemically 
demyelinated mouse.[33,34] However, this method is challenging 
for clinical application since the postmitotic state impedes the 
large-scale expansion. Ectopic expression of transcriptional 
factor Oct4 in fibroblast generates self‑renewing and bipotent 
OPC (iOPC), which is a powerful and promising source for 

Table 1: Oligodendrocyte precursor cell transplantation in rodent model of disease
Source of OPCs Animal models Injection route References
ESC (human) Traumatic brain injury (rat) Into deep motor cortex [28]
ESC (human) SCI (rat) Subcutaneous injection [29]
ESC (human) SCI (rat) Subcutaneous injection [30]
ESC (human) Radiation‑induced demyelination (rat) Grafted in forebrain [20]
ESC (mouse) SCI (rat) Into dorsal column [18]
ESC (mouse) Periventricular leukomalacia (rat) Into lateral ventricle [31]
ESC (mouse) Globoid cell leukodystrophy (mouse) Into brain parenchyma [32]
iPS (human) Congenital hypomyelination (mouse) Into corpus callosum [23]
iPS (mouse) Cuprizone‑induced demyelination (mouse) Into corpus callosum [22]
BMSC (rat) LPC‑induced demyelination (rat) Into corpus callosum [25]
Extracted OPCs (human) Demyelination (shiverer mouse) Into corpus callosum [33]
Extracted OPCs (human) LPC‑induced demyelination (rat) Into injury site [34]
Primary OPCs (rat) Periventricluar leukomalacia (rat) Into cortex [35]
Fibroblast (mouse, direct 
conversion)

SCI (mouse) Into spinal cord [27]

OPCs: Oligodendrocyte precursor cells, ESC: Embryonic stem cell, LPC: Lysophosphatidylcholine, iPS: Induced pluripotent stem, BMSC: Bone marrow stromal 
cell, SCI: Spinal cord injury



Egawa, et al.: OPC cell‑based therapy

124 Brain Circulation - Vol 2, Issue 3, July 2016

OPC cell-based therapy. This iOPC is available about 1 month 
after reprograming and can proliferate through over thirty 
times of self-renewals. This method bypasses undifferentiated 
stem cell state and limits the tumorigenic potential after 
transplantation.[47] Transplanted iOPCs enhanced recovery of 
locomotion in a rodent SCI model.[27]

Taken together, cell-based OPC therapy may give the following 
beneficial cellular effects in the injured region: Remyelination, 
heterogeneous OL/astrocytes cell replacement in the cavity, 
and the enhancement of functional NSC through secreted 
neurotrophins. Further investigation of the mechanism of 
OPC lineage and development of stem cell technology will 
translate the OPC research into clinical benefits for the patients 
of demyelinating disorders in near future.
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