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Abstract

Energy infrastructures can have negative impacts on the environment. In remote and / or

sparsely populated as well as in conflict-prone regions, these can be difficult to assess, in

particular when they are of a large scale. Analyzing land use and land cover changes can be

an important initial step towards establishing the quantity and quality of impacts. Drawing

from very-high-resolution-multi-temporal-satellite-imagery, this paper reports on a study

which employed the Random Forest Classifier and Land Change Modeler to derive detailed

information of the spatial patterns and temporal variations of land-use and land-cover

changes resulting from the China-Myanmar Oil and Gas Pipelines in Ann township in Myan-

mar’s Rakhine State of Myanmar. Deforestation and afforestation conversion processes

during pre- and post-construction periods (2010 to 2012) are compared. Whilst substantial

forest areas were lost along the pipelines, this is only part of the story, as afforestation has

also happened in parallel. However, afforestation areas can be of a lower value, and in

order to be able to take quality of forests into account, it is of crucial importance to accom-

pany satellite-imagery based techniques with field observation. Findings have important

implications for future infrastructure development projects in conflict-affected regions in

Myanmar and elsewhere.

Introduction

Energy development has various potential environmental and social challenges. While coal, oil

and gas generation have been the primary focus of research on how landscapes may change,

pipeline operations have received less attention. However, over recent years, oil and gas pipe-

lines have undergone substantial expansion globally [1]. This is connected with the quest for
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energy security and the development of reliable transnational energy sources. In Asia, particu-

larly in China and India, energy and the associated development of infrastructure is an impor-

tant driving force which also has an impact on politics and governance regimes.

With demand for energy growing very rapidly in China and India, Myanmar, sandwiched

between them, has become both, a significant energy source and a transit corridor for energy,

in particular fossil fuels. As a result, deals on oil and gas exploration and transmission pipelines

are made between Myanmar and the two countries [2]. The Shwe gas project and the Myan-

mar-China oil transport project, commonly referred to as the "Myanmar-China Oil and Gas

Pipelines," are two of the largest and most prominent energy projects in Myanmar, including

the production and transportation of petroleum and natural gas located off the coast of Myan-

mar’s Rakhine State. The pipeline project began in 2004 as a tri-nation energy collaboration to

transport natural gas from offshore platforms in the Bay of Bengal off Rakhine State to India.

However, in 2006, Myanmar signed an agreement with China to transport gas from Myan-

mar’s offshore blocks and oil from Africa and the Middle East through overland pipelines to

China’s Yunnan Province [3].

While offering multiple economic benefits, there are many environmental (along with

social) concerns about oil and gas pipelines as they can affect forest, farmland, and residential

areas during construction and operation [4]. For example, in Pennsylvania, the impact of natu-

ral gas pipelines on forest areas were found to substantially exceed the impacts of all other

energy development types (Johnson et al., 2011). In the Niger Delta, construction of oil and

gas pipelines came with approximately 495 ha of forests being cleared, and nearly 10M trees

being destroyed [5]. For Myanmar, [6] was reported that the Yadana-Yetagun pipeline in

southern Burma has had serious environmental impacts. Inadequate environmental planning

and negligence of environmental protection during the construction and operation stages

were also documented [6, 7].The China-Myanmar oil and gas pipelines run across the Rakhine

Roma Mountain Range, central Burma, and Shan State, traversing diverse ecosystems, dense

forests, and rivers.

While both, the Myanmar and Chinese governments believe that oil and gas extraction and

pipeline projects have the potential to benefit both nations substantially, contributing to signif-

icant economic opportunities, there are some grave concerns over their impacts on forests and

cultivated lands, as well as on water and wildlife. This can significantly affect the livelihood of

local communities [8]. The Rakhine Roma mountain range is recognized as one of the ten

most vulnerable ecoregions in the world, feeding two crucial watersheds, the Brahmaputra and

Irrawaddy Rivers, upon which many people depend for their livelihoods [9]. Although pipe-

lines are usually buried underground, their construction, maintenance and monitoring require

extensive clearing of land. Pipeline Right-Of-Way (ROW) often results in significant and per-

manent severance and fragmentation of forests and other natural habitats [10]. Pipeline

ROWs are strips of land in which pipelines are located and which managing companies have

legal rights to access. In Myanmar, pipelines cross Rakhine State, which has witnessed commu-

nal and militarized violence. They then pass through various conflict-affected regions in Shan

State [11]. There are, therefore, numerous security concerns.

Environmental governance of large-scale infrastructure projects in this region is often criti-

cized for being weak and projects in Myanmar have been associated with wide-ranging eco-

logical destruction and human rights violations [12]. The pipelines have the potential to leave

an extensive spatial footprint across Myanmar. There are ongoing civil conflicts in Rakhine

and environmental problems associated with energy projects have the potential to exacerbate

them [13]. Human rights issues and negative environmental impacts of pipeline development

have been recorded in western and central Myanmar and there is evidence of land confisca-

tions without compensation, forced relocations, damage of farming and community lands,
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and destruction of natural hydrological conditions [14]. In Rakhine State alone, 1824 acres of

agricultural land have been destroyed. Overall, clearing, drilling, and construction of pipelines

and the construction and management of related infrastructures had detrimental effects on

local environments and communities, especially in environmentally sensitive regions. It has

also been documented that much of the adverse impacts of the project have affected Rakhine

State, where environmental and social impacts are the most pronounced [15]. Importantly,

there were no environmental regulations—including legally mandated environmental impact

assessments (EIA)–at the time of the planning and development of the projects. This has been

said to have accelerated negative consequences [16]. Although–rudimentary–EIAs are now

undertaken, there has been no public participation during the process, with EIA reports not

being publicly available [17].

Motivated by these concerns, in this paper the authors seek to address critical issues, such

as the rate and pattern of LULCC along the pipelines, the extent of forest loss during the study

period and the pattern of afforestation in the study area. Adverse impacts of pipelines on

Land-Use-Land-Cover (LULC), with a particular focus on forest cover, and the pattern of

Land-Use-Land-Cover-Change (LULCC) are reported on.

Myanmar possesses some of the largest remaining forest areas in Asia. Bhagwat et al. (2017)

found that 63% of Myanmar was covered by forests in 2014. Nevertheless, the country is suffer-

ing from significant annual forest loss due to infrastructure development, firewood over-

exploitation, illegal logging, shifting cultivation, and an expansion of agricultural lands [18].

[19] documented that a substantial increase in foreign investments, natural resource exploita-

tion and land confiscation during civil wars were major underlying drivers of forest degrada-

tion in Myanmar. Increased commercial agriculture concession has also led to forest loss [19,

20]. Infrastructure and energy development have been identified as one of the most critical

issues likely to affect Myanmar’s forests [21].

in this context, the country has been said to suffer from limited institutional capacity to

deal with these issues [22]. According to the FAO, forest cover declined from 41.196 million

ha (61%) to 29.388 million ha (43%) between 1975 and 2015 [23]. This equates to a total

decline of 11.8 million ha of forests in 70 years. Annually, forest coverage has declined by 0.3%

during 1990s and 2000s [24].and during 1988 to 2017, the annual deforestation rate was

reported as being 0.87% [25], the difference being explained by afforestation efforts. The

impact of increased energy development pressures on forests and other land cover types, as

well as wildlife, are largely unknown and undocumented.

Study region

The study region is located along the China-Myanmar Oil and Gas Pipelines in Ann township

of Kyaukpyu District in Myanmar’s western-most state of Rakhine (See Fig 1). It has a tropical

monsoon climate, featuring warm temperatures throughout the year and high annual rainfall

with most of the rainfall from June to August. The climate is dominated by the Northeast and

Southwest monsoons, and annual rainfall shows an increasing trend within the 1981–2018

baseline period. The township receives an average annual rainfall of about 4655mm, one of the

highest average annual rainfalls in Myanmar [26]. Due to its physiography and climate pat-

terns, Kyaukpyu has one of the densest forestlands and the most extensive areas of endangered

biodiversity in Myanmar. The majority of the region is covered by forests, agricultural land,

and tidal floodplains. Most of the primary forests found in the hilly areas contain some of the

most ecologically significant habitats in the region [27]. The area exhibits a diverse terrestrial

flora, including mangrove, shrubland, woodland, grassland, and several terrestrial, inland

wildlife and reptile species. 36.56% (14,8527.49 acres) of the total district area (434,144 acres)
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is covered by forested areas. However, this number has decreased over time due to extensive

anthropogenic activities, such as infrastructure and industrial development, and the construc-

tion of a Special Economic Zone (SEZ) [27]. The total population in Ann Township is 119,714.

Although Rakhine State is endowed with an abundance of natural resources and is in a strate-

gic location, it is one of the least economically developed areas in Myanmar. The majority of

the population depends on agriculture and fishing for their livelihood. Overall, the quality of

life for much of the population is considered low, especially in rural areas, given poor access to

health and education services, inadequate infrastructure, low employment rates and income.

Land use in the Kyaukpyu District consists of forested and cultivated land, scrubland, non-

forested land and cultivable wasteland, as well as protected land area. Some of the land has

never been used for cultivation and may or may not be covered by forests. This type of land

occupies approximately 53% of the region. Rural, urban, and industrial land use constitutes

only 1% of total land use. Over 85% of the households rely on firewood for cooking, and a sig-

nificant amount of firewood comes from natural forest resources [27].

Fig 1. Location map of the study area.

https://doi.org/10.1371/journal.pone.0237806.g001
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Environmental degradation in the region is primarily linked to recent development proj-

ects, namely significant infrastructure developments and investment projects [28]. Two of the

most prominent projects are the crude oil offloading terminal and its onshore oil pipelines,

operated by the China National Petroleum Corporation (CNPC) on Maday Island and an

onshore gas terminal linked to an onshore gas pipeline operated by Posco Daewoo Myanmar

Limited under the umbrella of Shwe Consortium on Ramree Island [15]. The onshore gas ter-

minal receives natural gas from the Shwe production platform, located offshore on the edge of

the continental shelf. The 40-inch diameter onshore gas pipeline originates at the first gas

receiving station. A crude oil terminal is located on Maday Island with 12 crude oil storage

tanks. The 771 km long pipeline links Maday Island to China’s Yunnan province, transporting

22 million tons of oil annually [29]. The crude oil pipeline is laid in parallel with the gas pipe-

line. Both pipelines transverse through Rakhine state, Magwe division, Mandalay Division,

and Shan State before entering China [8]. Fig 2 shows very high-resolution satellite images of

the pipelines during pre- and post-construction periods.

Fig 2. True color composite map of the study area pre- and post-construction of the China-Myanmar Oil and Gas

pipelines. Image A is from 17th November 2010, showing the area prior to the construction of the pipelines. Image B is

from 17th October 2012, showing the area after the construction of the pipelines. (DigitalGlobe order number:

059416456010_01) Source: http://www.digitalglobe.com.

https://doi.org/10.1371/journal.pone.0237806.g002
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The facilities were constructed in 2010 and have been in operation since 2013. However,

the government and the project proponents have yet to solve widespread local tension featur-

ing regular protests and widespread opposition stemming from environmental damage, land

confiscation, and land compensation practices for ROW [30]. An initial EIA of the pipelines

identified several potentially adverse environmental impacts in connection with the total clear-

ance of scrublands, grassland, degraded and secondary woodland, and primary forests [27]

One of the most pressing environmental issues is on land resources and livelihood. Loss of eco-

system services provided by the forests and woodlands and the loss of agricultural land are

deep-seated concerns among local communities.

Geographically, the area examined in this paper extends from 19˚ 49’41.63" N (elevation

64m) to 19˚ 52’26.77" N (elevation 198m) latitude and 94˚ 03’20.57" E (elevation 333m) to 94˚

06’42.03" E (elevation 133m) longitude. The measurement of maximum extension is 7.49 km

in the west-east direction and 4.49 kilometers in the north-south direction. The total affected

area is 35.39 km2. The study area covers pipelines and their ROW, which is 30m in width for

these particular pipelines [31].This area is densely forested with diverse land cover types, and

the pipelines can be seen to extend across the area. Although a relatively small study area is

chosen for analysis due to budget constraints, it represents the different land cover types of the

Rakhine State. The study area was chosen based on the visibility of pipelines (as most parts are

covered by concrete), the availability of the high-resolution satellite data and environmental

vulnerability. Furthermore, the area is in proximity to human settlements, representing an

area with active local environmental groups opposed to the pipelines. The environmental,

social, and economic conditions of the study area are also representative of other areas along

the pipelines in Rakhine State.

Data and image processing

Diverse datasets are used, including geospatial, socio-economic, demographic, and biophysical

data to represent land use and forest cover changes to assess the impact of pipelines on both,

ecosystems and livelihoods. The main satellite data used for the classification of Land-Use-

Land-Cover-Change (LULCC) are commercial VHRI orthorectified multispectral satellite

images, GeoEye-1 and Worldview-2. The satellites are two of the world’s highest resolution

commercial earth-imaging satellites and offer imageries with 0.5m resolution. GeoEye-1 satel-

lite’s positional accuracy is the best of all available satellites today [32]. VHRI have been widely

used in land use classification, environmental monitoring and urban planning [33]. Previous

studies quantifying land cover changes in Myanmar mostly used freely available satellite

images such as Landsat satellite imageries to produce countrywide forest maps [34] [24].

VHRI Pléiades satellite images (70-cm panchromatic and 2.8-m multispectral) are utilized to

identify changes in land use categories in the Tanintharyi Region, in south-eastern Myanmar

[35]. When using low and medium resolution data, some studies combined multisensors, such

as optical, radar and hyperspectral satellite data to improve classification accuracy [36–38].

The use of VHRI is deemed sufficient to easily distinguish between different land cover classes

accurately.

Spatial data obtained from the CNPC were used as reference data to manually identify the

exact location and route of the pipelines. These were digitized, using Google Earth. In addition,

we collected images from Landsat 5, 7, and 8 for 2005, 2010, and 2012 for four representative

scenarios in three districts (Kyaukphyu, Mandalay, and Minbu) to validate the pipeline route

and the year of construction (see Fig 3). We collected and stacked a total of best available 12

Landsat scenes (cloud cover <10%, acquisition between November-February), covering four

tiles (Paths: 132–134 and Rows: 044–047), using Landsat bands that record surface reflectance
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in the visible, [34] near-and mid-infrared spectrum and that have a minimum 30-m resolution.

They are a subset to the study area’s geographic boundaries. Radiometric calibration and

FLAASH (Fast Line-of-sight Atmospheric Analysis of Spectral Hypercubes) atmospheric cor-

rection were applied to the original Landsat images to obtain the ground surface reflectance

(ρ) in ENVI. Experimental districts for land cover classification were selected, based on the

background information on the severity of the impacts, the proximity of pipelines to human

settlements, and the possibility of field data collection. Most of the areas along the pipelines are

logistically challenging and potentially dangerous to visit.

Concurrent with the digitization, we conducted field visits to selected sites, during February

2019, for verification and the collection of training samples (Fig 4). Field trips were permitted

by the Minister of Electricity, Industry and Transportation based in Sittwe, Rakhine state.

Field visits allow for reliable site observation and real-time documentation of the conditions of

land cover and land use, pipeline area boundaries, and the surrounding environment. This

spatial data was then compared with previously digitized data in Google Earth. Training sites

for land cover classification were determined and experimental satellite datasets were derived.

Land cover classification of the study area was determined, based on the existing Myanmar

land-use maps developed by the United Nations Environmental Program (UNEP). Besides,

countrywide forest cover change data produced by [34] was useful for cross-checking forest

land classification in the region. Google Earth is widely used for collecting training and valida-

tion data for remotely sensed projects, especially when field data collection is difficult [34]. In

our case, we combined ground data with randomly chosen samples and manually digitized

370 training polygons distributed throughout the study area to cover the entire satellite image.

The training sample covers a total of five land cover and land use categories; (1) forest, (2)

scrubland, (3) infrastructure development, (4) residential areas, and (5) agricultural land. This

method assures the representation of the samples for each land category [39]. Using a large

number of reference data can enhance the most accurate classification outcome in nonpara-

metric machine learning classification, such as Random Forest [40]. Training samples and

Fig 3. False-color composite images of the three sites between pre- and post- pipelines construction. The yellow

arrow shows the appearance of the pipelines in 2012 images traversing all three locations. 2005: Landsat 5(R:3, G:3,

B:1), 2010: Landsat 7(R:3, G:3, B:1), 2012: Landsat 8 (R:4, G:3, B:2). (Landsat-5, 7and 8 images courtesy of the U.S.

Geological Survey; https://earthexplorer.usgs.gov/).

https://doi.org/10.1371/journal.pone.0237806.g003
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reference data were later used as input variables for the calibration in the Random Forest

model. Following the method used by [41], we assigned a random number between 0 and 1.

Polygons with assigned values of�0.70 were assigned as training data and polygons with

>0.70 as testing data. Random numbers between 0 to 1 were then assigned to each pixel. The

testing polygons were equally divided for testing and validation. This resulted in 255 training

polygons and 115 testing polygons.

To quantify Land-Use-Land-Cover-Change (LULCC) associated with the pipelines’ opera-

tion, primary data from the existing time series from the two commercial VHRI orthorectified

satellite images, GeoEye-1 (GeoProfessional) and Worldview-2 were collected [42]. Data cap-

tured very close dates for two years in the same study area. To compare pre-operation, opera-

tion, and post-operation periods, images from two acquisition dates (t0 = 2010 November 17, t-

1 = 2012 October 17) with a spatial resolution of 0.5m (multispectral bands) were used for our

main study area in Ann township. These images were mainly used for tracking and classifying

land cover changes in the area of immediate proximity to the pipelines, using the RF classifica-

tion method. Cloud free GeoEye-1 image was available for the year 2010, and Worldview-2 was

suitable for 2012. GeoEye-1 image is multispectral with four bands (blue: 450–510 nm, green:

510–580 nm, red: 655–690 nm, near-IR: 780–920 nm), acquired on 17 November 2010. The

worldview-2 image also contains multispectral bands (4 standard colors: red: 624–694 nm, blue:

442–515 nm, green: 506–586 nm, near-IR: 765–901 nm), acquired on 17 October 2012. The

(pre- and post-operation) dates were chosen on the basis of cloud-free images for the study

areas. Due to the monsoon climate patterns throughout Myanmar, it is challenging to obtain

cloud-free satellite imagery. Image fusion was performed using the Gram-Schmidt Pan Sharp-

ening method. No additional orthorectification was required for both images [43].

Fig 4. Examples of field visits used to help guide the development of training polygons and validation. (Source: Authors’ own).

https://doi.org/10.1371/journal.pone.0237806.g004

PLOS ONE Land use and land cover changes along the China-Myanmar Oil and Gas pipelines

PLOS ONE | https://doi.org/10.1371/journal.pone.0237806 August 19, 2020 8 / 23

https://doi.org/10.1371/journal.pone.0237806.g004
https://doi.org/10.1371/journal.pone.0237806


Next, a supervised classification, using Random Forest (RF) in R statistical software’s the

“randomForest” package was performed [44]. Very high-resolution remote sensing imagery

and advanced image classification algorithms allow data mining and a precise assessment of a

range of target features on the ground [45]. RF classification is a non-parametric machine

learning algorithm widely used in remote sensing and classification modeling throughout dif-

ferent disciplines and objectives [46–48]. RF is a robust model particularly suitable for land

cover and land use classification as it can effectively process a large number of predictor vari-

ables as well as complex datasets [49, 50]. The RF model was found to outperform other tradi-

tional parametric based image analyses due to its capacity to deal with missing values and

complex variables, and high overall classification accuracy [51, 45, 52]. Another significant

advantage of the RF is that it creates an ensemble of trees, each providing a "vote" to select the

best classification approach. That is, the majority of votes from the assemblages of the tree cre-

ated in Random Forest decide the class assignment of the pixel, and the results of a large num-

ber of trees are aggregated internally [53]. As RF models require specification of several

parameters to execute the model, each RF tree was built by training each tree in the forest

(ntree) with the number of input predictor-variables (mtry), randomly chosen at each split

from the training dataset [54]. The number of predictor-variables was set at the square root of

input variable (i.e. 4 bands), therefore the number of variables tried at each split was 2. Follow-

ing the recommendations from previous studies, a large number of trees (n = 1000) was

selected to run the RF algorithm to stabilize the mean squared error in each iteration process

[55]. Given the small number of variables used in our current study, we calibrated the model

based on the complete dataset and produced land cover maps with five pre-defined land cover

classes for the two time periods. At the last step of the classification process, land cover maps

were converted into polygon shapefiles in ArcGIS for further analysis.

Finally, land cover land-use change was calculated, and maps were generated, using the

Land Change Modeler (LCM) in TerrSet. LCM is the land planning and decision support sys-

tem that simplifies the complexities of change analysis and allows for rapid analysis of land

cover change and model relationships between variables of interest. LCM is an established

methodology widely applied in spatially explicit LULCC modeling, trend change analysis, and

scenario analysis [56–60]. LULCC detection in LCM has proven to be more accurate than

other modeling tools [56, 57]. The LCM was used to model land cover and land use detection

along the pipelines within the study area, based on the spatial patterns from 2010 to 2012; espe-

cially land cover transitions from forest to agricultural land, agricultural land to forests, infra-

structure development to forests, residential area to forests, scrubland to forests, forest to

infrastructure development, forests to residential area and forests to scrubland. The model also

calculates gains and losses, as well as project net changes, and determines drivers of change for

each land cover category, both, in map and graphical form.

A wide range of geospatial information, such as the pipelines’ geographical location, road

network, other physical features, affected villages and the geographic boundaries of villages

and townships were derived from the databanks of The Humanitarian Data Exchange and

Myanmar Information Management Unit’s GIS resources.

For the accuracy assessment of the model, RF classification internally estimates accuracy

during the bootstrapping process [51]. Accuracy assessment quantifies the accuracy of maps,

estimates the area of each class defined by reference classification, and assesses uncertainty of

area classifications [61]. The accuracy was assessed, based on the validation score approach to

validate the RF model. The validation score is calculated by setting a part of the original train-

ing data aside before training the models and using the decision trees of the ensemble [62].

Classification accuracy was expressed by reporting the estimated confusion matrix in terms of

overall accuracy, commission error (user’s accuracy), and omission error (producer’s
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accuracy). The column of the matrix is the reference information, the row is the information

of the classification result, and the intersect gives the number of samples classified into a spe-

cific class [63]. Overall accuracy refers to the proportion of samples that are correctly classified

and user’s accuracy indicates the proportion of samples measured as each class.

In addition, we followed the method developed by [61] for assessing land cover accuracy.

As recommended by [61], we adopted a stratified random sampling design. The required sam-

ple size was calculated, using the following formula:

n ¼
ð
P

WiSiÞ
2

½SðÔÞ�2 þ 1

N

� �P
WiS2

i

�

P
WiSi

SðÔÞ

 !2

Where n = number of units, SðÔÞ is the standard error of the estimated overall accuracy,

Wi is the mapped proportion of the area of class i and Si is the standard deviation of i. Si =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Uið1 � UiÞ

p
. We specify a target standard error for overall accuracy of 0.01. Using propor-

tional approach, we allocated sample size of 10–50 for each change strata. A small overall test-

ing sample size allows for only 10 sample units for some stratum. The estimated variances are

them computed based on the sample size allocation.

Results

Accuracy assessment

The aim of an accuracy assessment was to evaluate the ability of a model for detecting and

delineating LULCC within a study area. Tables 1 and 2 summarize the classification accuracy

validation results of the LULCC maps obtained from the RF model. The overall accuracy of

the classification was 64.33% for 2010 and 65.28% for 2012. The Confidence Interval (CI)

for both years is 0.95. This relatively low overall accuracy can be due to the use of a small

study area and/or small training samples. Previous research has suggested that high spatial

Table 1. Accuracies based on an accuracy assessment of the two LULCC maps for 2010. Rows are map categories, and columns are reference categories.

Category Year Agriculture Forest Infrastructure Development Residential Area Scrubland Total Commission

Agriculture 2010 28 506 16 5 70 625 1.8

Forest 2010 130 6091 90 40 461 6812 25.8

Infrastructure 2010 13 381 124 11 41 570 1.2

Residential Area 2010 7 236 12 11 25 290 0.6

Scrubland 2010 52 1429 27 13 182 1730 6.2

Total 2010 229 8643 269 80 779 10000 35.7

Omission 2010 6.0 7.2 4.8 2.7 15.0 35.7 0

https://doi.org/10.1371/journal.pone.0237806.t001

Table 2. Accuracies based on an accuracy assessment of the two LULCC maps for 2012. Rows are map categories, and columns are reference categories.

Category Year Agriculture Forest Infrastructure Development Residential Area Scrubland Total Commission

Agriculture 2012 32 534 13 11 50 640 1.9

Forest 2012 176 6016 109 42 428 6771 25.1

Infrastructure 2012 11 313 241 12 17 594 1.6

Residential Area 2012 7 216 22 15 26 286 1.0

Scrubland 2012 39 1418 12 13 164 1646 5.2

Total 2012 265 6497 397 93 685 9937 34.7

Omission 2012 5.9 7.4 3.6 2.6 15.2 34.7 0

https://doi.org/10.1371/journal.pone.0237806.t002
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heterogeneity and small sample sizes will result in much lower classification accuracies [64].

The residential area is the most accurately classified category for both years, with 99.4% and

99% for 2010 and 2012, respectively. Infrastructure development also had very high accuracy

rates, with 98.8% in 2010 and 98.4% in 2012. The third highest accuracy rate was associated

with agricultural land, 98.2% for 2010, and 98.1% for 2012. Forests had the lowest accuracy

rate; 74.2% for 2010, and 74.9% for 2012; followed by scrublands, which had an accuracy rate

of 93.8% for 2010 and 94.8% for 2012. Forests might sometimes be assigned falsely as scrub-

lands and vise vasa during the training digitization process due to their visual similarities, lead-

ing to either over- or underestimation. Conversely, residential areas, and infrastructure

development areas can be comparatively clear and can be accurately identified.

The error matrices obtained from stratified random sampling design are presented below.

The results contain stratified estimation of area for each class. Tables 3 and 4 displays error

matrices in sample count and Tables 5 and 6 estimate the area proportion. Based on the results

from stratified random sampling method, the overall accuracy of the classification was 62.16%

for 2010 and 61.86% for 2012. The tables also display adjusted area estimate in hectares.

Land use and land cover change along the pipelines

Maps of the study area from two points in time were analyzed, including pre- (2010) and post-

construction (2012) periods. This way LULCC along the China-Myanmar Oil and Gas Pipe-

lines were established. The maps include designations of five major land cover classes; forests,

agriculture, infrastructure development, residential /non-forest areas, and scrubland. The

resulting maps for the land-cover classification of pre- and post-construction periods, using

Table 3. Error matrix (sample count) for 2010 based on stratified random sampling.

Reference

Agriculture Forest Infrastructure Residential Scrubland Total Area Wi

Agriculture 7 4 2 1 1 15 74 0.062

Forest 9 32 5 3 1 50 690 0.581

Infrastructure 5 2 8 0 0 15 69 0.058

Residential 2 1 0 6 1 10 41 0.035

Scrubland 4 1 1 3 16 25 315 0.265

Total 27 40 16 13 19 115 1,189 1

https://doi.org/10.1371/journal.pone.0237806.t003

Table 4. Error matrix (area proportion) for 2010 based on stratified random sampling.

Reference

Agriculture Forest Infrastructure Residential Scrubland Total Area Wi

Agriculture 0.0289 0.0165 0.0082 0.0041 0.0041 0.0619 74 0.062

Forest 0.1045 0.3715 0.0581 0.0348 0.0116 0.5805 690 0.581

Infrastructure 0.0194 0.0077 0.0310 0.0000 0.0000 0.0581 69 0.058

Residential 0.0070 0.0035 0.0000 0.0209 0.0035 0.0349 41 0.035

Scrubland 0.0423 0.0106 0.0106 0.0318 0.1694 0.2647 315 0.265

Total 0.2020 0.4099 0.1079 0.0916 0.1886 1.0000 874 0.73535

Area [ha] 177 358 94 80 165 874

Standard Error 0.0488 0.0455 0.0318 0.0390 0.0453

User’s 0.47 0.64 0.53 0.60 0.00

Producer’s 0.14 0.91 0.29 0.23 0.02

Overall 0.6217

https://doi.org/10.1371/journal.pone.0237806.t004
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the preprocessed satellite images are shown in Fig 5. Based on the two maps, net change in the

area of each LULC category was calculated. Results are shown in Table 7. Overall, on both

maps, forests are the most extensive land cover in the area, followed by scrubland and agricul-

tural land. Forests cover an area of 690 hectares in 2010, i.e. over 60% of total land cover. Time

series land cover maps and statistics (Fig 5 and Table 3) reveal that there is a notable increase

in infrastructure development over the two years. This can be associated with the construction

of pipelines and the associated facilities in the area. As can be seen in Fig 5, the pipelines diago-

nally crossing the study area are the most solid form of infrastructure development. The only

infrastructure development seen in the 2010 map (A) is the Minbu-Ann highway passing

through the area. As a result of the pipeline construction, the total area of infrastructure devel-

opment expanded very rapidly across the region, from 59 hectares to 86 hectares, i.e. the total

growth rate is 44.65%. The forest cover within the 2 km area along the pipelines in the study

area shows a downward trend, from 690 hectares in 2010 to 673 hectares in 2012 with a total

forest loss of 17 hectares and a net decline of -2.45% just in two years.

Forest loss overall is driven primarily by pipeline construction and a slight increase in resi-

dential areas—from 54 hectares to 59 hectares (1% net increase). The increase in residential

area is mostly triggered by pipeline activities and most of the change is associated with con-

struction and pipeline maintenance workers [65]. Overall, non-forest related activities have

witnessed a net gain of 13 hectares around the pipelines. Most of the agricultural land remains

unchanged, with only 1.5 hectares of additional agricultural land being created. Scrubland

areas make up 20% of the area’s total land cover and are declining more rapidly than other

land cover classes and there has been a net loss of 24 hectares (10.74% decline rate).

Table 5. Error matrix (sample count) for 2012 based on stratified random sampling.

Reference

Agriculture Forest Infrastructure Residential Scrubland Total Area Wi

Agriculture 7 4 2 1 1 15 75 0.063

Forest 9 32 5 3 1 50 673 0.566

Infrastructure 5 2 8 0 0 15 96 0.081

Residential 2 1 0 6 1 10 54 0.045

Scrubland 4 1 1 3 16 25 291 0.245

Total 27 40 16 13 19 115 1,189 1

https://doi.org/10.1371/journal.pone.0237806.t005

Table 6. Error matrix (area proportion) for 2012 based on stratified random sampling.

Reference

Agriculture Forest Infrastructure Residential Scrubland Total Area Wi

Agriculture 0.0294 0.0168 0.0084 0.0042 0.0042 0.0631 75 0.063

Forest 0.1019 0.3623 0.0566 0.0340 0.0113 0.5660 673 0.566

Infrastructure 0.0269 0.0108 0.0431 0.0000 0.0000 0.0807 96 0.081

Residential 0.0091 0.0045 0.0000 0.0272 0.0045 0.0454 54 0.045

Scrubland 0.0392 0.0098 0.0098 0.0294 0.1566 0.2447 291 0.245

Total 0.2065 0.4042 0.1179 0.0948 0.1767 1.0000 1,189 1

Area [ha] 246 481 140 113 210 1,189

Standard Error 0.0486 0.0454 0.0315 0.0398 0.0432

User’s 0.47 0.64 0.53 0.60 0.00

Producer’s 0.14 0.90 0.37 0.29 0.03

Overall 0.6186

https://doi.org/10.1371/journal.pone.0237806.t006

PLOS ONE Land use and land cover changes along the China-Myanmar Oil and Gas pipelines

PLOS ONE | https://doi.org/10.1371/journal.pone.0237806 August 19, 2020 12 / 23

https://doi.org/10.1371/journal.pone.0237806.t005
https://doi.org/10.1371/journal.pone.0237806.t006
https://doi.org/10.1371/journal.pone.0237806


Development of scrublands is likely to have been affected by operation of the pipeline as the

destructive form of land use associated with construction activities can significantly alter

vegetation.

Fig 5. (A)2010 Pre-construction and (B)2012 Post-construction land cover map for the study area classified into five

major land cover classes, including agriculture (orange), forest (green), infrastructure development (red), residential

arear/non-forest (pink), scrubland (blue).

https://doi.org/10.1371/journal.pone.0237806.g005

Table 7. Area (in hectares) and spatial change in land cover land use classes and overall net gain and losses between 2010 and 2012 in the study area.

Class Name Acquisition Date Net LULC Change Growth/Decline Rate

2010 (ha) 2012 (ha)

Area Percent Area Percent

Agriculture 73.5288 6% 75.0119 6% 1.4831 0

Forest 690.0288 65% 673.1166 63% -16.9122 -2.45%

Infrastructure development 69.3524 6% 95.8544 8% 26.502 44.65%

Residential Area 41.449 4% 54.1524 5% 12.7034 1%

Scrubland 314.5627 20% 290.7004 18% -23.8623 -10.74%

https://doi.org/10.1371/journal.pone.0237806.t007
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LULCC modelling results

The increase and decrease of each land use and land cover class can be established more accu-

rately with land change analysis results obtained through the Land Change Modeler (LCM) in

TerrSet. Table 8 shows gains and losses for each land use in 2010 and 2012. Quantification of

land use and land cover changes surrounding the pipelines from the classification in the RF

model is supported by the results generated by LCM in TerrSet. With regards to agriculture

use, whilst there is only a 1% net change, more than 90% of agricultural lands have experienced

changes, with a loss of 68 hectares on the one hand and a gain of 69 hectares on the other. This

change is explained by extensive agricultural land-use transitions driven by the construction of

the pipelines, as well as associated corridors, and other facilities. Much agricultural lands in the

region was confiscated, and other land cover types such as forests and scrublands were con-

verted into agricultural land during the study period to make way for the pipelines and ROW

[3]. Pipelines construction-related activities also caused damage to and destruction of farm-

land. As a result, other land cover types were shifted into farmland to compensate farmers.

Therefore, the net change in forests and scrublands is significant, at 60–80% conversion rate.

The amount of area converted from forest and scrubland into other land use types is 376 and

253 hectares, respectively.

Other transitions in land use reflect infrastructure development activities with the amount

of the area transferred to infrastructure development projects being 77 hectares. The amount

of infrastructure development area transferred to other land-use types is 51 hectares. This

result can be explained by many pre-existing human activities such as village and mountain

roads being moved due to pipeline operation related land use [14]. Moreover, the residential

area in the region also experienced a dramatic transformation during the study period. More

than 56% (23 hectares) of residential area has been transferred into other land-use types. This

change is due to the large-scale confiscation of residential lands for the pipelines and the

replacement of other land covers for residential areas [66]. Overall, the result shows an accu-

mulated increase in the land area of agriculture, infrastructure development, and residential

area. However, there is a declining trend in forests and scrublands over the two study periods.

Forest and scrubland areas witnessed the maximum transformation into human activity,

whereas residential areas contributed to the smallest extent.

The LULCC map with major land conversion classes, depicting land cover conversion

and non-conversion between 2010 and 2012 along the pipelines is shown in Fig 6. The map

identifies a few specific characteristics of LULCC for each land cover and land use type.

Table 9 summarizes the occurrence of forest transformation in the study area. Change detec-

tion analysis identifies changes of particular magnitude by excluding transition of less than 10

hectares. As a result, all land cover and land use transition reported only included forest con-

version. This result suggests that all major transitions occurring in the region were associated

with forest areas. The land cover conversion also indicates that forest to other land cover types

conversion is the most extensive type of transformation (see Table 5). 678 hectares of forest

Table 8. Gain and losses, and net change of land cover between 2010 and 2012.

Class Gains and Losses Net Change

Agriculture -68 69 1

Forest -376 359 -17

Infrastructure development -51 77 27

Residential area -23 36 13

Scrubland -253 229 -24

https://doi.org/10.1371/journal.pone.0237806.t008
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were transformed for the infrastructure development, 60.5 hectares into agriculture, 31 hect-

ares intro residential area, and 219 into scrubland between 2010 and 2012.

Conversely, the transformation of scrubland was mostly associated with forests, accounting

to 238 hectares. Additionally, 59 ha of agricultural land, 44.5 ha of infrastructure development

Fig 6. LULCC map with major land conversion classes, depicting land cover conversion and non-conversion

between 2010 and 2012 along the pipelines in Ann township.

https://doi.org/10.1371/journal.pone.0237806.g006

Table 9. LULC conversion between 2010 to 2012.

Category Hectares Legend

1 60.479857 Forest to Agriculture

2 59.210479 Agriculture to Forest

3 44.440748 Infrastructure development to Forest

4 19.487422 Residential area to Forest

5 237.887966 Scrubland to Forest

6 67.835980 Forest to infrastructure development

7 31.210960 Forest to Residential area

8 218.899505 Forest to Scrubland

https://doi.org/10.1371/journal.pone.0237806.t009
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areas, and 19.5 ha of residential areas were converted into forests. This can be attributed to the

recent reforestation efforts by the forest department in order to achieve the country’s goal of

restoring 12 million hectares of forests by 2030 [67]. While a large area of forest is also trans-

forming into other land types, a significant amount of scrubland and agricultural land is con-

verted into forest land. Scrubland and farmland conversion are likely to be the result of the

government’s initiatives to transform scrubland back into forest land and to reduce forest deg-

radation due to human activities. However, it is important to note that the conversion of resi-

dential areas and other anthropogenic activities into forests is still small compared to forest

land being converted into other land-use types.

Fig 7 shows forest gains and losses below 10 hectares. Transformational gains and losses of

forests were found to be highly interlinked with infrastructure development. Most of the forest

losses occurred in small patches with less than 10 hectares. The further away forested areas are

from the infrastructure development, the smaller the change. Thus, a large number of forest

areas remained unchanged in areas far away from the pipelines. Hence, the highest overall losses

/ large-scale forest losses with more than10 hectares occurred in areas closer to the infrastruc-

ture development, owing to forest transition to pipeline related construction and to exposure to

very high environmental pressure from surrounding activities. Generally speaking, a substantial

area of forested land is lost annually due to human activities and economic development [68].

Accordingly, substantial forest conversions took place mainly within the center of the study

area where concentrated infrastructure development activities are located, indicating a direct

link between the location of the pipelines and the large-scale forest decline. In the center of the

study area, surrounding the pipelines, forests to infrastructure development conversion spread

more southward, and forest to residential area conversion occurred in the northern part of the

study area. Forest to agricultural land and forest to scrubland alterations are concentrated in

the center of the map. Meanwhile, the diagrams for overall forest change to all other LULC

types and other land types to forests show similar trends with the majority of change happen-

ing in the immediate proximity to the pipelines. In the outermost parts of the study area, sig-

nificantly fewer LULC changes have occurred compared with the center part where the

pipelines are located. These results confirm that the magnitude of the impact of infrastructure

development by the pipeline are apparent within a 2 km distance / radius. Although the inten-

sity of change can be different given the diverse ecosystem conditions and land cover types

across Myanmar, similar occurrence of LULCC can be predicted in other areas along the pipe-

lines. However, future scenarios can change depending on the planning and implementation

of mitigation measures to protect forests.

Discussion

Very-high-resolution satellite data were used in the RF classification method and land change

modeler to derive detailed LULCC information for analyzing deforestation and afforestation

conversion patterns along the China-Myanmar Oil and Gas pipelines between pre-construc-

tion (2010) and post-construction (2012) periods. Over the two years, the five investigated

land-use types underwent substantial changes along the pipelines. Notably, forests experienced

a rapid decline and several conversion patterns. From 2010 to 2012, a large area of forests was

converted into anthropogenic use, agricultural land, and scrubland (deforestation) and an

extensive area of scrubland and agricultural lands was converted into forests (due to afforesta-

tion efforts). The deforestation process mostly resulted from the expansion of infrastructure

development (i.e., the construction of pipelines and related activities). Previous studies on the

impact of pipelines on forests also found that pipelines contributed to forest losses, although

the extent of the impact is likely to depend on the route and the width of the ROW ([69].
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Anthropogenic drivers, such as the construction of large-scale pipeline projects, are bound

to create significant LULC transitions for all land cover classes [57]. In Myanmar, infrastruc-

ture development, agricultural expansion, fuelwood production, and illegal logging are the

main drivers of forest cover loss and degradation [70]. Built-up areas are also reported as a

major threat for mangrove deforestation in Myanmar [41]. However, considering the intensity

Fig 7. Net forest change between 2010 and 2012.

https://doi.org/10.1371/journal.pone.0237806.g007
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of forest losses occurring within the immediate proximity of the pipelines and their ROW, all

forest losses can be attributed to the pipelines’ construction.

Afforestation at the expense of scrublands and croplands is connected with several forest

protection regulations. During the past few years, in a bid to restore forested areas, several reg-

ulations were launched in Myanmar, including the National Forest Master Plan, National

REDD+ Strategy, and the Myanmar Reforestation and Rehabilitation Program (MRRP). These

programs promoted large-scale plantations over the last decade throughout the country, with

an estimated 567,000 ha of private commercial plantations. Plantations offer attractive invest-

ment opportunities and contribute to meeting the country’s reforestation targets. However, it

is important that most of these forests constitute lower-value fast-growing wood such as euca-

lyptus, acacias, fuelwood, and pulp [70]. Although fast-growing plantations can provide a sub-

stantial amount of timber within a short time, they are frequently associated with negative

environmental and social consequences, such as replacing natural forests, decreasing water

availability, depletion of biodiversity, and encroachment on agricultural lands [71]. Eucalyptus

plantations in particular can cause various environmental issues such as desertification, biodi-

versity loss, and water deprivation due to its rapidly growing nature and high fertilizer con-

sumption [72]. Large-scale development of fast-growing trees tends to aggravate logging and

further increases the conversion of intact forests into commercial plantations. In Borneo, for

example, annual commercial plantation expansion has been found to be positively correlated

with annual forest loss [73]. It is also evident that land use in some regions of Myanmar has

shifted to rubber, betel nut, cashew and oil palm [35], [74], all of which needs conversion of

abundant land areas [75].

As shown in Fig 7, areas closer to infrastructure development tended to experience higher

rates of transitions from forests, scrublands and agricultural land to other land use types, while

further away areas were less likely to convert from tree-covered into built-up areas. Apart from

the pipelines, the expansion of residential areas also had a strong influence on all LULC change

classes. Not surprisingly, the areas near the pipelines experienced some of the sharpest forest

reductions, with more than 10 hectares of forest loss throughout the study area. Forest decline

accelerates with increasing development of infrastructure projects in densely forested areas

where forests are often severed and fragmented to make way for projects. Although the experi-

mental study area covered in this paper is small, the quantity and rate of LULC transition are

significant according to the modelled LULCC. Looking at the anthropogenic development sce-

nario, with a growth rate of 44.65%, forests and scrublands experienced a net decline of -2.45%

and 10.74%, respectively, in just two years. Although deforestation and afforestation co-exist,

the area of deforestation is still more extensive than afforestation. Generally speaking, forest

cover loss in Myanmar has been accelerating over the years. There has been an overall annual

decline of forests of 0.3% between 1990 and 2000 [24]. Between 2002 and 2014, annual forest

loss increased to 0.55% [34]. It is likely that the impacts of oil and gas pipelines on LULC are

similar along other pipelines in Myanmar, although different ecosystems and LULC types

need to be considered. In this context, areas in other regions should also be investigated to

achieve higher accuracy of modeling results. Incorporating local governments’ policies and

development plans into modeling processes might also increase accuracy for scenario model-

ing in other areas.

Although Myanmar’s forests continue to decline, the country does not have appropriate

forest management practices for forest restoration and sustainable agricultural use of [21].

Even though the government appears to have been using reforestation activities for several

decades, these actions have not fully achieved desired results [76]. Also, forest regrowth does

not necessarily bring back the original ecosystem which had been degraded [77]. Results pre-

sented in this paper suggest that portions of scrubland and agricultural lands are converted

PLOS ONE Land use and land cover changes along the China-Myanmar Oil and Gas pipelines

PLOS ONE | https://doi.org/10.1371/journal.pone.0237806 August 19, 2020 18 / 23

https://doi.org/10.1371/journal.pone.0237806


into forests. This action will only bring short-term forest gain but not long-term sustainability.

Forest restoration should focus on the reclamation of degraded and deforested areas, also to

improve economic and environmental conditions of local communities. It is clear that at least

some of the impacts of forest and land clearing for the pipelines can be predicted and mini-

mized through better planning and management. However, more research is needed to better

understand the impact of oil and gas exploration and associated infrastructure development

on ecosystems, their services, and social and human rights.

Conclusions

Over recent years, owing to unprecedented region wide economic development, Myanmar’s

land use and land cover have experienced substantial changes and dramatic forest loss [78].

Forest severance and fragmentation can be attributed to the construction of thousands of

miles of oil and gas pipelines traversing the country’s forested areas. Forest fragmentation

occurs when large and continuous forested areas are broken into smaller patches of forest, typ-

ically due to human activities [79]. LULCC analysis provides vital information on environ-

mental change, triggered by development projects, such as oil and gas pipelines. In this paper,

detailed information of LULCC was provided, using very-high-resolution-satellite-imageries.

This allowed for an analysis of forest and land cover conversion along the China-Myanmar Oil

and Gas pipelines in a 35.39 KM2 study area in Rakhine State of Myanmar from 2010 to 2012.

The paper addressed three critical questions: (1) What is the rate and pattern of LULCC

along the pipelines? (2) How much forests have been lost during the study period? (3) What is

the pattern of afforestation in the study area? Analysis reveals that forests have undergone con-

tinuous change and have witnessed a dramatic decline leading to the loss of 16.9 hectares of

(-2.45% net decline) forest during this two-year period. LULCC included an expansion of

anthropogenic disturbances in the form of pipelines construction and residential areas as well

as a reduction in forests and scrublands. The transition from forests and scrublands into

human development areas is the usual LULCC pattern. Although both, deforestation and

afforestation occurred in the area, large-scale development of fast-growing trees appears to

dominate forest restoration, i.e. the creation of lower quality ecosystems. Sustainable forest

management should emphasize that mitigation of forest fragmentation is needed. According

to the classification calculation, most of the forest changes take place infrastructure develop-

ment. Changes in forested areas were very high near the pipelines, but this dropped off to vir-

tually nil at the edge of the study area, indicating a linear relationship between forest loss and

the construction of pipelines.

It can be concluded that over the two-year study period, the LULC rate of change, gains

and losses as well as transfer rates are all high, suggesting that the LULC transition is intense

along the pipelines given that all changes are related to infrastructure development. The

LULCC results from Myanmar offer useful insights for other countries with oil and gas pipe-

lines and transboundary infrastructure. The development of transnational energy projects trig-

gers significant human and environmental security issues throughout the region. Although the

discovery of new energy resources can be beneficial, the risks of serious ecosystem degradation

from exploration and transportation of energy is high. Future research should assess the

impacts of various scenarios of energy development on other environmental changes, such as

water contamination, biodiversity depletion, and soil erosion, and harm to human health due

to pipeline incidents. What will be of particular importance is to map not just total gains and

losses of e.g. forested and agricultural areas, but the differential effects, for example with

regards to the creation of lower quality forests.
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