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Non-alcoholic fatty liver disease (NAFLD) is a continuous progression of pathophysiologic
stages that is challenging to diagnose due to its inherent heterogeneity and poor
standardization across a wide variety of diagnostic measures. NAFLD is heritable, and
several loci have been robustly associated with various stages of disease. In the past few
years, larger genetic association studies using new methodology have identified novel
genes associated with NAFLD, some of which have shown therapeutic promise. This mini-
review provides an overview of the heterogeneity in NAFLD phenotypes and diagnostic
methods, discusses genetic associations in relation to the specific stages for which they
were identified, and offers a perspective on the design of future genetic mapping studies to
accelerate therapeutic target identification.
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INTRODUCTION

Non-alcoholic fatty liver disease (NAFLD) is the most prevalent liver disease globally, affecting
approximately 25% of the adult population as of 2016 (1), and its incidence continues to increase.
NAFLD encompasses simple steatosis (fatty liver; NAFL) and the more severe nonalcoholic
steatohepatitis (NASH), which is characterized by fat accumulation, inflammation, and
hepatocellular injury. Hepatic fibrosis can develop in NAFLD, which can progress into cirrhosis
and hepatocellular carcinoma (HCC) (2, 3). As of 2019, NASH was the underlying cause of liver
failure in over a third of individuals awaiting liver transplant (4). There are currently no FDA
approved treatments for any stage of NAFLD, including NASH (5), highlighting the critical need to
identify therapeutic targets.

Given that NAFLD is heritable, with heritability estimates ranging 20%-70% (6), genetic
mapping has been undertaken to identify causal genes with potential therapeutic implications.
Initial NAFLD studies focused on selected candidate genes, but were limited by small sample size, a
high rate of false positive associations due to cryptic population stratification, and reliance on prior
knowledge for gene selection (7–9). With the advent of genome-wide association methods that
could be applied at population scale, some of these limitations have been overcome, resulting in the
unbiased, reproducible genetic discoveries that are detailed below.
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In this mini-review, we focus on the phenotypic complexity of
NAFLD, the challenges this poses to executing genetic association
studies, and the progress made in identifying new putative targets
over the past four years.
NAFLD DEFINITIONS AND DIAGNOSTICS

NAFLD is a continuum of disease with multiple pathophysiologies
and is defined and diagnosed by variable, often incompatible,
approaches. In this section, we provide an overview of this
heterogeneity in pathogenesis and detection, focusing on how
this impacts the interpretation of the genetic associations studies
described below. This brief summary does not cover the full
breadth of this field, so we refer the reader to other recent
reviews for a comprehensive treatment of all diagnostic methods
(10), noninvasive diagnostic modalities (11–13), biomarkers (14,
15), and elastography techniques (16).

Clinically, the spectrum of fatty liver disease encapsulated in
NAFLD is defined in the absence of excess alcohol intake (5). The
distinction between NAFL and NASH is most commonly
differentiated by the absence (NAFL) or presence (NASH) of
hepatocyte ballooning (17). Some studies further delineate
phases between NAFL and NASH (18, 19), and between
NASH and cirrhosis (20), highlighting the continuum of
pathophysiology. For simplicity, this mini-review will anchor
on three stages of NAFLD – NAFL, NASH, and cirrhosis as
depicted in Figure 1.

Histology Is the Gold Standard
Liver biopsies are the gold standard for NAFLD diagnosis, and
the FDA requires evidence of histologic improvement for
NAFLD treatments in late stage clinical trials for consideration
of approval (47). In clinical research, biopsies are commonly
graded by the NAFLD Activity Score (NAS), which quantifies
NAFLD severity based on steatosis (0-3), lobular inflammation
(0-3), hepatocyte ballooning (0-2), and fibrosis (0-4) (48)
(Figure 1). NAS was not designed to be a diagnostic tool, so
defining NASH by a cut off threshold of NAS ≥ 5 can result in
inaccurate diagnoses (49, 50). There are also different scoring
criteria, including the Brunt score (51) and the steatosis-activity-
fibrosis (SAF) score (52), that can be used to grade biopsies, and
this lack of a single standard leads to difficulties in comparisons
between studies. This is further exacerbated by sampling
variability due to histologic heterogeneity (53) and subjectivity
in interpretation for liver biopsies (54–56). This gold standard
based on tissue sampling also limits the investigation of NAFLD
at scale for large cohort studies, and biopsies are often refused by
patients in clinical practice (15). Thus, there has been a strong
emphasis by clinicians and researchers on the development of
alternative, noninvasive diagnostic techniques.

Noninvasive Methods of Diagnosis
There are many imaging methods to detect hepatic steatosis,
including computed tomography (CT), magnetic resonance
imaging-proton density fat fraction (MRI-PDFF), and proton
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magnetic resonance spectroscopy (1H-MRS) (Figure 1). CT can
quantitatively measure liver fat content, but it has poor
sensitivity for mild steatosis (57), and it exposes patients to
ionizing radiation (58, 59). MRI-PDFF and 1H-MRS both
measure steatosis with high accuracy relative to histologic
references, even at low amounts of hepatic fat, so they are the
recommended imaging modalities for liver fat (60–62).

Although these imaging methods can accurately measure
steatosis, they are poorly suited to detect the features
differentiating NASH from NAFL, i.e., ballooning, inflammation,
and fibrosis (63). A recently published protocol for
multiparametric magnetic resonance (MR) has bridged that gap.
MR derived iron-corrected T1 (cT1) is a novel noninvasive
method to assess fibrosis (64), and it correlates with all the
histological features of NASH (65, 66).

Liver enzyme levels have also been correlated with NASH and
fibrosis (67). The classic indications of liver inflammation are
aspartate aminotransferase (AST), alanine aminotransferase
(ALT), gamma-glutamyltransferase (GGT), and alkaline
phosphatase (ALP), along with the AST/ALT ratio (68, 69)
(Figure 1). Elevated enzyme levels are insufficient to provide a
confident NAFLD diagnosis, however, because ALT values are
normal in up to 25% of NAFLD patients (70, 71).

Altogether, no single noninvasive method has replaced
histology yet for detection of all the phenotypes characteristic
of NAFLD. Nevertheless, studies have effectively employed
combinations of these alternative modalities to measure the
full spectrum of NAFLD features.
GENETIC APPROACHES FOR NAFLD
THERAPEUTIC TARGET IDENTIFICATION

Epidemiological, familial aggregation, and twin studies over the
past two decades have demonstrated a heritable component to
NAFLD (72), strongly suggesting that genetic mapping
approaches could be productively deployed to identify genes
with therapeutic potential. As mentioned earlier, initial genetic
investigations into NAFLD utilized candidate gene approaches,
but the development of next-generation sequencing (NGS) and
high-throughput genotyping arrays enabled more robust,
unbiased methods of genetic mapping studies including
genome-wide association studies (GWAS) and exome-wide
association studies (EWAS) (73, 74). GWAS has successfully
identified loci that are associated with risk for many complex
diseases and traits using common variants ascertained from
genotyping (75), whereas EWAS examines variants predominantly
in the exonic (i.e. protein-coding) regions of the genome (76).
With the decreasing cost of NGS, current studies can detect
exonic variants through whole-exome sequencing (WES) (77).
Recent expert reviews have summarized variants identified from
NAFLD genetic association studies (6, 78, 79). Here, we build
upon these publications by reviewing the literature from the past
four years, highlighting the consequence of NAFLD phenotypic
heterogeneity on genetic discovery, and quantifying the limits of
current association studies to identify new genetic signals.
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Genetic Associations Discovered
in the Past Four Years
We focus our attention on novel loci discovered in NAFLD
related GWAS and EWAS from the past four years.

Abul-Husn et al. performed an EWAS for ALT and AST
levels using WES (n=46,544) and validated their associations in
two additional cohorts (n=9,883) and liver biopsy samples
(n=2,391) (80). They found that a loss of function, protein-
truncating variant inHSD17B13 (rs72613567:TA) was associated
with decreased levels of ALT and AST and lower rates of NASH,
as determined by the presence of any inflammation or
hepatocyte ballooning in liver histology. At the same time, this
variant was not associated with NAFL (80), providing evidence
that HSD17B13 may be involved in more clinically advanced
stages of NAFLD.

Namjou at el. used a natural language processing (NLP)
algorithm to identify NAFLD cases for a GWAS in pediatric
and adult cohorts (1,106 cases and 8,571 controls) (81). They
replicated associations between NAFLD and variants in the
PNPLA3-SAMM50-PARVB locus (including rs738409).
Namjou et al. subsequently performed quantitative case-only
association studies for NAS, fibrosis, AST and ALT, finding that
Frontiers in Endocrinology | www.frontiersin.org 3
IL17RA was associated with NAS, and ZFP90-CDH1 was
associated with fibrosis.

Anstee et al. conducted the largest GWAS to date for NAFLD
ascertained by histology (1,483 cases and 17,781 controls) and
identified two new associations (82). An intronic variant near the
LEPR gene was associated with NASH at genome-wide
significance, and a missense variant in PYGO1 encoding
p.P299H (rs11858624) was associated with protection from
steatosis at close to genome-wide significance (82).

Parisinos et al. performed a GWAS for liver inflammation
and fibrosis using cT1 values (n=14,440) and studied the
associations between significant variants and liver biomarkers
(n=378,821). Novel variants in SLC30A10 and SLC39A8 had
genome-wide significant associations with cT1 and elevated
levels of ALT and AST. In a separate GWAS performed on the
same cohort (n=14,440), four variants were associated with
steatosis measured by MRI-PDFF, including APOE rs429358, a
missense variant that encodes p.C112R. Parisinos et al. further
studied the associations between cT1 values and variants
identified by a cirrhosis GWAS, which found a missense
variant in MARC1 encoding p.A165T (rs2642438) that protects
against cirrhosis (83). This analysis revealed that variants in
FIGURE 1 | The spectrum of NAFLD and stage specific clinical measures. In NAFL, at least 5% of the hepatocytes have fat accumulation in the form of large lipid
droplets in the cells that displace the nuclei (21) or many small lipid droplets (22). NAFL can also include inflammation. The transition to NASH occurs with
hepatocellular injury in the form of ballooning and further inflammation. Fibrosis can develop in NASH and advance into cirrhosis, in which the liver shrinks
and hardens. NAFL and NASH are reversible, as indicated by the rates regressing in severity. Both can also progress into cirrhosis. The rates of transition
between each stage are broad ranges because they originate from studies with varying cohort sizes, time frames, treatments, and other variables (18, 19,
23–26). Histology is the gold standard for diagnosing NAFLD and classifying the stage of disease. The components of NAS are listed above, with the area to
the left of the white bars indicating scores of 0 for each feature. A selection of noninvasive diagnostic methods are shown below, with white boxes representing their
range in effectively diagnosing different stages of NAFLD [ultrasound (27); FAST (28); MEFIB (29); SteatoTest (30); FibroMax (31); BARD (32); NAFLD fibrosis score
(33); NIS4 (34); NASHTest (35)]. The lists are not comprehensive, and the modalities mentioned in the mini-review are emphasized in bold. CAP, controlled attenuation
parameter; obtained from FibroScan (36, 37). MRE, magnetic resonance elastography (38). SWE, shear-wave elastography (38). ARFI, acoustic radiation force impulse
(37). FIB-4, fibrosis-4 (39). FLI, fatty liver index (40). HSI, hepatic steatosis index (41). ELF, Enhanced Liver Fibrosis (42). APRI, AST-to-platelet ratio index (43). CK-18,
cytokeratin 18 (44). CXCL10, C-X-C motif chemokine ligand 10 (45). FGF21, fibroblast growth factor 21 (44). PRO-C3, plasma collagen type III (46).
December 2021 | Volume 12 | Article 777075

https://www.frontiersin.org/journals/endocrinology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/endocrinology#articles


Du et al. Human Genetics for NAFLD Target Identification
MARC1 and HSD17B13 were associated with both cirrhosis and
cT1 values (84).

A recent study of protein-coding variants ascertained by
genotyping arrays investigated genetic associations for ALT
levels (n=425,671) (85). The authors found 190 genetic
variants associated with ALT, replicated their findings in three
public GWAS databases, and associated the variants with liver fat
as measured by MRI-PDFF (n=8,930) to validate significant
variants. These variants, including single nucleotide
polymorphisms (SNPs) in MARC1, APOE, and GPAM, were
all additionally associated with chronic liver disease and
cirrhosis. Jamialahmadi et al. further validated these genetic
associations with liver biopsies (n=2,621). The missense variant
in GPAM (rs2792751) encoding p.V43I was found to be
significantly associated with severity of liver steatosis, while
APOE rs429358 confers protection for liver steatosis. The
association between APOE and NAFLD was also found in an
exome-wide association meta-analysis of CT-measured liver
steatosis across eight multi-ethnic population-based cohorts
(n=16,492) (86).

Pazoki et al. performed GWAS on serum levels of ALT, ALP,
and GGT (n=437,438) and replicated their results in three
additional cohorts (n=315,572) (87). These enzymatic
indicators of inflammation and liver disease were associated
with 517 SNPs, including variants in SERPINA1, APOE,
GPAM, MARC1, and LEPR. The number of variants associated
with any combination of ALT, ALP, and GGT is likely greater
than the number found by studies that used imaging or histology
to assess NAFLD because serum levels are not specific to NAFLD
and are reflective of many processes in the body, including
cardiovascular disease (87).

Liu et al. applied deep learning to MRI scans to quantify
volume, fat, and iron in many organs, including the liver
(n=38,881), and performed GWAS on their results (n=32,858
for liver fat). Variants near PPP1R3B and in GCKR were
associated with liver volume, which was strongly correlated
with liver function (88). Liu et al. also identified eight variants
associated with liver fat, including TRIB1 rs112875651, MARC1
rs2642438, GPAM rs11446981, and a region in MTTP.

Genetic Associations in the Context of
NAFLD Phenotypic and Diagnostic
Heterogeneity
Multiple GWAS and EWAS have been conducted to find genetic
associations with specific features of NAFLD, such as hepatic
steatosis, fibrosis, and liver inflammation, as well as the full
spectrum of disease. Some variants have been associated with the
full NAFLD spectrum, while others are only correlated with
certain phenotypes. The specific NAFLD phenotypes and
measurements that these genes have been associated with
through GWAS and/or EWAS are summarized in Figure 2.

A missense SNP in PNPLA3 (rs738409) encoding p.I148M is
the most robustly associated genetic variant with the full
spectrum of NAFLD (78). The landmark PNPLA3 study
measured hepatic fat content by 1H-MRS and examined
inflammation through serum levels of ALT to suggest that
Frontiers in Endocrinology | www.frontiersin.org 4
rs738409 could increase risk of NASH, but the study itself did
not focus on histologic NASH or cirrhosis (97). Since then, many
GWAS and EWAS have identified a relationship between
PNPLA3 and steatosis measured by other imaging methods
(86), histologically defined steatosis, hepatocyte ballooning,
lobular inflammation, fibrosis, and cirrhosis (82, 89) and cT1
defined NASH (84).

Similarly, the missense variant rs58542926 encoding p.E167K
in TM6SF2 was initially associated with hepatic fat measured by
1H-MRS and liver enzyme levels (90), and it has since been found
to associate with the full range of NAFLD phenotypes. TM6SF2
rs58542926 has been robustly associated with steatosis assessed
by CT in independent studies (84, 86). The initial AST, ALT, and
ALP associations were replicated by Parisinos et al. and further
supported by associations between the variant and cT1 values
(84) and histologically ascertained NAS and SAF scores (91),
indicating that TM6SF2 rs58542926 is implicated in NASH in
addition to NAFL. TM6SF2 was also associated with
histologically graded cirrhosis (84).

Several other loci have been pleiotropically associated with
multiple NAFLD stages. GCKR rs1260326 is associated with
hepatic steatosis, as assessed by both imaging and histology
(84, 86, 92, 93), inflammation measured by serum enzyme
levels (87, 92), histological assessments of NAFLD graded by
NAS (94), histological fibrosis (82), and overall liver function
(88). MBOAT7 has similarly been examined across the entire
spectrum of NAFLD, ranging from liver fat accumulation to
FIGURE 2 | Heterogeneity and pleiotropy of genes associated with NAFLD
phenotypes. Loci with their corresponding genes which have been shown to
be associated with NAFLD through genome- and/or exome-wide association
studies are displayed on the right side of the chord diagram, indicated by
grey bars. On the left side of the diagram are the NAFLD states with their
associated measurements, each represented by a different color. Each ribbon
represents a significant association identified between each gene and the
described state. * indicates histologically defined state (56, 80, 82, 84–87,
89–96).
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cirrhosis (85, 95, 98), but intriguingly, it was found to be
independently associated with fibrosis development in
particular, suggesting a unique molecular mechanism (56).
Finally, MARC1 has been associated with steatosis (85, 88),
inflammation/NASH (84, 85, 87), and cirrhosis (83, 84).

Conversely, some genetic associations have been identified for
only specific NAFLD stages and diagnostic modalities. As
described above, PYGO1 has only been associated with
histologically identified steatosis (82). GPAM, PPP1R3B, and
APOE have associations with steatosis (84–86, 88, 93, 94) and
serum enzyme levels (85, 87, 92), but these loci have not been
associated with histological features of NASH or cirrhosis. On
the other hand, LEPR is only associated with ALT levels and
histologically defined NASH (82, 87), and HSD17B13 is
associated with NASH and cirrhosis (80, 84).

There are some variants that have only been identified in a
single study so far, introducing uncertainty in their relationship
with NAFLD. For example, variant rs12137855 mapped to
LYPLAL1 has been associated with liver fat and histologic
NAFLD, as quantified by NAS (94), but this SNP has not been
replicated in this past decade by other association studies. A
possible explanation for this lack of reproducibility is the
combination of the small effect size of the LYPLAL1 variant
and the current limits in statistical power.
CURRENT STUDY DESIGN LIMITATIONS
TO DISCOVERING NAFLD ASSOCIATED
VARIANTS

The variants identified through GWAS and EWAS are
susceptible to the study design choices. The sample size,
diversity within the cohort, and specificity of the associated
trait, along with many other confounders, can all affect the
results (99). A major cofounder is that sample size in current
NAFLD studies is highly correlated to the measurement
modality. On the spectrum of sample numbers, liver enzyme
levels, which are commonly available as part of routine blood
testing, are on the high end, and liver biopsies, which require a
clinical indication and are difficult to perform in large numbers,
are on the low end (63). Because statistical power to detect
significant associations is directly dependent on sample size
(100), studies using biopsies are often underpowered, while
studies using serum concentrations are better powered but less
informative for NAFLD stages.

In Figure 3 (left panel), we illustrate the statistical power of
the largest liver biopsy GWAS to date (82), which included 1,483
NAFLD biopsied cases and 17,781 controls. Given its size, this
study would be predicted to successfully replicate previously
characterized loci, including PNPLA3, TM6SF2, HSD17B13, and
GCKR, based on their respective frequencies in the population
and effect sizes on NAFLD risk. These associations are indeed
found with genome-wide significance (82). Furthermore, a
GWAS of this size would be predicted to not detect MARC1
and LYPLAL1 with genome-wide significance, as those variants
have smaller effect sizes. Again, this is reflected in the results:
Frontiers in Endocrinology | www.frontiersin.org 5
although the variant inMARC1was associated with NAFLD with
p < 6 x 10-6, the association did not meet the genome-wide
significance threshold (82).

Future studies with increased sample sizes of NAFLD
individuals and balanced case/control designed studies may
reveal novel genetic associations which studies are currently
underpowered to detect and provide additional support for
existing associations (Figure 3, right panel). With the
generation of larger NAFLD case/control cohorts and
increased application of WES, more rare variants with large
biological effects can be identified, which would facilitate
therapeutic targeting. Rare, loss-of-function variants that
confer protection from disease in particular have shown
promise as therapeutic targets, as exemplified by the successful
development of PCSK9 inhibitors to treat atherogenic
cardiovascular disease (101, 102).
CURRENT PERSPECTIVE ON NAFLD
ASSOCIATION STUDIES

Identifying causal genes is a major challenge to translating
genetic association signals into biological and potentially
therapeutic knowledge. The majority of variants identified
from GWAS are located in non-coding genomic sequences
distant from protein-coding genes (99). For example, a variant
on chromosome 8 that lies in the intergenic region between IDO2
and TC1 was associated with NAFLD, but it is unclear which
gene is driving the phenotype (82). Additionally, while it is
standard practice to designate the nearest gene to a variant as the
causal gene, this may not always be true. This caveat was
showcased by the variant rs2075650 residing in an intron of
TOMM40, which was found to be associated with steatosis.
While most proximal to the TOMM40 coding sequences,
conditional analysis showed that this variant association was
driven by linkage disequilibrium with the previously identified
APOE rs429358 (86). In contrast to GWAS, EWAS analyses
almost entirely use variants in the exonic regions of the genome,
which can make causal gene identification more straightforward
as the variants likely alter the sequence of the encoded protein.
However, to date, the findings of NAFLD EWAS are still limited.
So far, only one study specific to NAFLD has harnessed rare
protein-coding genetic variants from WES rather than genome-
or exome- arrays (103), but additional large-scale studies of rare
variants and their effects on NAFLD are beginning to emerge and
find new signals such as MAST3 and IFI30 (104, 105).

As mentioned earlier, increasing sample size to power robust
discovery is a current challenge in NAFLD gene discovery due in
large part to inherent limitations in the scalability of liver
biopsies. Some studies have employed creative methods to
increase sample sizes for their NAFLD genetic studies with
some indications of success. These techniques include NLP
algorithms (81), machine learning applied to liver imaging (88,
104), and a multi-step approach of first identifying genetic
signals with a widely available biomarker, such as liver enzyme
levels, in population cohorts, and then examining only these
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identified signals with independent histological cohorts (80, 94)
to decrease the multiple hypothesis correction burden. For
example, Abul-Husn et al. first conducted a GWAS in almost
47,000 individuals to identify variants significantly associated
with either ALT or AST levels (80). 13 of these variants were next
replicated in an additional cohort (n=12,527), and then these top
variants were identified within exome sequences (n=1,857
NAFLD cases and 29,928 controls) and tested for association
with chronic liver disease. This reduced the statistical threshold
for significance without increasing the false positive rate. From
this targeted exome association analysis, the protein-truncating
variant in HSD17B13 (rs72613567) was found to confer lower
odds across all categories of liver disease and provide protection
against liver fibrosis in an allele dose-dependent manner. This
discovery then led to the development of ARO-HSD, a RNAi
therapeutic that selectively targets HSD17B13 mRNA in
hepatocytes, which has demonstrated improvements in NASH
outcomes, as assessed by ALT, AST, and MRI-PDFF, in a Phase
1/2 clinical trial (106, 107).

In the serendipitous case of HSD17B13, the consequence of
the top identified variant was protein-truncating and thus could
be predicted with high confidence to confer loss of function in
HSD17B13 without additional functional characterization. In
order to provide analogous interpretations to genetic variants
that do not have such clear cut functional effects without
performing validation experiments, NAFLD genetic studies
have utilized computational prediction tools (108), ClinVar
reported pathogenicity predictions, and allele frequency cut-
Frontiers in Endocrinology | www.frontiersin.org 6
offs (109), to narrow the search space to actionable variants,
but with limited success in the absence of mechanistic
investigation. In summary, despite current limitations, genetic
discoveries for NAFLD have demonstrated promise in
therapeutic target identification. Future genetic investigations
with increased sample size and focusing on different stages of
NAFLD are likely to reveal new genes with therapeutic potential.
FUTURE DIRECTIONS

Efforts are underway to improve standardization in classification
and diagnosis of NAFLD to enable translational research that can
identify putative drug targets. In 2020, an expert consensus panel
proposed a new set of diagnostic criteria for NAFLD (110) and
renamed it metabolic associated fatty liver disease (MAFLD).
MAFLD is diagnosed by the presence of hepatic steatosis
(ascertained by imaging, biomarker panel or histology) and
either type 2 diabetes (T2D) or overweight/obesity, or two of
the following metabolic risk factors: waist circumference, blood
pressure, serum triglycerides, low serum HDL, prediabetes,
insulin resistance, and plasma high-sensitivity C-reactive
protein level (111). Recent publications indicate that the
MAFLD criteria performs better than the NAFLD definition at
identifying patients with more severe presentations of disease
(112–114), but the new terminology is still heavily debated (115).
To date, one genetic association study has been performed using
FIGURE 3 | Current state of statistical power to detect genetic associations with NAFLD. Statistical power across odds ratios per allele frequencies computed
with a type 1 error rate set at a=0.05 shown for current sample size of NAFLD population studies (left) and for an idealized future NAFLD case/control study
(right). Power for frequencies and odds ratios regions are shaded from red to white, in which red indicates regions where statistical power is not sufficient to
detect an association, and white areas are within the detection limit. Gray areas highlight the section of the power curve for associating rare genetic variants
(MAF < 0.025). Associated loci are overlaid according to their effect size and minor allele frequencies. For example, PNPLA3 rs62021874, which has been
robusted associated with NAFLD across several studies, is well within the detectable region given its minor allele frequency of 0.28 and odds ratio of 1.8,
whereas PYGO1 (frequency = 0.05, odds ratio = 1.3), which has been associated in a single study, is nominally powered to detect an association given the
current sample size of NAFLD population studies (56, 82, 85, 93).
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the MAFLD definition and recapitulated the known genetic
associations with PNPLA3 rs738409 and TM6SF2 rs8542926 (116).
This is promising asMAFLD diagnosis does not require biopsies and
can be diagnosed from readily available clinical measurements.
Nevertheless, further validation is required, especially for the SNPs
associated with hepatic injury and fibrosis, which are not explicitly
included in the MAFLD definition.

Other than the RNAi targeting HSD17B13mRNA mentioned
above, most therapeutics currently in clinical trials do not target
genes identified from GWAS (63). One possible direction
to identify novel, actionable targets for NAFLD from gene or
exome wide associations would entail a combination of imaging
and biomarkers for NAFLD diagnostic staging that could be
broadly applied to hundreds of thousands of individuals
in biobanks, as demonstrated by recent publications (84, 85).
A specific pathophysiology of NAFLD, such as NASH defined
by MRI-PDFF and cT1, should be selected to ensure that there
is a sufficiently large cohort of cases for a well-powered
study. Association analysis could then be performed to identify
rare variants with large effect sizes associated with this
classification of NASH. The variants could be further
investigated by functional validation in molecular assays to
find the causal genes, which would then be the targets of
drug development.
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