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  Tumor local immune escape is one of the “hallmarks” of cancer leading to poor prognosis. The effects of local 
radiotherapy on tumors are rapidly emerging as opportunities to remodel and enhance immunity against can-
cer. However, this immunity remodeling and enhancing are not permanent after local radiotherapy. High ex-
pression of HIF-1a following local radiotherapy for tumor cell reoxygenation has been confirmed, and recently 
accumulating evidence shows the tumor immune suppression effects. These research findings suggest a new 
direction in the investigation of methods to enhance the efficacy of local radiotherapy. We speculate that by 
blocking HIF-1a, the immune effects of radiotherapy might be prolonged and enhanced.
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Background

Each stage in the development and progression of cancer is 
the result of cross-talk between the tumor and the host’s 
immune system. The constant selective pressure of the im-
mune system promotes the emergence of tumor cells that 
are highly resistant to immune rejection [1]. Several mech-
anisms may be involved in the “tumor escape”, including 
cell-mediated immune tolerance, loss of some antigens, de-
fective death receptor signaling, and immunosuppressive cy-
tokines. Various immune cell types (e.g., Tregs, MDSCs, and 
TAMs) have been shown to contribute to the establishment 
and maintenance of immune tolerance [2]. Tumor cells fre-
quently downregulate expression of HLA Class I antigens, 
which play an important role in antigen presentation to 
CD8+ T cells [3]. NK cells express activating receptors, such 
as NKG2D, which bind to stress-induced ligands (MICA and 
MICB) that can be up-regulated in a variety of tumors, mak-
ing the tumor susceptible to NK cell-mediated cytotoxicity, 
which means that their paucity in the tumor may prevent 
NK-cell recruitment to the tumor site. Evidence shows that 
the expression of MICA and MICB can be suppressed in the 
hypoxic environment of the tumor [4]. As one of the death 
receptors, down-regulation or loss of Fas expression in tu-
mors may also contribute to their resistance to tumor im-
munity [5,6]. Tumor cells also produce a variety of cytokines 
(e.g., VEGF, IL-10, TGF-b, and PGE2) that can negatively af-
fect maturation and function of immune cells [3]. As a conse-
quence, these negative regulators create a balance between 
immune activation and immune inhibition, resulting in “tu-
mor escape” and tumor progression.

However, this balance has been proven to be upset by in-
terventions such as radiotherapy that contribute to system-
ic antitumor immunity [7,8]. Enhanced expression of death 
receptors, MHC class I molecules, costimulatory molecules, 
adhesion molecules (ICAM-1 and VCAM-1), and stress-in-
duced ligands on tumor cells after radiation increased their 
recognition and killing by T cells or NK cells in vitro and/or 
in vivo in several cancer models [9]. Interestingly, although 
many phenotypic changes have been observed and demon-
strated to benefit antitumor immunity, some negative regu-
lators have also been reported to be induced in some trails, 
like TGF-b and Tregs [9,10]. This means that the effects of 
radiation should not be simply considered as promoting an-
titumor immunity, but may be a tendency of the tumor to 
regain the balance. In fact, the phenotypic changes are not 
persistent, so there is a chance to enhance the immune ef-
fects of radiotherapy by prolonging the phenotypic chang-
es. Here, we concentrate on HIF-1a, a factor which increas-
es after radiation and has recently been shown to suppress 
antitumor immunity.

Hypothesis

Although HIF-1a is mostly known as a transcription factor ac-
tivated by hypoxia in tumors, it can also elevate in other situa-
tions, for example after radiotherapy in cancer treatment. Within 
hours after irradiation, intratumoral HIF-1a activity decreases 
due to von Hippel-Lindau–dependent HIF-1a degradation un-
der these reoxygenated conditions [11]. However, during reox-
ygenation, free radical species accumulate in tumor tissue and 
lead to overexpression of HIF-1a [12]. As a result, HIF-1a expres-
sion increases in a hypoxia-independent manner 18 to 24 h af-
ter radiotherapy. This upregulation endures up to 1 week [13].

In the past several years, accumulating evidence has indicat-
ed that HIF-1a can act as a suppressor of antitumor immuni-
ty. Corzo et al. reported that hypoxia dramatically alters the 
function of MDSC in the tumor microenvironment and redi-
rects their differentiation toward TAMs via HIF-1a [14]. Ben-
Shoshan et al. found that HIF-1a increases the number and 
suppressive properties of naturally occurring CD4(+)CD25(+) 
Treg [15]. Deng et al. suggested that intratumor hypoxia pro-
motes immune tolerance by inducing Tregs via TGF-b 1 in gas-
tric cancer [16]. It has also been shown that TGF-b is a HIF-1 
target gene, and introduces the possibility that hypoxia induc-
tion of Tregs involves a coordinated response involving HIF-
1a and TGF-b [17,18]. In addition to promoting the genera-
tion of Tregs, HIF-1a can also negatively regulate functions of 
T cells directly by regulating T cell receptor signal transduc-
tion [19,20]. ADAM10 is an enzyme required for the hypoxia-
induced shedding of MICA. A study found a mechanistic link 
between HIF-1a, increased expression of ADAM10, and de-
creased surface MICA levels [21]. The expression of HIF-1a in 
NK cells also seems impair their ability to upregulate the surface 
expression of the major activating NK-cell receptors (NKp46, 
NKp30, NKp44, and NKG2D) [22]. The association of HIF-1a 
and FAS expression has been implied in some experiments. 
Andrew et al. showed that a VEGF/JAK2/STAT5 axis may de-
crease the apoptosis of endothelial cells by repression of pro-
apoptotic FAS/FASL [23], and VEGF can be induced by HIF-1a.

Figure 1.  HIF-1a is elevated following radiation and suppresses 

the immune effects.
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In summary, accumulating evidence shows that the immune 
suppression effects of HIF-1a and the elevating of HIF-1a af-
ter irradiation could prevent the immune effects of irradiation 
(Figure 1). Therefore, we speculate that inhibition of HIF-1a 
following radiotherapy may prolong and enhance the immune 
effects of radiotherapy.

Conclusions

In the past decades, the immune effects of radiotherapy in 
tumors have been investigated extensively. However, tumors 

are so “clever” that they can remodel themselves and reverse 
the immune effects of radiotherapy, which makes the effects 
temporary. HIF-1a may be one of factors taking part in the re-
modeling, and inhibition of HIF-1a following radiotherapy may 
prevent the process.
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