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Attosecond electron–spin dynamics in Xe 4d
photoionization
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The photoionization of xenon atoms in the 70–100 eV range reveals several fascinating

physical phenomena such as a giant resonance induced by the dynamic rearrangement of the

electron cloud after photon absorption, an anomalous branching ratio between intermediate

Xe+ states separated by the spin-orbit interaction and multiple Auger decay processes.

These phenomena have been studied in the past, using in particular synchrotron radiation,

but without access to real-time dynamics. Here, we study the dynamics of Xe 4d photo-

ionization on its natural time scale combining attosecond interferometry and coincidence

spectroscopy. A time-frequency analysis of the involved transitions allows us to identify two

interfering ionization mechanisms: the broad giant dipole resonance with a fast decay time

less than 50 as, and a narrow resonance at threshold induced by spin-flip transitions, with

much longer decay times of several hundred as. Our results provide insight into the complex

electron-spin dynamics of photo-induced phenomena.
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The absorption of X-rays by matter has been used since
more than a century ago to understand the structure of its
fundamental constituents1. An X-ray photon absorbed by

an atom triggers multiple electron dynamics. The emission of an
electron from an inner shell is accompanied by ultrafast rear-
rangement of the electronic cloud, which simultaneously modifies
the potential seen by the electron, sometimes leading to reso-
nances in the emission spectrum. An outer-shell electron may fill
an inner hole, while another electron is emitted, a process called
Auger decay2. Finally, the electron spin may be affected by the
magnetic field induced by the ultrafast orbital motion, giving rise
to spin flip, which is forbidden for purely electric dipole transi-
tions. All of this complex hole or electron motion occurs on a
rapid time scale, in the attosecond (1 as= 10−18 s) range.

The interaction of xenon atoms with photons in the 70–100 eV
range illustrates many aspects of the electron dynamics sketched
above. Collective many-electron effects in the 4d shell3–6 lead to a
broad “giant dipole” resonance in the photoionization cross-
section, which is maximum at 100 eV7,8. Photoionization is
accompanied by Auger decay, involving the 5s and 5p shells,
leading to the formation of Xe2+ ions9 (see Fig. 1). Relativistic
(spin-orbit) effects can be observed at threshold (in the 70–75 eV
region), with, in particular, an anomalous branching ratio
between the 2D5/2 and 2D3/2 final states of the ion, separated by a
spin-orbit splitting of 2 eV10–12.

Attosecond pulses produced by high-order harmonic genera-
tion in gases13,14 enable measuring ultrafast electron dynamics, as
shown in a series of seminal experiments15–22. Temporal infor-
mation is obtained by pump/probe techniques combining atto-
second pulses and a synchronized laser field. The reconstruction
of attosecond beating by interference of two-photon transition
(RABBIT) technique23, based on interferometry, allows the
determination of the photoionization spectral amplitude in the
complex plane. The temporal dynamics is then obtained by
Fourier transform or more generally by time-frequency
analysis16,24. This technique has been successfully used to mea-
sure photoionization time delays, due to electron propagation in
the potential following the absorption of an extreme ultraviolet
(XUV) photon. Most of these studies25–28, however, have con-
centrated on relatively simple systems, ionized from the valence
shells.

In this work, we present measurements of photoionization time
delays in the Xe 4d shell for different ionic states 4d−1(2D5/2) and
4d−1(2D3/2), denoted 4d5/2 and 4d3/2 in the following (see Fig. 1b).
Auger-photoelectron coincidence spectroscopy is used to disen-
tangle electrons from different photoionization and decay chan-
nels29. The RABBIT interferometric technique allows the
extraction of a phase, or a time (or group) delay, from the

photoelectron spectra. At high photon energy (between 80 and
100 eV), both 4d5/2 and 4d3/2 photoelectrons are emitted with the
same positive time delay. Close to the 4d-ionization threshold
(75–80 eV), the measured time delays differ by more than 100 as.
Supported by relativistic random phase approximation (RRPA)
theoretical calculations30, we show that this difference is due to
the interference of the broad giant dipole resonance with a nar-
row threshold resonance due to relativistic spin-orbit effects.

Results
The experiments were performed with attosecond pulse trains
generated in neon by a femtosecond Ti:sapphire laser system,
covering a spectral range from the 4d ionization threshold to the
maximum of the giant dipole resonance (see Methods for details).
A small fraction of the infrared (IR) laser beam was used as a
probe with a variable time delay. The XUV and IR pulses were
focused into Xe gas and the created electrons were detected by an
electron spectrometer.

Photoionization to different ionic states followed by Auger
decay produces a complex electron spectrum, with two sets of
photoelectrons separated by 2 eV (see Fig. 1). Single Auger decay
from Xe+ (e.g., 4d5/2) to Xe2+ (e.g., 5s−15p−1) leads to electrons
at kinetic energies equal to the difference between intermediate
and final state energies, spanning from 8.3 eV to 36.4 eV31 and
thus overlapping with the photoelectrons ionized by 75–100 eV
photons32. Figure 2 shows XUV-only (a) and XUV+IR (b) two-
dimensional coincidence maps. For a given final state of Xe2+,
Auger electrons detected in coincidence with photoelectrons
contribute to a stripe with discrete spots related to absorption of
different harmonics (with odd orders 53 to 63 in the figure), or
absorption of harmonics and absorption or emission of an IR
photon (sidebands 54 to 62). In addition, weak signals due to
absorption or emission of an IR photon by the Auger electron, are
observed (see, e.g., the difference between the blue and red curves
in Fig. 2e at 9.8 eV). This coincidence technique requires long
acquisition times, but allows us to disentangle unambiguously
the 4d5/2 and 4d3/2 photoelectrons by the energy of the Auger
electron.

Each sideband arises from the interference between two
quantum paths as illustrated at the top of Fig. 2(d). The sideband
signal oscillates as a function of the delay τ between the attose-
cond pulse train and the probe IR field, according to,

ISB ¼ Aþ B cosð2ωτ � ϕÞ; ð1Þ

where A and B are constants, ω is the IR frequency and ϕ is a
phase offset, which can be extracted by fitting with a cosine
function. The phase offset ϕ divided by the oscillation frequency
(2ω) can be written as the sum of two delays, τXUV + τA. The first
one is the group delay of the attosecond pulses, while the second,
called atomic time delay, arises from the two-photon ionization
process. As shown in previous work33,34 and as discussed in more
details in the Supplementary Fig. 1, the variation of the atomic
time delay τA, as a function of XUV photon energy or between
two spin-orbit split final states, reflects, to a large extent, one-
photon ionization dynamics. To remove the influence of τXUV in
our time delay measurements, we alternate experiments in Xe and
Ne, and measure the time delay difference. Atomic time delays in
Ne 2p can be measured and calculated with good accuracy. They
are very small in the energy range considered33, so that the time
delay differences between Xe and Ne are, to a very good
approximation, absolute time delays in Xe (see Supplementary
Fig. 2). The sidebands corresponding to the same photoelectron
but different Auger final state are found to oscillate in phase
within our error bar, which allows us to average the time delays
over the different Auger decay channels.
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Fig. 1 Excitation scheme. a Schematic illustration of Xe 4d photoionization
(violet) and Auger decay processes (green) after absorption of XUV
radiation. b Xe energy diagram showing the Xe+ intermediate and Xe2+

final states involved.
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Figure 3 presents the absolute atomic delays for 4d5/2 (a) and
4d3/2 (b) as a function of photon energy. We also present theo-
retical calculations obtained by solving the Dirac equation in
RRPA (see Methods). At high photon energy (>80 eV), both 4d5/2
and 4d3/2 exhibit very similar positive time delay, about 40 as at
80 eV, slightly decreasing with energy. At low photon energy
(<80 eV), the delays show a rapid variation with energy, opposite
for the two final states. Theory and experiment are in good
agreement at high photon energy. Although the agreement in the
threshold region is not as good, the main features of the experi-
ment are reproduced. Our theoretical calculations are in excellent
agreement with the predictions of Mandal and coworkers35,36.

Figure 3c shows the difference between 4d3/2 and 4d5/2 time
delays. This difference is close to zero at high energy but jumps to

more than 100 as at 75 eV. Unfortunately, we could not reliably
extract time delays below 75 eV, due to the low cross section and
the overlap with double Auger electrons below 5 eV kinetic
energy. The RRPA calculation predicts a strong decrease of the
time delay difference towards the threshold. It also shows a strong
deviation of the branching ratio between 4d5/2 and 4d3/2 cross
sections from the statistical prediction in the same energy range,
reproducing well experimental results37,38 (see Fig. 3d).

Discussion
To understand the underlying physics behind the variation of the
time delays, we examine the behavior of the RRPA transition
matrix elements involved in Xe 4d single photon ionization. In
the energy range considered in this work, photoionization is
dominated by the transitions from the 4d shell to continuum f
states, which we denote 4d → ϵf in the following. The con-
tribution from 4d → ϵp transitions is one order of magnitude
smaller in this energy region, as shown in the Supplementary
Fig. 3. The asymptotic phase for a given channel is the sum of the
Coulomb phase and a phase due to the short-range potential. The
Coulomb phase is removed in the phases displayed in Fig. 4, as
well as in the calculation of the time delays, in order to focus on
the short range effects (see Supplementary Fig. 1). Figure 4a
shows that photoionization is dominated by 4d3/2 → ϵf5/2 and
4d5/2 → ϵf7/2, especially at high photon energy, in the region
of the giant dipole resonance. In the threshold region, the
4d5/2 → ϵf5/2 channel contributes significantly. This transition is
accompanied by a spin flip, which points out the role of the spin-
orbit interaction. The phases and time delays for the three
channels (Fig. 4b,c) coincide above 80 eV photon energy, showing
the first half of a π phase variation across the giant dipole reso-
nance with a time delay of ~40 as. Below 80 eV, the three
quantities plotted in Fig. 4a–c show a strong, oscillating, channel
dependence, indicating a quantum interference phenomenon.

The dynamics behind this effect can be unraveled by calcu-
lating the Wigner representation24,39, defined as the Fourier
transform of the auto-correlation function of the transition
matrix elements, Di(E), i denoting the channel, and E the electron
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kinetic energy.
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where ℏ is the reduced Planck constant. The results are shown in
Fig. 5a for the 4d5/2 → ϵf5/2 channel (see Supplementary Fig. 4, for
the other two channels). All three channels show similar features.
(i) A broad resonance with a maximum around 100 eV and a
short decay of a few tens of attosecond, which can be interpreted
as the giant dipole resonance; (ii) A sharp resonance at low
energy, around 75 eV, with a long decay of a few hundreds of
attoseconds; (iii) Interferences between these resonances, leading
to rapid oscillations of the Wigner distribution.

To interpret the sharp spectral feature at 75 eV, we utilize the
theoretical analysis performed in the seminal work of Cheng and
Johnson12. Using a multichannel quantum defect theory
approach40, results obtained within RRPA, similar to those of the
present work, were analyzed and eigenchannel solutions were
extracted. These eigenchannel solutions are completely decoupled
from each other and can be used as a basis to describe coupled-
channel transitions. They are labeled using the closest corre-
sponding LS-coupled channel [(d9f) and (d9p)1P, 3P, 3D], where
in all these cases it is only the J= 1 states that can be populated
from the xenon ground state by one-photon absorption.
Neglecting the weak contribution of the 4d → ϵp transitions, the
4d → ϵf transitions are superpositions of (d9f) 1P, 3P and 3D
eigenchannels (In the following, we drop the d9f label).

Figure 4d–f present the modulus, phase and time delay of these
three eigenchannels. The behavior of the three curves is much
simpler than those in Fig. 4a–c. For each eigenchannel, a single
resonance feature can be identified, with a peak for the modulus
and time delay and a π phase variation across the resonance.
While the broad feature, maximum at 100 eV, obviously repre-
sents the giant dipole resonance (1S → 1P), the narrow peaks at
75 and 76 eV exist because of the spin-orbit interaction that

enables singlet to triplet mixing. The maximum of the time delay
varies from a few tens (1P) to a few hundreds (3D and 3P) of
attoseconds, in agreement with the results in Fig. 5a.

The difference in time delays can be further interpreted by
examining the effective potential experienced by the escaping f
photoelectron. We represent in Fig. 5b a mean-field average
potential (red), as well as the potential modified by 1S → 1P
dipole polarization (screening) effects (black), which are included
in the random phase approximation with exchange (RPAE)
approach. These effects lead to an effective high and narrow
potential barrier and therefore to a broad resonance, with a
maximum at high energy, and a short decay time (see black
dashed line). In contrast, an electron emitted in the triplet
channels does not feel these dipole polarization effects and sees
essentially the potential indicated in red, with a relatively low
barrier only due to angular momentum and a long decay time
(red dashed line). The time delay is directly related to the reso-
nance lifetime, being equal to it at the maximum of the reso-
nance41. Figure 5b even suggests that the increase of the temporal
width of the broad resonance in Fig. 5a towards low energy might
be due to the influence of the long tail of the screened potential
(black).

The rapid variation of the amplitude, phase and delays of the
three 4d → ϵf channels (Fig. 4a–c) at threshold can therefore be
interpreted as a quantum interference effect between the “direct”
dipole-allowed 1S → 1P transition and the spin-orbit-induced
1S → 3P, 3D transitions, which have similar amplitudes in this
region. This interference explains the difference in time delays for
4d3/2 and 4d5/2, as well as the anomalous branching ratio
(Fig. 3c, d).

In conclusion, we have measured photoionization time delays in
Xe using attosecond interferometry, giving us high temporal
resolution, and coincidence spectroscopy, which allows us to avoid
spectral congestion and to obtain a high spectral resolution. These
time delays are positive and similar for the two spin-orbit split
Xe+ states over a large energy range (up to 100 eV photon energy),
except at threshold (75 eV) where they differ by 100 as. With the
help of RRPA calculations for one- and two-photon ionization, we
attribute this difference to the interference of several channels
coupled by the spin-orbit interaction. A time-frequency analysis of
the dominant transition matrix elements, allows us to unravel two
main ionization processes, with very different time and energy
scales: the broad giant dipole resonance, dominated by the 1S to 1P
transition and the narrow resonances due to the 1S to 3P and 3D
transitions, which are enabled by the spin-orbit interaction. While
the former takes place over a few tens of attoseconds, the latter,
involving spin flip, occurs over several hundreds of attoseconds.
Our experimental approach, which adds temporal information to
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traditional spectral studies, provides increased understanding of
the complex electron dynamics taking place in Xe 4d photo-
ionization. Finally, shape resonances are ubiquitous in nature and
the methods developed in this work should be useful to investigate
the electronic properties of a variety of molecular systems (see
recent work in N2

42 and CH3I43).

Methods
Experimental method. The experiments were performed with 40-fs long pulses,
centered at 800 nm with 1-kHz repetition rate from a Ti:sapphire femtosecond
laser system. The laser was focused into a 6-mm long gas cell filled with Ne to
generate high-order harmonics. A 200-nm thick Zr filter was used to filter out the
infrared (IR) and most of the harmonics below the Xe 4d threshold (67.5 eV for
4d5/2). The filtered harmonics thus span the 4d ionization region from the
threshold to the maximum of the giant dipole resonance (100 eV). A small fraction
(30%) of the IR beam, split-off before generation, is used as a probe with a variable
time delay. The XUV and IR pulses were focused in an effusive Xe gas jet. The
electrons were detected by a magnetic bottle electron spectrometer, which com-
bines high collection efficiency and high spectral resolution up to E/ΔE ~ 80.

Data analysis. Each data point in Fig. 3 is the arithmetic mean weighted with the
uncertainty estimated from the cosine fitting to Eq. (1). In each measurement, we
average the time delays of electron pairs corresponding to the same photoelectron
but different Auger decay. For N measurements yielding N data points:
τ1, τ2, …, τN with corresponding uncertainties: σ1, σ2, …, σN, the weighted average
can be calculated as:

τ ¼
PN

i¼1 wiτiPN
i¼1 wi

; ð3Þ

where wi ¼ 1=σ2i is the weight. The uncertainty for each measurement is estimated
from the fit of the RABBIT oscillation to a cosine function. The uncertainty on the
time delay difference, τA − τB, can be expressed as:

σ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2A þ σ2B

q
: ð4Þ

The error bars of the experimental results indicate the standard error of the
weighted mean and can be calculated as:

στ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

N
ðN � 1Þω2

s

X
ω2
i ðτi � τÞ2

s
; ð5Þ

where ωs = ∑ωi.

Theoretical method. Theoretical calculations consisted in calculating one-photon
and two-photon matrix elements within lowest-order perturbation theory for the
radiation fields, using wavefunctions obtained by solving the Dirac equation, and
including electron correlation effects within the RPAE for one-photon XUV
photoionizaton.

The complex-valued two-photon matrix elements44,45 are calculated following
the procedure described in46,47 for the non-relativistic case. Briefly, the absorption
of one ionizing photon is treated within the RPAE approximation and a perturbed
wave function is calculated. Exterior complex scaling is used in order to be able to
use a finite numerical box. The two-photon matrix element is dominated by a one-
photon dipole matrix element between the intermediate perturbed wave function
and the final continuum state48. The integration is performed numerically out to a
distance far outside the atomic core, but within the unscaled region, while the last
part of the integral is carried out using analytical Coulomb waves along the
imaginary radial axis. The amplitude and phase shift of these Coulomb waves are
determined from the numerical solutions for the perturbed wave function and for
the final state describing a free electron within the potential of the remaining ion.
The numerical stability is monitored by comparison of different “break points”
between the numerical and analytical descriptions.

A few adjustments have to be made in the relativistic case: Relativistic RPAE is
used to obtain the perturbed wave function after absorption of one photon and the
Dirac Hamiltonian to determine the phase shift of the final state. The Coulomb
solution for the large component approaches the non-relativistic solution in the
asymptotic region, albeit with relativistically adjusted parameters. For a given
energy, the small component is easily obtained from the large one30.

Data availability
The data that support this study are available online https://doi.org/10.5878/rhak-nd96 at
Swedish National Data Service. Source data are provided with this paper.

Code availability
The codes used in this study are available from the corresponding author upon
reasonable request.
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