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In the last decade, researchers described Mesenchymal Stem/stromal cells (MSCs) as
a possible population of cells for cell-based therapies in regenerative medicine, both for
humans and animals.

The aim of this first article (and the aim of the next books in this collection) is to gather
high-quality research and review articles that could broaden knowledge regarding the role
of MSCs in domestic animals’ health and production.

Nowadays, in veterinary medicine, the owners require their animals to be treated
with sophisticated and new treatments with the aim to improve the patient’s life quality
but also, in the case of livestock animals, to improve the quality of products, aiming to
preserve human health [1]. MSCs therapy could be then considered as an opportunity for
researchers, veterinary practitioners, and animal owners for contributing to animal and
human health and well-being.

Moreover, despite the fact that the mouse remains the proof-of-principle and allows to
test a wide variety of therapeutic protocols, its homogeneous genetic background is not the
same as that of humans, and the knockout model of pathology, experimentally induced, is
not always a mirror of spontaneous pathology. In this context, domestic animals can be
considered spontaneous models, both from a pathogenetic and therapeutic point of view,
of hereditary and acquired pathologies. Moreover, especially regarding pets (i.e., dogs,
cats), which share the same living environment as humans and are often subjected to the
same stressful agents. For the reason listed above, domestic animals could be considered
an important suitable model for human spontaneous diseases, as already stated in the
guidelines emitted by the U.S. Food and Drug Administration (FDA) and by the European
Medicines Agency (EMA). Regarding the role of domestic animals as in vivo models for
human diseases, La Mantia et al. [2] in their systematic review reported the use of stem-cell
treatment against acute or chronic ischemic cardiomyopathies in large animal models with
regard to Left Ventricular Ejection Fraction (LVEF). The meta-analysis reported by the
Authors showed that stem-cell therapy may improve heart function in large animal models
and that the swine species is confirmed as a relevant animal model in the cardiovascular
field. In this context, there is also the study of Garcia-Mendivil et al. [3] regarding the
development of in vitro cellular models using ovine MSCs for prion neurodegenerative
disorders affecting both humans and animals, particularly ruminants. Indeed, the response
of ovine bone marrow-derived MSCs and their neuron-like derivatives to prion infection
allowed us to find that BM-MSC-derived neuron-like cells could be a good candidate for
developing in vitro studies.

As reported by Svoradova et al. [4], MSCs can be used as an avian culture model to
better understand osteogenic, adipogenic, and myogenic pathways; moreover, chicken
MSCs could also be used as a model for in vitro meat culture.

On the other hand, canine and equine species can be considered as both patients and
clinical models. As reported by Prislin et al. [5] and Cequier et al. [6] in their reviews, canine
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and equine MSCs have been used for treating different pathologies, not only regarding the
musculoskeletal system; but also involving ophthalmology, reproduction, gastroenterology,
metabolic and neurologic disorders, and respiratory and integumentary systems.

To date, in canine and equine regenerative medicine, adult tissue, such as bone marrow
(BM) and adipose tissue (AT) represent the most used sources of MSCs. Usually, these cells
are cultured in a culture medium added with 10% of FBS (Foetal Bovine Serum). Despite
that it is critically discussed for its ethical and healthy implications, FBS is still the gold
standard for in vitro cultivation of MSCs. However, the trend in cell culture points to the
use of xeno-free culture supplements, for which blood products, like platelet lysate (PL)
from the same species, appear most promising. In PL the platelet-derived growth factors
have already been released and cell membranes removed, thus it can be stored for a long
time in the freezer. Moreover, positive and synergistic effects of PL might not only be
achieved in cell culture but also in the subsequent therapeutic application when combined
with MSCs. Hagen et al. [7], cultured canine and equine ATMSCs with 2.5% ad 10% of
autologous PL. Cells cultured with 10% of FBS were used as control. It was found that
PL did not support stem cell culture in dogs in the same beneficial way observed in the
horse, revealing that using analogous canine and equine biologicals does not entail the
same results. In fact, canine ATMSC cultured in medium supplemented with 2.5% and
10% of autologous PL changed their morphology, showed decreased metabolic activity,
and increased apoptosis and necrosis; however, at passage five canine ATMSCs showed
less genetic aberrations when cultured with 10% of PL than with FBS. It was concluded
that, even if 10% of PL seems not lead to cell damage, considering the strong alteration
observed in cell morphology and expansion, the use of PL cannot be recommended for
canine ATMSC culture in its current form [7].

Due to invasive cell harvesting, donor site morbidity, cell amount, and characteristics
related to donor age [8–12] connected to the use of BM and ATMSCs, in the last years
researchers have directed their attention towards the study of new sources.

In canine regenerative medicine, an alternative to MSCs could be a stromal vascular
fraction (SVF) non-cultured MSCs, separated from adipose tissue (AT). In recent clinical
trials freshly isolated primary Stromal Vascular Fraction (SVF) cells have been used instead
of cultured ATMSCs [13–15]. Hendawy et al. [16] demonstrated that in middle-aged and
old dogs, the peri-ovarian harvesting site yielded higher SVF viability percentage, and
viable cell number/gm fat than that of the other harvesting sites, such as subcutaneous
abdominal fat and falciform ligament. In this study SVF cells from periovarian AT recorded
revealed a higher expression of MSC markers (CD90, CD44, and CD29) compared to the
other sites, with weak CD45 and CD34 expressions. Furthermore, the positive OCT-4
expression of SVF cells isolated from periovarian AT demonstrated their pluripotency,
indicating them as a valid alternative to ATMSCs for cell therapy in canines. Similar data
have been reported by Prislin et al. [5]. As reported by the Authors, canine SVF and
ATMSCs treatments provide many benefits, in degenerative orthopedic pathologies, both
in skin, bowel, and eye diseases [5].

Foetal fluids (amniotic fluid, umbilical cord blood), and foetal adnexa (Wharton’s
jelly, amniotic membrane) have been identified as ideal alternative sources of MSCs in
different animal species, such as horse [17–19], cattle [20,21], goat [22,23], and others. The
benefits of these cells compared to adult MSCs are due to their origin from extraembryonic
tissues; in fact, because they are at the maternal—foetal interface, these cells present low
immunogenicity and immunomodulatory properties, making them a good candidate for
allo- and xenotransplantation [24]. Iacono et al. [25], in their review, observed that, like
reported in human and other animal species, also in dog MSCs derived from foetal fluid
and adnexa may have an attraction compared to other established SCs in different clinical
approaches, although more in vitro studies on their metabolism and clinical applications
are needed to fully understand their properties and to establish the future clinical use in
the treatment of various diseases. In this contest, Humenik et al. [26] described the effective
protocols for the isolation of MSCs from canine bone marrow, adipose tissue, and amnion
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membrane, showing differences in yield of isolation, morphology, phenotype, multilineage
potential, and proliferation activity.

While Humenik et al. compared canine MSCs isolated from AT, BM, and amniotic
membrane, Merlo et al. compared equine ATMSCs and WJ (Wharton’s jelly) MSCs [26].
Due to the difficulties encountered by the practitioners in skin wound healing and the
role of integrin in the reparative process, in this pilot study, the authors analyzed the
effect of an α4β1 integrin agonist on cell adhesion of equine AT and WJ-derived MSCs
and investigated their adhesion ability to GM18 incorporated poly L-lactic acid (PLLA)
scaffolds. The preliminary results reported in this paper represent a first step in the study
of MSCs adhesion to PLLA scaffolds containing GM18, suggesting that WJ-MSCs might be
more suitable than AT-MSCs. However, the results need to be confirmed by increasing the
number of samples before drawing definite conclusions.

Additionally, the olfactory mucosa is a promising candidate for both humans and
animals [27–29]. Mollichella et al. [30] evaluate the feasibility of collecting, purifying, and
amplifying olphactory-ecto (OE) MSCs from the cat nasal cavity. The OEMSCs were isolated
from biopsies and their stemness features as well as their mesodermal differentiation
capabilities were characterized. This report shows for the first time that the isolation of
OE-MSCs from cat olfactory mucosa is possible. These cells showed stemness features
and multilineage differentiation capabilities, indicating they may be a promising tool for
autologous grafts and feline regenerative medicine.

Beyond natural sources that are limited by stem cell availability, immune intolerance
and lineage specification, bioengineered stem cells, such as induced pluripotent stem cells
(IPSCs) have been developed [31]. In canine species, several reports have described the gen-
eration of IPSCs using retroviral or lentiviral transduction using Yamanaka’s factors [32–34].
Regarding viral reprogramming, different studies have shown that it can induce genomic
integration and increase cell tumorigenic potential [35,36], so viral reprogramming is not
suitable for clinical applications. In the study of Kim et al. [37], the 13-year-old canine
fibroblasts were reprogrammed using a non-integrating Venezuelan equine encephalitis
(VEE) RNA virus replicon, which has four reprogramming factors (collectively referred to
as T7-VEE-OKS-iG and comprised of hOct4, hKlf4, hSox2, and hGlis1) and co-transfected
with the T7-VEE-OKS-iG RNA and B18R mRNA. The derived colonies of putative canine
IPSCs showed a resemblance to naïve iPSCs in their morphology (dome-shaped). The
expression of endogenous pluripotency markers such as Oct4, Nanog, and Rex1 transcripts
was confirmed, suggesting that induced cells were in the late intermediate stage of repro-
gramming. The reported research is the first of this type in canine species and, despite the
good results obtained, it is a preliminary study and requires repeating with quantitative
methodologies.

For therapeutic use, MSCs need to be isolated and expanded in vitro to obtain a
sufficient amount for clinical application. Sometimes second or third applications could
be needed, but long-term cultivation before therapeutic use is not recommended, since
the cells may lose their stemness features and bacterial contamination may occur. For
these reasons, it is very useful to cryopreserve these cells in order to gain a ready and
controlled source of abundant autologous stem cells that maintain unaltered characteristics
of the freshly isolated cells by preserving their vitality and maintaining their pluripotent
phenotype. Di Bella et al. [38], evaluated the effects of 7-year-long cryopreservation using
10% DMSO and different FBS concentrations (from 10 to 90%). The Phenotype morphology,
cell viability, differentiation, and proliferative potential, the expression of pluripotency
markers in both fresh and thawed cells were analyzed. This study demonstrated that canine
adipose tissue MSCs cryopreserved with more than 50% FBS and thawed after 7 years
showed similar proliferative ability and morphological and molecular characteristics as
fresh cells.

Usually, fresh or frozen-thawed cells after in vitro expansion in the laboratory are sent
back to attending clinicians. As reported above, preserving MSCs characteristics en route
from the laboratory to the clinic is fundamental for the success of the therapy. Due to the
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importance of this topic for veterinary regenerative medicine, in the last 10 years, different
storage solutions, temperatures, and periods have been tested [39–42]. For equine MSCs
isolated from AT and Wharton’s jelly (WJ), Iacono et al. [43] demonstrated that different
types of MSCs react differently to the storage conditions frequently used for shipping them
from the laboratory to the clinic. These conditions influence the viability and, depending
on the cell type, they can also influence different MSCs characteristics. Particularly, equine
WJMSCs need to be used quickly to maintain their viability. However, data recovered
in vitro need to be compared with results obtained in vivo using cells shipped under tested
conditions and with data obtained using frozen-thawed cells implanted directly.

Finally, among domestic animal species, camelids are an important source of both
food and sport, as racing animals. In this case, they can present osteoarticular damages
and the treatment with MSCs could be useful for accelerating the healing process. In this
contest, Son et al. [44], for the first time, isolated, expanded, and studied cells isolated
from BM and Synovial Fluid (SF) of Camelus dromedaries (camel). Due to the observed
chondrogenic ability of SF-MSCs, they could be considered as a target cell source for future
use in therapeutic cartilage regeneration in this species.

The contributors published in this first book collection, “Stem Cells in Domestic
Animals: Applications in Health and Production,” are excellent examples of recent advances
made in the field of stem/stromal cell research in veterinary medicine. We would like to
thank the Authors for their excellent contributions and acknowledge Sandra Spatariu and
the Animals Editorial Office for their support.

The Collection is open for submission of original manuscripts and reviews authored
by outstanding experts in any aspect of stromal cell biology.
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