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Abstract

The study of the effect of large-scale drivers (e.g., climate) of human diseases typically relies on aggregate disease data
collected by the government surveillance network. The usual approach to analyze these data, however, often ignores a)
changes in the total number of individuals examined, b) the bias towards symptomatic individuals in routine government
surveillance, and; c) the influence that observations can have on disease dynamics. Here, we highlight the consequences of
ignoring the problems listed above and develop a novel modeling framework to circumvent them, which is illustrated using
simulations and real malaria data. Our simulations reveal that trends in the number of disease cases do not necessarily imply
similar trends in infection prevalence or incidence, due to the strong influence of concurrent changes in sampling effort. We
also show that ignoring decreases in the pool of infected individuals due to the treatment of part of these individuals can
hamper reliable inference on infection incidence. We propose a model that avoids these problems, being a compromise
between phenomenological statistical models and mechanistic disease dynamics models; in particular, a cross-validation
exercise reveals that it has better out-of-sample predictive performance than both of these alternative models. Our case
study in the Brazilian Amazon reveals that infection prevalence was high in 2004–2008 (prevalence of 4% with 95% CI of 3–
5%), with outbreaks (prevalence up to 18%) occurring during the dry season of the year. After this period, infection
prevalence decreased substantially (0.9% with 95% CI of 0.8–1.1%), which is due to a large reduction in infection incidence
(i.e., incidence in 2008–2010 was approximately one fifth of the incidence in 2004–2008).We believe that our approach to
modeling government surveillance disease data will be useful to advance current understanding of large-scale drivers of
several diseases.
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Introduction

Current best practices regarding the collection of disease data

consist in the unbiased sampling of individuals (e.g., through

aggressive active case detection; [1,2]) using the most sensitive

pathogen detection method available (e.g., polymerase chain

reaction (PCR) for malaria). This type of individual-level data has

provided important information regarding infection and disease

(symptoms+infection) prevalence and risk factors; however, these

data are costly and thus tend to be spatially and temporally

restricted, curtailing their ability to detect important disease

drivers that vary over long temporal and large spatial scales.

Studies that focus on large geographical and/or long temporal-

scale disease drivers typically rely on government-based surveil-

lance data (e.g., malaria [3–6], cholera [7,8], measles [9,10],

american cutaneous leishmaniasis [11], pertussis [12], meningitis

[13], and dengue [14]). While government-based surveillance data

provide a wealth of information on disease, these data are often

collected opportunistically, which may severely bias inference

drawn from these data [e.g., 15,16]. For instance, individuals

routinely sampled by the government health facilities are often

symptomatic [17,18]. As a result, if part of the population is
infected but asymptomatic, infection prevalence for the overall

population cannot be estimated as if these data came from a

random sample (i.e., the number detected to be infected divided by
number of tested individuals) nor as if all infected individuals had

been detected (i.e., the number detected to be infected divided by
total population size). Similarly, the number of individuals that

seek help at a particular health facility may fluctuate considerably
with time regardless of concurrent changes in infection prevalence

or incidence (e.g., due to increases in catchment area, or a
shortage of personnel or supplies), directly affecting the number of

observed disease cases. Unfortunately, past analyses have typically

considered only the number of disease cases per unit time (e.g.,
weekly or monthly), ignoring the total number of individuals

examined per unit time (but see [19]).

The standard approach to analyze time-series data from the

government surveillance system is to search for trends [e.g.,

regression analysis; 3,4,11,20–23] or scales of variability [e.g.,

wavelet analysis; 10,24–26] that match those of the explanatory

variables. Recent work, however, has increasingly employed

sophisticated statistical models, typically within the state-space
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modeling framework, to fit mechanistic disease dynamics models

[e.g., 7,9,27–32]. An important assumption within these state-

space models is that observations provide information about the

states but do not affect the underlying process. In the particular

context of disease dynamics, the assumption is that the number of

individuals diagnosed with a particular disease provides informa-

tion on infection incidence or prevalence but does not influence

disease dynamics (the underlying temporal process). This is a valid

assumption if tested individuals are not informed about test results

nor treated for the disease (e.g., data consist on the number of

deaths due to a particular disease). However, this assumption is

violated if individuals that have a positive diagnosis are

subsequently treated for the disease because treatment decreases

the pool of infected individuals and thus affects disease dynamics.

Here we refine the state-space framework to overcome the

shortcomings we have described. Our approach scales-up the

results from a detailed individual-level study to allow unbiased

inference on infection prevalence from government-based syn-

dromic surveillance data over larger geographical and longer

temporal scales than would be possible using solely the individual-

level data. Our approach also properly accounts for changes in

sampling effort and the number of individuals diagnosed/treated

for the disease and makes use of several short time-series (rather

than one long time-series) to infer changes in infection prevalence

and the drivers of these changes. While some of our assumptions

are tailored to malaria, the general approach we put forth should

be adaptable to other human diseases.

We start our article by describing our data and the model we

are proposing. We then use a ten-fold cross-validation exercise to

show that the proposed model has a better out-of-sample

predictive performance than a more phenomenological statistical

model and a more mechanistic disease dynamics model. Next, we

employ simulated data to show how inference on disease incidence

can be severely distorted if one does not take into account

concurrent changes in sampling effort and that observations affect

disease dynamics. Finally, we illustrate our model by applying it to

real malaria data from the western Brazilian Amazon.

Methods

Data
Malaria health posts are the only source of antimalarial

medication in the Brazilian Amazon and this medication can

only be obtained with a positive malaria exam result. As a result,

data from these health posts provide considerable information

regarding changes in malaria prevalence and incidence, being the

basis of the malaria surveillance system in Brazil [33]. The malaria

data we use arise from the Brazilian surveillance network in three

counties (Acrelandia – AC, Placido de Castro – PC, and Senador

Guiomard – SG) in Acre state, western Brazilian Amazon. These

data are aggregated by week t and county l. Over the entire 2004–

2010 period, there were approximately 160,000 malaria tests,

from which ,20,000 were positive (Figure 1). In this dataset,

individuals are sampled and tested for malaria (through micros-

copy) either because they believed they had malaria and sought

help at the local government health facility (passive case detection)

or because they were symptomatic when health agents visited their

houses (active case detection). In either case, individuals tend to be

predominantly symptomatic.

Model description
Observation model: scaling up individual-level data. The

standard observation model in disease dynamics models assumes

that the observed number of new cases is proportional to the true

number of new infections (infection incidence) [7,9,27–29,31,32],

an assumption that may not be realistic. Reasons for failing to detect

these infected individuals when they first become infected include

these individuals being a) originally asymptomatic and thus not

sampled by the health facility; b) symptomatic but also not sampled

by the health facility (e.g., due to access issues in reaching the health

facility); or c) symptomatic, sampled by the health facility, but

misdiagnosed with a negative exam result due to the low sensitivity

of the diagnostic method. As a consequence, with few exceptions

(e.g., an acute disease with a known and well-defined incubation

period), the infection date of individuals is often highly uncertain

[e.g., 16].

Here we adopt an alternative observation model which relates

the observed number of malaria cases to the proportion of the

population that is infected (infection prevalence), rather than

infection incidence. But how can the information from the

government surveillance data be related to the infection preva-

lence of the overall population if we know that the data are biased

(i.e., most of the individuals sampled by health facilities tend to be

symptomatic)? In the following sections we show how this can be

done using an auxiliary unbiased dataset.

Let Dilt be the event of malaria detection for individual i

sampled by the government surveillance system at county l

(l = 1,2,3) and time t (t = 1,…,T). We start by assuming that Dilt is

a Bernoulli event with success probability

plt~p(Dilt~1DSilt~1), ð1Þ

where Silt~1 indicates that individual i at time t and county l was

sampled by the government surveillance system. As a result of this

assumption, the total number of positive tests in a given week and

time D.lt~
PUlt

i~1

Diltcan be modeled as

D.ltjUlt,plt*Binomial(Ult,plt), ð2Þ

where Ult is the number of malaria tests.

Author Summary

Disease data collected by the government surveillance
system are frequently used to understand the influence of
large-scale phenomena (e.g., climate) on human health
because these data often have a large temporal and/or
geographical span. The down side is that a) these data are
often biased towards individuals that come to the health
facilities (i.e., symptomatic individuals); and b) the number
of individuals examined can vary substantially regardless
of concurrent changes in prevalence or incidence (e.g., due
to shortage of personnel or supplies in health facilities),
directly impacting the number of disease cases detected.
Current modeling approaches typically ignore these
peculiarities of the government data. Furthermore, current
approaches do not take into account that observations
directly influence disease dynamics since individuals with a
positive diagnosis are often subsequently treated for the
disease. In this article, we develop a novel model to
circumvent these shortcomings and apply it to simulated
data, highlighting how inference on infection incidence
and prevalence might be misleading when some of the
issues mentioned above are ignored. Finally, we illustrate
this model using malaria data from the Brazilian Amazon,
revealing the strong role of precipitation on infection
prevalence seasonality and striking patterns in infection
incidence.

Modeling of Government Surveillance Disease Data
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Let infection status be denoted by Iilt. The main quantity we are

interested in estimating is the number of infected individuals at

time t and county l, I.lt~
PNl

i~1

Iilt, where Nl is the population size.

Note that I.lt is the current number of infected individuals and not

the number of newly infected individuals at time t (i.e., infection

incidence). To relate this quantity to eqn. 1, we start by

marginalizing over all possible symptomatic statuses Filt (which

stands for fever) and infection statuses:

plt~p(Dilt~1jSilt~1)~
X

Iilt[f0,1g

X

Filt[f0,1g
p(Dilt~1jSilt~1,Iilt,Filt)p(Iilt,FiltjSilt~1): ð3Þ

We simplify this expression by adopting several assumptions.

We assume that only infected individuals can have a positive

microscopy detection and that knowing that an individual was

sampled by the government surveillance system does not

influence the detection probability nor the probability of being

infected given symptomatic status. These assumptions are

formalized as:

p(Dilt~1DIilt~0)~0, ðA1Þ

p(Dilt~1DFilt,Iilt~1,Silt~1)~p(Dilt~1DFilt,Iilt~1), ðA2Þ

p(Iilt~1DFilt,Silt~1)~p(Iilt~1DFilt): ðA3Þ

Assumption A1 arises from the fact that it is unlikely that an

experienced microscopist will identify malaria pathogens on a

blood sample from an uninfected patient, regardless of the

symptomatic status of the patient [Ferreira, personal communica-

tion; 34]. Indeed, using PCR as the reference test, data from the

Brazilian Amazon consistently show a very low rate of false

positives from microscopy: 0.78% (7/891) [35], 0% (0/214) [36],

and 0.53% (6/1127) [37]. In relation to assumptions A2 and A3,

because the main bias associated with the government surveillance

data refers to the sampling of predominantly symptomatic

individuals, if we condition on knowing the symptomatic status

of the individual, then the fact that the individual was sampled

should provide no further information regarding detection or

infection probability.

As a result of these simplifying assumptions, eqn. 3 becomes

plt~p(Dilt~1jSilt~1)~
X

Filt[f0,1g
p(Dilt~1jIilt~1,Filt)p(Iilt~1jFilt)p(FiltjSilt~1), ð4Þ

which, using Bayes rule, can be expressed as

~
X

Filt[f0,1g
p(Dilt~1jIilt~1,Filt)

p(FiltjIilt~1)p(Iilt~1)

p(FiltjIilt~1)p(Iilt~1)zp(FiltjIilt~0)p(Iilt~0)
p(FiltjSilt~1):

ð5Þ

Here we assume that all probabilities in eqn. 5 are the same

across individuals and that the conditional probabilities do not

change over time or county. Thus, we will denote these

conditional probabilities as parameters to be estimated:

a1~p(Dilt~1DFilt~1,Iilt~1),

a0~p(Dilt~1DFilt~0,Iilt~1),

d1~p(Filt~1DIilt~1),

d0~p(Filt~1DIilt~0),

y~p(Filt~1DSilt~1):

Furthermore, because population size Nl is large in each county

(ranging from 11,000 to 19,000 people), we approximate

p(Iilt~1)&I.lt=Nl . Using this notation, eqn. 5 becomes

Figure 1. Temporal and geographical distribution of the
government surveillance malaria data. Malaria data depiction for
Acrelandia (AC), Placido de Castro (PC), and Senador Guiomard (SG)
counties (black, blue, and red lines, respectively). Number of positive
exams and total number of exams are shown in upper and lower
panels, respectively.
doi:10.1371/journal.pcbi.1003312.g001

Modeling of Government Surveillance Disease Data
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plt~p(Dilt~1jSilt~1)&a1

d1
I.lt

Nl

d1
I.lt

Nl

zd0(1{
I.lt

Nl

)

yz

a0

(1{d1)
I.lt

Nl

(1{d1)
I.lt

Nl

z(1{d0)(1{
I.lt

Nl

)

(1{y):

ð6Þ

Finally, prior information (see ‘‘Prior Distributions’’ section)

suggests that the second component of eqn. 6 is negligible

(Figure 2), because both a0 and 1{y are small. The first

parameter a0 is small because microscopy has low sensitivity for

individuals that do not have symptoms and 1{y is small because

it is rare for individuals without symptoms to be sampled by the

government health facilities. As a result, we dropped the second

component of eqn. 6, yielding

plt~p(Dilt~1DSilt~1)&a1

d1
I.lt

Nl

d1
I.lt

Nl

zd0(1{
I.lt

Nl

)

y: ð7Þ

We note that the terms in eqn. 6 are clearly unidentifiable in the

absence of prior information because we are estimating five fixed

parameters (i.e., a1,d1,d0,y,a0) and one varying latent state (i.e.,

I.lt) for every plt. Furthermore, the simplification in eqn. 7 does

not eliminate problems regarding parameter identifiability (e.g.,

note that a1 and y are still unidentifiable), indicating that prior

information on these parameters will be critical to estimate model

parameters and latent states (see ‘‘Prior distributions’’ section).

In summary, our observation model for the aggregate govern-

ment surveillance data can succinctly be described as

D.ltDUlt,a1,d1,d0,y,I.lt*Binomial(Ult,a1y

d1
I.lt

Nl

d1
I.lt

Nl

zd0(1{
I.lt

Nl

)

):ð8Þ

Notice that eqn. 7 implies a non-linear relationship between

infection prevalence and detection probability given that the

person was sampled (Figure 2). The intuition for this non-linear

relationship is simple; when infection prevalence is low (i.e.,

I.lt=Nl&0), most of the symptomatic individuals that seek help at

the government health facilities are uninfected, resulting in very

low proportion of positive exams (i.e., plt~p(Dilt~1DSilt~1)&0).

On the other hand, even if the entire population is infected (i.e.,

I.lt=Nl&1), there is still an upper limit ,1 to the proportion of

positive exam results (i.e., plt~p(Dilt~1DSilt~1)&a1y).

Process model: describing the disease dynamics. Our

process model describes how the number of infected individuals at

time t and county l I.lt vary through time. While standard disease

dynamics model often account for the number of individuals

treated for the disease as an additional parameter to be estimated,

in our case we know how many individuals were treated at each

time. Thus, we expect that the number of infected individuals at

time t+1I.l,tz1 will be equal to the original number of infected

individuals I.lt plus the number of newly infected individuals Wlt

minus the infected individuals that were detected and cured D.lt

and the individuals that recover naturally from infection Rlt (we

ignore people moving in and out of the county). This can be

succinctly described as:

I.l,tz1~I.ltzWlt{D.lt{Rlt: ð9Þ

We are interested in assessing how environmental factors

influence Wlt. We start by noting that Wlt is not separately

identifiable from Rlt in our model since recovery from malaria is

not a well-known and well-defined process; thus, we model

changes in Wlt{Rlt. We refer to this quantity simply as infection

incidence since we expect the number of recovered individuals Rlt

to be small relative to the number of newly infected individuals

Wlt. We replace Wlt{Rlt in equation 9 by its annual average cy(t)

(the subscript y(t) denotes the year that includes week t, where

y(t) = 1,…7). Preliminary analysis suggested that alternative

parameterizations (e.g., adopting monthly averages or county

specific yearly averages) resulted in poor convergence of the

algorithm. Then, we assume that the expected number of

prevalent infected individuals at time t+1 is given by:

E½I.l,tz1DI.lt,D.lt,cy(t)�~I.lt{D.ltzcy(t)~ml,tz1: ð10Þ

We allow for uncertainty in our process model (e.g., departures

from equation 10 due to model misspecification and the

approximation of a continuous phenomenon into a discrete one)

by assuming that:

Figure 2. Prior relationship between detection probability
given sampled and infection prevalence. Approximate relation-
ship between detection probability given that the person was sampled
by the government surveillance system plt~p(Dilt~1DSilt~1) and
infection prevalence I.lt=Nl , based on informative priors on the
parameters of the observation model (Table 2). Solid and dashed lines
are the median and 95% prior credible intervals based on the original
(eqn. 6, black lines) and simplified (eqn. 7, red lines) observation
models.
doi:10.1371/journal.pcbi.1003312.g002

Modeling of Government Surveillance Disease Data
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I.l,tz1DI.lt,D.lt,cy(t),l*BetaBinomial(Nl ,l,l
(Nl{ml,tz1)

ml,tz1

), ð11Þ

where the beta-binomial distribution is such that if

x*BetaBinomial(n,a,b) then E(x)~n a
azb

. In eqn. 11, the

expected value of I.l,tz1 is given by eqn. 10 and extra-binomial

variability is accounted for by the parameter l. All these variables

are summarized in Table 1 and the relationship between them is

illustrated in Figure 3. This figure emphasizes the fact that

observations directly impact infection prevalence dynamics

through the treatment of individuals diagnosed to be infected, in

sharp contrast with the usual assumption in state-space models.

We could have adopted a more mechanistic representation of

disease dynamics in eqn. 10. Indeed, several modelers have used a

directly transmitted disease model for a vector-transmitted disease

under the assumption that vector dynamics are fast relative to

disease dynamics [e.g., 38,39–41]. For example, in a Susceptible-

Infectious-Susceptible (SIS) framework, a typical assumption is

that Wlt~bltI.lt
(Nl{I.lt)

Nl
, where blt is the transmission rate (often

modeled as a function of environmental covariates). However, we

prefer the phenomenological formulation in eqn. 10 over a more

mechanistic representation (e.g., SIS model) for several reasons.

First, preliminary attempts to fit a SIS model while also allowing

for process error revealed that several parameters were uniden-

tifiable. This is not a feature unique to our model and/or disease

data; parameters from biologically inspired disease dynamics

model are notorious for having weakly identifiable parameters

(e.g., hospital infections [42], Ebola Haemorrhagic Fever [43],

malaria [28,44], and influenza [45,46]). Second, SIS or SEIR

disease dynamic models have several simplifying assumptions of

their own (e.g., approximating a mosquito transmitted disease with

a direct transmission disease model, assuming homogeneous

mixing, and exponentially distributed latent and infectious

periods). In particular, these mechanistic models have substantial

model structure uncertainty because alternative sets of simplifying

assumptions can lead to dramatically different results [47,48]. Yet,

despite this model structure uncertainty, several modelers often

assume that noise arises solely from measurement/observation

error and that disease dynamics are perfectly described by the

underlying model (i.e., no process error) [49–51]. Finally, a cross-

Figure 3. Model structure. The structure of the proposed model is depicted here for a given county l (we drop the county subscripts l to avoid
clutter). I.t is the latent number of infected individuals at time t; c1,:::,c7,l and a1,d1,d0,y are parameters to be estimated; and D.t and Ut are the
number of positive exams and total number of exams, respectively.
doi:10.1371/journal.pcbi.1003312.g003

Table 1. Summary of notation.

Event Description

Dilt Malaria detection through microscopy

Silt Sampled by the government
surveillance system

Iilt Infection status

Filt Symptom status

Data

D.lt~
PUlt

i~1

Dilt

Total number of malaria cases detected

Ult Total number of individuals examined
for malaria

Nl Population size

Parameters

a1~p(Dilt~1DFilt~1,Iilt~1) Microscopy sensitivity given symptoms

a0~p(Dilt~1DFilt~0,Iilt~1) Microscopy sensitivity given lack of
symptoms

d1~p(Filt~1DIilt~1) Probability of symptoms given infected

d0~p(Filt~1DIilt~0) Probability of symptoms given not
infected

y~p(Filt~1DSilt~1) Probability of symptoms given sampled

cy(t) Annual mean of infection incidence

l Extra-binomial variability parameter

Latent states

I.lt~
PNl

i~1

Iilt

Total number of infected individuals

doi:10.1371/journal.pcbi.1003312.t001
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validation exercise (described at a later section) revealed that the

proposed model (eqns. 8 and 11) outperformed a deterministic SIS

model.

Prior distributions. If all the terms in our observation

model (eqn. 8) were unknown, it would be impossible to separately

estimate them using just the government surveillance data.

Intuitively it is clear why this ought to be the case; in the absence

of additional information, it is impossible to estimate infection

prevalence for the entire population just using data from

predominantly symptomatic individuals. Thus, we relied on

information from an auxiliary individual-level dataset collected

within the study region to generate informative priors on some of

these terms.

This auxiliary dataset was collected in a rural settlement area

within Acrelandia on 486 individuals using four cross-sectional

surveys (March/April 2004, September/October 2004, Febru-

ary/March 2005, and October/November 2006; all consenting

study participants that were present at the time of the survey were

sampled, regardless of their symptomatic status) and by searching

for malaria exam results on the same set of individuals at the local

health facility records. These data contained a total of 3,077

microscopy and 1,400 PCR malaria tests. We assume these data

to be representative because a) they were collected within the

same region and time frame that we are studying; b) the age

structure of the sampled individuals is similar to the age structure

of the overall population in these counties; c) most of the area of

these three counties is covered by similar rural settlements; and d)

there was a strong correlation (0.65) between the time series of

malaria cases from this detailed study and the time series at the

county level. Further details on the area, data collection, and

characteristics of the study participants can be found elsewhere

[37,52–54].

We model this individual level dataset with a binomial

likelihood, assuming PCR as the reference test. As result, we can

summarize the information in this dataset by calculating the

number of successes and total number of observations (i.e., trials)

related to each parameter in our observation model (‘‘Prior data’’

column in Table 2). Using the number of successes and

observations and assuming a uniform prior distribution, we can

obtain a posterior beta distribution with parameters a and b

(‘‘Posterior Beta distribution’’ column in Table 2). We use these

beta distributions as informative priors for our study. We complete

the specification of our model by assuming a non-informative prior

for the yearly mean infection incidence (cy(t)) and extra-binomial

variation l parameters, namely:

cy(t)*N(0,502),

1=l*Exponential(1):

Model fit
Let hp~fc1,:::,c7,lg and ho~fa1,d1,d0,yg be parameter sets

containing the process and observation parameters, respectively.

To draw samples from the posterior distribution of our latent states

I.,1:L,1:T and parameter sets ho and hp, we need to determine

p(I.,1:L,1:T ,ho,hpDU1:L,1:T ,D.,1:L,1:T )up to a proportionality con-

stant. Our approach adopts a slightly different factorization than

the one used in the standard state-space models because the

disease dynamics process depends on the observations from the

previous time step. Here is our factorization:

p(I.,1:L,1:T ,ho,hpjU1:L,1:T ,D.,1:L,1:T )

!PL
l~1P

T
t~1p(D.ltjIlt,Ult,ho) Observation modelð Þ

|PL
l~1P

T
t~2p(I.ltjI.,l,t{1,D.l,t{1,hp) Process modelð Þ

|p(ho)p(hp): Priorsð Þ

The posterior distribution of the states and parameters

p(I.,1:L,1:T ,ho,hpDU1:L,1:T ,D.,1:L,1:T )is obtained by Gibbs sampling.

We use Metropolis-within-Gibbs sampling steps for all states and

parameters due to the lack of a closed form expression for the full

conditional distributions. Convergence of our Monte Carlo

Markov Chain (MCMC) algorithm was evaluated using trace-

plots. All analyses and figures were created using R version 2.13.2

[55].

Cross-validation exercise
We compare the out-of-sample predictive ability of the

proposed model (eqns. 8 and 11) with that of two alternative

models. The first model is a phenomenological state-space model,

where the latent states follow an AR-1 temporal process, while the

second model is a mechanistic Susceptible-Infectious-Susceptible

(SIS) model. The goal here is to compare the proposed model to

models that would typically be proposed by a statistician (AR-1

process on latent states) or by a mathematical biologist (SIS disease

dynamics model). Details regarding the AR-1 and the SIS models

are given in Text S1.

To determine the out-of-sample predictive performance of these

three models, we conduct a 10-fold cross-validation exercise. First,

we randomly partition our dataset into 10 sets. Then, we exclude

one of these sets and use our algorithms to predict it based on

Table 2. Informative priors used for the observation model parameters.

Prior data Posterior Beta distribution

Parameter Successes Trials a b

a1~p(Dilt~1DFilt~1,Iilt~1) 20 51 21 32

a0~p(Dilt~1DFilt~0,Iilt~1) 4 108 5 105

d1~p(Filt~1DIilt~1) 53 168 54 116

d0~p(Filt~1DIilt~0) 20 931 21 912

y~p(Filt~1DSilt~1) 1588 1689 1589 102

Description of the individual-level data (original successes and trials) and the resulting informative prior parameters.
doi:10.1371/journal.pcbi.1003312.t002
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information from the nine remaining sets. We compare the

performance of these models by determining their mean squared

error (MSE, a standard model comparison measure that takes into

account both bias and variance of estimators), where lower MSE

values are preferred.

Results

Cross-validation exercise
Our ten-fold cross-validation exercise (i.e., prediction of 10%

of the real malaria dataset using the other 90% of the data to

train the model) revealed that the proposed model had a

consistently better out-of-sample predictive performance when

compared to the phenomenological AR-1 state-space model and

the mechanistic SIS disease model (Table 3). In particular, the

SIS disease model had a substantially worse MSE when

compared to the other two models, revealing the negative impact

of not allowing for process uncertainty. Based on these cross-

validation results, we just report on the results from the proposed

model from here onwards.

Using the out-of-sample results, we indeed find that the

proposed model fitted well the weekly number of malaria cases

(Figure 4). The 95% credible intervals tended to include most of

the out-of-sample observations, both in terms of the total number

of positive malaria exams (left panels in Figure 5) and the

proportion of positive exams (right panels in Figure 5), indicating

that uncertainty was adequately represented.

Simulated data
Simulated data using eqns. 8 and 11 show that trends in the

number of malaria cases do not necessarily correspond to

equivalent trends in infection prevalence or incidence. For

instance, increasing number of malaria cases does not necessarily

imply increases in infection prevalence (left panels in Figure 6).

Similarly, decreasing number of malaria cases might just reflect

decreases in the number of individuals examined, rather than

decreases in infection prevalence (middle panels in Figure 6).

Finally, trends in the number of malaria cases do not imply similar

trend neither in infection prevalence nor in infection incidence

(right panels in Figure 6). These simulation results are intuitive if we

recognize that the expected number of disease cases depends both

on infection prevalence
I.lt

Nl

and on the total number of sampled

individuals Ult (i.e., E½D.ltDUlt,I.lt�!Ult

I.lt

Nl

d1

I.lt

Nl

zd0(1{
I.lt

Nl

)
in

eqn. 8). As a consequence, inference on infection prevalence or

incidence based solely on the number of positive exams (i.e.,

ignoring the number of individuals examined) might lead to

spurious conclusions.

The importance of allowing observations to directly affect

disease dynamics is also illustrated using simulated data. We

created a mock dataset where the number of malaria cases, the

number of individuals examined, and infection incidence all exhibit

the same temporal pattern (Panels A, B and D in Figure 7,

respectively). As a result of the cancelling effect of greater number

of individuals being treated precisely when infection incidence is

higher, infection prevalence remains relatively constant (Panels C

in Figure 7).

We then estimated infection prevalence and incidence using our

original model (eqns. 8 and 10) and compared the resulting

inference to that of a similar model that ignores that the

observations (i.e., number of treated individuals) decreases

infection prevalence. To implement this assumption, we modify

equation 10 as

E½I.l,tz1DI.lt,cy(t)�~I.ltzcy(t)~ml,tz1: ð10aÞ

Table 3. The proposed model has better out-of-sample
predictive performance than the alternative models.

MSE

Subset Proposed model AR-1 SIS

1 102 114 273

2 69 77 236

3 97 121 368

4 135 136 280

5 75 88 248

6 88 101 269

7 74 85 286

8 89 105 274

9 90 104 269

10 83 92 258

Mean-squared-error (MSE) for the model proposed in this manuscript (proposed
model), the phenomenological state-space model (AR-1), and the mechanistic
SIS disease dynamics model (SIS). Data were randomly partitioned into 10 sets
and cross-validation results are shown separately for each one of these sets.
doi:10.1371/journal.pcbi.1003312.t003

Figure 4. Out-of-sample predictive ability of the proposed
model. Comparison of observed vs. predicted number of positive
malaria exams. A 1:1 line was added for reference (dashed red line).
Different colors indicate different counties (AC = Acrelandia, PC = Pla-
cido de Castro, and SG = Senador Guiomard).
doi:10.1371/journal.pcbi.1003312.g004
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Assuming that the observation parameters are known, both the

original model and this alternative model inferred well the

underlying infection prevalence (top six panels in Figure 8) but

led to substantially different inference on infection incidence

(bottom two panels in Figure 8). In particular, the original model

correctly inferred infection incidence (bottom right panel in

Figure 8) while the alternative model inferred an infection

incidence of approximately zero (bottom left panel in Figure 8).

The intuition for these results is simple. If the number of

individuals being treated is changing but the inferred infection

prevalence remains constant, this has to imply that the number of

individuals being treated is precisely off-setting infection incidence.

On the other hand, since the alternative model does not take into

account the fact that treated individuals decrease prevalence, an

estimated constant infection prevalence implies zero incidence.

These results highlight the problem of ignoring that individuals

treated for the disease directly influence disease dynamics.

Case study on malaria
The depiction of the real data in Figure 1 already illustrates that

sampling effort exerts considerable influence on the number of

positive test results. For instance, the correlation between the

number of exams and the number of disease cases was equal to

0.71 in our malaria dataset. Furthermore, there is considerable

Figure 5. Uncertainty is adequately represented in the proposed model. 95% credible interval (CI) envelopes (red polygons) are overlaid on
the data (black circles), both in terms of total number of malaria cases (left panels) and the proportion of positive exams (right panels). Results are
displayed separately for each county: Acrelandia (AC, upper panels), Placido de Castro (PC, middle panels), and Senador Guiomard (SG, lower panels).
doi:10.1371/journal.pcbi.1003312.g005
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variation through time in the number of individuals that are

examined. Thus, the common assumption that sampling effort is

constant is likely to be unrealistic, particularly given the length of

many of the disease time-series typically employed, such as those

used to detect the effect of climate change on disease. As a result,

analyses that rely solely on trends in the number of positive exams

may generate misleading conclusions regarding disease dynamics.

Our estimates of infection prevalence reveal a relatively high

initial infection prevalence (mean infection prevalence from 2004

to 2008 was 4%, with 95% credible interval (CI) of 3%–5%) with

large seasonal outbreaks, which was then followed by a substantial

decline in prevalence (mean infection prevalence for 2008–2010

was equal to 0.9% with 95% CI of 0.8–1.1%) (red line and

polygon in Figure 9). A large increase in infection incidence seems

to occur immediately after the rainy season, leading to subsequent

peaks in infection prevalence (which can be as high as 18%) during

the dry season, although there is considerable variability both

geographically (from county to county) and temporally (year to

year). A quantitative measure of association between prevalence

and rainfall can be obtained using a permutation test, akin to the

ones described in [23]. In this test, we compare precipitation when

infection prevalence was at its highest versus at its lowest, for each

year and location, yielding 21 (7 years63 locations) observations

for each level of infection prevalence. Our permutation test

strongly suggests that the observed difference in mean precipita-

tion is highly unlikely under the null hypothesis of no association

(p-value,0.01), consistent with the results from a large-scale

analysis of malaria data spanning 7 states of the Brazilian Amazon,

which found a negative correlation between precipitation and

number of malaria cases [23].

The declining trend in infection prevalence may be attributed to

a sharp decrease in incidence after week 210 (from 2007 to 2008,

Figure 10); incidence in 2008 to 2010 was approximately 1/5 of

the incidence in 2004 to 2007. This abrupt decrease in incidence

does not seem to be associated neither with land use/land cover

changes (e.g., fire, deforestation rate, and forest cover) nor with

climate (e.g., Southern Oscillation index or Oceanic Niño Index)

(data not shown). This decrease may be attributable to enhanced

vector control activities but we lack data on these activities to test

this hypothesis. Posterior distributions for the remaining model

parameters are given in Text S1.

Discussion

We have described a novel model that circumvents some of the

shortcomings of earlier modeling approaches. For example, our

model is able to estimate infection prevalence despite the biases

associated with government surveillance data by up-scaling

information from a detailed individual level study. This capability

of our model is particularly important for public health, where

estimates of infection prevalence (rather than disease prevalence)

are vital for disease control and elimination strategies. The ability

to build on individual-level data (unbiased but geographically

limited and costly) to extract information from the government

surveillance data (geographically extensive but often biased) is

likely to be important for the modeling of data from several other

diseases. In particular, it reveals the potential benefits of

coordinating careful individual level data collection with the

modeling of large-scale patterns using government data. However,

for this strategy to work well, it is critical that the collection of

individual level data is done so that the results are representative

for the region and time-frame of interest.

Disease dynamics model are typically more complex than the

model we have presented here, including age structure of the host

population, vector dynamics, multiple parasites and strains, and an

exposed state. Models containing these additional complexities,

however, are rarely fitted to data, with parameters often simply

assumed to be known [e.g., 32] or extracted from the literature

[e.g., 12,44,46]. Attempts to fit these models directly to data often

reveal that several parameters are unidentifiable [28,32,42–44,46]

or rely on equilibrium assumptions to estimate these parameters

[e.g., 56]. Furthermore, these attempts typically assume either just

observation error or just process stochasticity, but not both as our

model [50]. Finally, these disease dynamic models have numerous

simplifying assumptions of their own, which may lead to

substantially different conclusions [47,48]. For these reasons, we

have chosen to employ a model that is not as phenomenological as

a regression model or wavelet analysis (i.e., we employ a realistic

observation model to infer the underlying infection prevalence and

Figure 6. Trends in disease cases do not imply similar trends in infection prevalence or incidence. Number of positive exams, total
number of exams, infection prevalence, and infection incidence are depicted from upper to lower panels. Left, middle, and right panels are distinct
simulations: infection prevalence decreases but the observed number of disease cases increases (left panels), infection prevalence increases but the
observed number of disease cases decreases (middle panels), and trends in infection prevalence and incidence do not match the trend in the
observed number of disease cases because of concurrent changes in sampling effort (right panels). Multiple simulations with the same initial
infection prevalence showed the same qualitative features.
doi:10.1371/journal.pcbi.1003312.g006
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allow for prevalence to decrease with the treatment of individuals)

nor mechanistic as disease dynamics models (e.g., we do not

account for infection incidence being influenced by current

infection prevalence). Cross-validation results suggest that our

model may outperform more phenomenological methods (e.g.,

AR-1 state-space model) and more mechanistic disease models

that do not account for process uncertainty (e.g., the deterministic

SIS disease dynamics model) (Table 3).

The statistical literature has traditionally assumed that obser-

vations do not alter the phenomenon or object that is being

measured or assessed. Yet, some types of time-series data can

clearly violate this assumption. In our case, a high number of

individuals diagnosed to have malaria has the dual-role of

suggesting a high infection prevalence at a particular time and a

substantial decrease in infection prevalence in the next time step,

since these individuals are subsequently treated for the disease. A

similar example refers to the use of the number of carcasses

encountered or harvested animals as a proxy for animal

abundance [57,58]. The model we propose explicitly accounts

for the fact that observations (i.e., the number of individuals

diagnosed and then treated for the disease) influence the

underlying temporal process (i.e., infection prevalence dynamics),

thus modifying the usual state-space approach. Using simulated

data, we show that this characteristic is critical when inferring

infection incidence (bottom two panels in Figure 8). When applied

to the real malaria data, this model characteristic has allowed the

identification of pronounced seasonal and long-term trends on

infection incidence and prevalence, which might be associated

with rainfall. The importance of letting observations affect disease

dynamics depends on the nature of the observations. For instance,

we believe this is an important problem that has been overlooked

in previous malaria models [28,29]. On the other hand, this

feedback of observations on the disease dynamics might not be

necessary if the observations consist on the reported number of

deaths attributed to a particular disease [e.g., 7,27]. In this case,

observations can be modeled simply as a fraction of the true

number of individuals that died and left the infected pool.

The proposed model also accounts for sampling effort (i.e.,

number of individuals sampled), an important characteristic that is

surprisingly absent from the disease modeling approaches we know

of, mechanistic or not. For example, there has been considerable

contention regarding the role of climate change on the increasing

number of malaria cases in the African highlands [3,22,59–61].

Could an increasing trend in sampling effort be a simple

explanation for the observed trend in number of malaria cases?

Simulated and real data suggest that the effect of sampling effort

might be substantial (e.g., Figure 1 and Figure 6), which may be

particularly important given the long-term nature of most of the

time-series used for disease dynamics modeling [30]. Similar

examples highlighting how changes in detection probability and

health treatment seeking behavior can distort inference on disease

dynamics are also given by [46,50]. Finally, the lack of more long

time-series has been blamed for the considerable uncertainty

regarding how climate and other environmental drivers affect

disease [29,30,62,63]. Instead of relying on long but rare disease

time-series, our model utilized multiple short time-series to infer

on the effect of climate on disease dynamics.

In summary, we have focused on three aspects that have

typically been ignored by earlier modeling approaches, namely: a)

changes in sampling effort (i.e., total number of individuals

examined), b) the fact that government surveillance data are often

biased towards symptomatic individuals, and; c) the fact that

observations (i.e., individuals diagnosed and subsequently treated

for the disease) often directly influence disease dynamics by

decreasing infection prevalence. We note that the relevance of

these aspects fundamentally depends on the particular disease and

data that are being analyzed; yet, we highlight them because they

(to the best of our knowledge) are overlooked in the literature,

either individually or jointly. Furthermore, we emphasize that

these shortcomings are not restricted to state-space models; they

may occur in other modeling approaches as well. We believe that

some of these problems are a legacy from the biomathematical

origins of these disease dynamics models. Researchers employing

these models have traditionally focused on studying the long-term

behavior of this complex non-linear system, thus relying on

parameters from the literature or on rough parameter estimates

[64]. However, as the focus shifts to parameter estimation and

Figure 7. Visual depiction of simulated data. Number of positive
exams, total number of exams, infection prevalence, and infection
incidence are depicted from upper to lower panels (A–D). Data from the
three counties are represented by the black, red, and green lines. Note
that, because the true infection incidence is the same for all three
counties, the three different lines precisely overlap each other and only
the green line appears in panel D.
doi:10.1371/journal.pcbi.1003312.g007
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quantitative disease prediction, greater attention will be needed

regarding how disease data arise and how to properly estimate

parameters from it.

Our modeling approach has five important limitations. First, the

proposed model conditions on the total number of exams at each

time and county. By doing so, we avoid having to worry about

factors that influence the total number of individuals examined,

such as the opening of new health facilities, temporary lack of

personnel, or shortage of supplies. However, this feature of our

model precludes future predictions of future infection prevalence.

This limitation can potentially be avoided by creating an

additional model to predict the total number of exams. Second,

we rely on individual level data to correct for the biased nature of

the government surveillance data but individual level data might

not be available or might not be representative of the geographical

or temporal scale of the aggregate data. In this case, data from the

literature might be used in place of the individual level data to

create informative priors on the observation model parameters.

Third, our observation model assumes that a) symptom status is

binary whereas, in reality, there is often a whole spectrum of

symptoms [53], which may in turn influence the probability of

sampling the individual and detecting the pathogen; and b) that

Figure 8. Ignoring the influence of observations on disease dynamics results in misleading inference on infection incidence trends.
True infection prevalence for each county (Acrelandia – AC, Placido de Castro – PC, and Senador Guiomard – SG) is depicted in the top six panels
(black lines), together with the estimated 95% credible interval for infection prevalence (red polygons). The bottom panels depict the true and
inferred infection incidence (black lines and red polygons, respectively). Because simulations and the fitted models assume that the three counties
have the same infection incidence, incidence results are displayed in a single panel. Left and right panels show results from the alternative model
(eqn. 10a) and original model (eqn. 10), respectively.
doi:10.1371/journal.pcbi.1003312.g008
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the probability of symptoms given infection p(F~1DI~1) does not

change with time. These assumptions may or may not be

reasonable for other diseases and we believe that changing our

observation model to accommodate for alternative assumptions,

without compromising the ability to fit the model, is an important

topic for future research.

Fourth, our process model does not take into account the

nonlinearities in disease transmission that are the hallmark of

disease dynamics models. As noted before, it remains an important

challenge to estimate parameter for these biologically inspired

disease dynamics models, particularly if one is willing to take into

account process uncertainty and a more realistic observation

model. Finally, our results suggest large and relatively abrupt

changes in infection incidence (Figure 10), which may not be

realistic. Future research could focus on developing methods to

infer smooth changes in infection incidence.

In this article, we have conceptualized and implemented a

model that takes into account how data arise and affect prevalence

dynamics. While the exact model formulation (e.g., eqns. 8 and 11)

was tailored to the available data and current understanding

regarding malaria, the main contribution of this article is to shed

light on the importance of a few shortcomings of current disease

modeling approaches and to suggest some general strategies to

overcome them. We believe that these features have the potential

to considerably improve inference on the drivers of disease

dynamics when using government surveillance data.
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Figure 9. Infection prevalence increases during the dry season.
Posterior distribution of infection prevalence (median and 95% credible
interval (CI) are depicted as red lines and polygons, respectively, left
axes) is compared to monthly precipitation (mm, blue line, right axes).
Results are displayed separately for each county: Acrelandia (upper
panels), Placido de Castro (middle panels), and Senador Guiomard
(lower panels).
doi:10.1371/journal.pcbi.1003312.g009

Figure 10. Sharp decrease in infection incidence between 2007
and 2008. Median (black line) and 95% credible interval (grey polygon)
for the yearly parameters c1,:::,c7 . A horizontal line at zero is drawn for
reference (grey line) and numbers refer to calendar years.
doi:10.1371/journal.pcbi.1003312.g010
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