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ABSTRACT
Although tremendous progress has been made in conventional treatment for ischemic 
heart disease, it still remains a major cause of death and disability. Cell-based therapeutics 
holds an exciting frontier of research for complete cardiac recuperation. The capacity of 
diverse stem and progenitor cells to stimulate cardiac renewal has been analysed, with 
promising results in both pre-clinical and clinical trials. Mesenchymal stem cells have 
been ascertained to have regenerative ability via a variety of mechanisms, including 
differentiation from the mesoderm lineage, immunomodulatory properties, and paracrine 
effects. Also, their availability, maintenance, and ability to replenish endogenous stem 
cell niches have rendered them suitable for front-line research. This review schemes 
to outline the use of mesenchymal stem cell therapeutics for ischemic heart disease, 
their characteristics, the potent mechanisms of mesenchymal stem cell-based heart 
regeneration, and highlight preclinical data. Additionally, we discuss the results of the 
clinical trials to date as well as ongoing clinical trials on ischemic heart disease.
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INTRODUCTION
Ischemic heart disease (IHD), a life-threatening cardiac condition characterised by lessened 
blood and oxygen supply to the heart, which is the principal component of cardiovascular 
diseases (CVD), may lead to heart failure and myocardial infarction (MI) [1, 2]. It is the major 
cause of death in urbanised nations and contributes significantly to the disease burden in 
developing nations [3]. Heart failure is prevalent, particularly in industrialised countries; it 
affects between 3% and 5% of the population and has developed into an evolving disease 
with high diagnostic costs [4]. For cardiac viability and optimal function, equity between 
myocardial oxygen quantity and demand is required [5]. Myocardial ischemia occurs when 
mitochondria fail to supply the energy demand due to deficient oxygen supply when the 
myocardium shifts to anaerobic glycolysis to generate energy [6]. As a result of anaerobic 
conditions, myocardial ability to produce adequate oxygen to sustain cardiomyocellular 
processes is limited. In turn, oxygen deprivation results in decreased nutrient availability and 
insufficient removal of metabolic end products. This process changes the series of events 
in cardiomyocytes’ biology and cardiac structure that occur in endothelial cells, fibroblasts, 
vascular smooth muscle cells, and leukocytes [7]. It is the major reason for ischemic conditions 
and also for ischemic heart failure.

Current therapies include inhibition of the angiotensin-altering enzyme, beta and aldosterone 
barriers, and biventricular striding [8, 9]. However, mortality and morbidity [10, 11] from 
HF cause these strategies to succeed only temporarily, necessitating novel strategies to 
inhibit and reverse cardiac dysfunction. Cell-based therapy became popular in the 1990s 
and is promoted as a promising field in regenerative medicine for repairing cardiac damage 
after MI [12]. Mesenchymal stem cells (MSCs) have occurred as a breakthrough treatment 
to “regrow” lost cardiomyocytes and repair endogenous tissue by paracrine signalling and 
exhibit novel immunomodulatory properties [13]. Subsequently, the success of MSCs in 
cardiac disease has been the intensity of research [14]. In this review, we will focus on the 
use of mesenchymal stem cells and their paracrine effects in MI to reverse dysfunction and 
review clinical trials using this novel regenerative approach. The ease of isolation, expansion, 
and in vitro multilineage potential positioned MSCs as promising therapeutics in regenerative 
medicine.

1. DISCOVERY OF MESENCHYMAL STEM CELLS
A half century ago, Friedenstein and co-workers discovered that bone marrow is not only the 
source of hematopoietic stem cells but also the reservoir of mesenchymal stem cells in adult 
organisms. They isolated mono-layered fibroblast-like bone-forming cells or colony-forming 
cells-fibroblast (CFU-F) from guinea pigs [15–17], and Owen expanded on this work in rats 
[18]. However, the isolation and culturing of human bone marrow MSCs were reported in 1992 
[19]. Friedenstein showed that these cells are multi-potential, self-maintenance precursor 
cells and can differentiate into osteocytes as well as chondrocytes and adipocytes in vitro [15, 
16]. The phrase “mesenchymal stem cells” was suggested by Arnold Caplan in 1991 due to 
their differentiation capability into more than one form of cell that form combinative tissue in 
many organs [20, 21]. This name was commonly used even though it had qualms about its 
stemness [22].

2. CRITERIA FOR MSCS BY ISCT
In 2006, the International Society for Cellular Therapy (ISCT) issued the criteria to define 
the population of MSCs to halt the growing controversies regarding the definition of MSCs, 
nomenclature, degree of stemness, and characteristics of cells. To define human MSCs, the 
proposed minimal criteria are that 1) they should be plastic adherent while maintaining 
incultured conditions; 2) they must express positive markers such as CD105, CD73, and CD90 
while expressing negative markers such as CD45, CD34, CD14, or CD11b, as well as CD19 
and class II histocompatibility complex antigens (HLA-DR); 3) they should differentiate into 
adipocytes, osteocytes, and chondrocytes [23]. The pictorial representation of the criteria for 
mesenchymal stem cells is represented in Figure 1.
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By fulfilling the criteria, mesenchymal stem cells can be reaped from numerous tissues at all 
progressive stages, such as fetal, young, adult, and old. Various reports have been published 
on the possible sources for isolating the cells. The most common and large utilised adult 
tissues are bone marrow [19, 24] and adipose tissue [25–27]. Then the young adult tissues 
such as umbilical cord tissue [28, 29] and placenta [30, 31] from which juvenile MSCs can 
be isolated noninvasively. The other sources include dental pulp, yellow ligament, peripheral 
blood, endometrium, fetal tissues such as amniotic membrane, chorionic villi, and Wharton 
jelly, which are used to obtain MSCs [32–41].

3. MESENCHYMAL STEM CELLS IN CARDIAC REPAIR
The clinical use of MSC started between 1995 and 2000, especially for the treatment of cancer 
and bone/cartilage disease [42–44]. Later, the outcome of several clinical works adjudged 
the therapeutic potential as well as safety of using MSC for treatment of various ailments. 
Consequently, clinical trials have also established the virtue of MSC in the treatment of acute 
myocardial ischemia (AMI) [45]. However, to achieve the purpose of cardiac regeneration, 
the desired progression must include three objectives: 1) the mass production of additional 
myocardial mass, 2) the development of a new vascular system to withstand it, and 3) the 
replacement of a weakened ventricle to its suitable geometry [46, 47]. Amongst all, Pittenger et 
al. (1999) directed attention to mesenchymal cells procured from bone marrow and emphasised 
that these cells proliferated extensively in vitro conditions and could be an attractive candidate 
for transplantation [24]. In 2001, an evolving study revealed that BM-derived cells from the 
murine model infused intramyocardially improved cardiovascular function after myocardial 
infarction (MI) (48%). After that, in 2004, Chen et al. (2004) demonstrated the intracoronary 
infusion method in autologous BM-derived MSCs improved left ventricular (LV) function [49]. 
The key property of MSCs is that they lack major histocompatibility complex II (MHC-II) markers, 
that is, they elude rejection by the immune system (both innate and adoptive) [50]. MSCs also 
have the characteristics of anti-fibrotic and anti-inflammatory properties [51]. These reports 
suggest that allogeneic use of these cells could be valuable. Accordingly, in randomised clinical 
trials, the transendocardial injection of both allogeneic and autologous derived MSCs in ischemic 
patients resulted in a favourable response in immunological reactions, the eminence of life, 
and ventricular remodelling [52]. A few scientists studied patients with heart failure caused by 
severe ischemic conditions in randomised, placebo-controlled trials. After a six-month study, 

Figure 1 According to the 
International Society for 
Cellular therapy (ISCT) 
statement, Mesenchymal 
Stromal Cells defined as 
a) adherent to the plastic 
surface b) express Cluster 
Differentiation antigen, >98% 
positive for CD105, CD73, and 
CD105, and <2% negative for 
CD45, CD34, CD14 or CD11b, 
CD79alpha or CD19, HLA-DR 
surface molecules c) should 
differentiate into adipocytes, 
chondrocytes, and osteocytes.
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MSC-treated patients revealed a substantial decline in LV end systolic volume and an increase 
in LV ejection infarction [53]. The success of these efficient studies made cardiac regeneration 
by cell-based therapy via mesenchymal stem cells more appealing in the research field.

4. POTENT MECHANISMS PROPOSED FOR CARDIAC REPAIR
The precise mechanism of MSC and its actions are still unknown. It is proposed to be numerous 
effects from these stem cells before opting for a single mechanism of action. Several kinds of 
research have contributed to the salutary effects of MSC therapy by various factors, both in vivo 
and in vitro, after cardiomyocytes. Feasible mechanisms consist of 1) new engraftment and 
differentiation into new cardiomyocytes or other cells [54–57]; 2) paracrine signaling/mediators 
from MSC show adverse effects on cardiac repair [58, 59]; 3) MSC stimulate endogenous cardiac 
stem cells (CSC) to proliferate and repair injured tissues [60, 61]; as well as [4] stimulation 
of neovascularization and immunomodulation [62]. Further research may lead to the precise 
mechanism of MSC with improved techniques to repair damaged hearts with more effective 
functions. The different approach mechanisms are illustrated in Figure 2.

Figure 2 Mechanism of 
action of Mesenchymal 
stem cells: I) MSC cells 
can a) transdifferentiation 
into endothelial cells and 
cardiomyocytes b) promote 
paracrine signals such as 
Vascular endothelial growth 
factor (VEGF), Hepatic growth 
factor (HGF), and Insulin-
like growth factor (IGF) 
c) proliferate endogenous 
cardiac stem cells with C-Kit 
markers d) stimulate the 
growth of neovascularization 
and immunomodulation. II) 
Overview of formation of new 
endothelial cells, reduction 
in infarct size of damaged 
cells via various mesenchyme 
effects.
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These four combined actions are more powerful to inhibit undesirable remodeling of organs 
damaged by ischemic injury. The predominant disease caused by an ischemic wound to the 
heart leads to the deprivation of contractile cardiomyocytes and replacing normal tissue with 
fibrotic scar tissue. To prevent this, the demonstration of MSCs injected into the frontier region 
of infarcts and applicable cardiac tissue in pre-clinical and clinical trial settings. It resulted in 
an anti-fibrotic effect, reducing scar size, promoting endogenous tissue regeneration, reduced 
inflammation, stimulate cellular growth, proliferation, and improving perfused and viable blood 
vessels to reverse the cardiac injury. The enhanced endogenous mechanism shows improved 
contractile cardiac muscle than the direct differentiation and engraftment of MSCs [53, 63–67].

The efficacy of the route of MSC administration needs to be assessed. The effective routes 
tested with MSCs are depicted in Figure 3. Several methods of MSC delivery in vivo have been 
proposed to improve cardiac recovery, including 1) transendocardial stem cell injection 
(TESI) [68, 69], 2) intravenous infusion at the periphery [70–72], 3) injection catheter-based 
direct intramyocardial (DI) delivery [73–76], and 4) intracoronary infusion delivery [77–79]. 
The route of administration appears to have a remarkable influence on the effectiveness 
of MSC therapy in both acute and chronic myocardial infarction [80]. Transendocardial 
injection shows superiority with condensed infarct size (n = 49, 9.4% level reduction; 95 
percent confidence interval, from 15.9 to 30.0) and similarly upgraded left ventricular 
ejection fraction (LVE) in a systematic review study that examined the impact of MSC 
therapy in both AMI and chronic dilated cardiomyopathy with various routes of delivery in 
a swine model and clinical trials, 9.1% level increase and 95 percent confidence interval, 
3.7 to 14.5) TESI also improved LVEF in humans (n = 46, 7.0% level increase; 95 percent 
confidence level, from 2.7 to 11.3), whereas DI, arterial, intracoronary infusion, had no 
effect in the demonstration. In chronic ischemic cardiomyopathy, the transendocardial with 
the application of 20–100 × 106 MSCs was given the best results compared to others at the 
conclusion of cardiovascular clinical trials [81].

Figure 3 A diagram of various 
cell therapy approaches 
tested with MSCs is shown: 
a) transendocardial stem 
cell injection, b) peripheral 
intravenous infusion, 
c) intramyocardial delivery 
by injection catheter, 
and d) delivery via an 
intracoronary artery.
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5. PARACRINE EFFECT, EXTRACELLULAR VESICLES AND EXOSOMES
Even though MSC can act through different mechanisms, the paracrine activity of MSC has 
been the focus of therapeutic effects in recent studies. Multiple growth factors and cytokines 
are secreted together as a “secretome”. These factors are soluble in water or encapsulated in 
extracellular vesicles (EV) or exosomes by culturing the cells in a “conditioned medium” [82–85]. 
Interleukin-1 (IL-1) and -6 (IL-6) for angiogenesis promotion and VEGF induction, hepatocyte 
growth factor (HGF) for cardiac progenitor cell mobilization, transforming growth factor (TGF-) 1 
acts as a fibrosis regulator, and placental growth factor (PLGF) and vascular endothelial growth 
factor (VEGF) work to prevent cardiomyocyte and endothelial cell death [86–91]. Angiogenin 
secretion is thought to function as LV remodelling attenuation via vasculogenesis [92–94]. A few 
mRNAs secrete matrix mediating factors such as matrix metalloproteinases (MMPs) 2, 9, and 
14 to surge the antifibrotic action [95, 96] and are capable of crossing through type I collagen 
membranes [93, 97]. A novel up-regulated secreted protein, Akt-MSC, induced hypoxic conditions 
to promote cardiomyocyte survival with reduced infarct size and reduced apoptosis [58, 98, 99].

In the myocardium, the secretion of paracrine factors has a pleiotropic effect, such as 
improvement in local angiogenesis, reduced cardiomyocyte death, low fibroblast activation, 
cardiac stem cell stimulation, and also a reduction in myocardial fibrosis, corresponding with 
the cell-mediated immune response [100]. Various preclinical research models have shown the 
secretion of soluble factors by the MSCs in different models. Nakanishi and coworkers reported 
that the up-regulated expression of cardiac progenitor genes, namely myosin heavy chain and 
atrial natriuretic peptide (ANP), in a conditioned medium derived from MSCs. This paracrine 
activation enhanced the migration and differentiation of cardiac progenitor cells (CPC) [101]. 
According to Cho et al. [102] MSCs after overexpressed glycogen synthase kinase (GSK)-3 were 
induced into the coronary ischemic heart, resulting in reduced mortality, reduction in infarct 
size, high yield of cardiomyocyte differentiation rate, and LV modeling. The overexpression of 
the survival gene Akt1 (Akt-MSC) released in situ by MSC restores cardiac function and prevents 
ventricular remodelling in less than 72 hours. Not only that, but it also acts as a protective 
paracrine marker for ischemic myocardium [103]. Numerous cytokines were produced from 
bone marrow-derived stem cells in the in vivo model of acute MI, as well as vascular endothelial 
growth factor (VEGF), interleukin (IL)-1, platelet-derived growth factor (PDGF), and insulin-like 
growth factor (IGF)-1. These cytokine factors functionally improved the infarcted heart from 
ischemic injury by the preservation of contractile proportions of the myocardium, inhibited cell 
death of myocardiocytes, and induced angiogenesis of the infracted heart [104–106].

Extracellular vesicles and exosomes are membrane-limited cellular components used for 
regenerative therapy. Current research focuses on the supernatant of cells that have similar 
components to MSC. EVs range in size from 100 nm to 1 m and are formed by the detachment of 
cytoplasmic protrusions [107]. Contrarily, exosomes have a range of sizes between 30 and 100 
nm. It leads to the fusion of multivesicular endosomes and plasma membranes released by MSCs, 
as well as exocytosis [107]. The secretome of EV from MSC expresses CD13, CD29, CD44, CD73, 
and CD105, depleting the characteristics of MSCs’ origins [108–110]. Both carry nucleic acids, 
coding mRNA and non-coding RNA, which are functionally equivalent. The EVs’ coding mRNA 
are transcription factors that regulate transcription, cell multiplication, and immune regulation 
[111]. Amongst the non-coding RNAs that repress released EV-MSC, they have a selective pattern 
for miRNAs [108, 112], which can regulate gene expression post-transcriptionally by targeting 
cells and downregulating the targeted proteins by highly expressed miRNAs [113].

The latest research suggests the use of EVs and exosomes as the therapeutic paradigm in ischemic 
conditions. In the enriched exosome of miR-22 secreted from MSCs, the anti-apoptotic effects 
were pointed out through methyl CpG binding protein-2 (Mecp2) in ischemic preconditioning 
and in vivo, it significantly reduced cardiac fibrosis [114]. Another study on the highly purified 
exosome from an MSC-conditioned medium with a hydrodynamic radius of 55–65 nm was shown 
to mediate cardioprotection during myocardial ischemia in a murine model [115]. Successive 
works from the same group demonstrated that the exosome proteome tends to identify protein 
candidates that are attributed to the therapeutic effect, demonstrating that the 20S proteosome, 
as a candidate exosome protein, is responsible for the reduction in the size of the infarct in a 
mouse model of myocardial ischemia [116]. Likewise, MSC changed over with GATA-4 formed 
exosomes containing a high concentration of miR-221. This mRNA inhibited apoptosis in ischemic 
cardiomyocytes by downregulating the expression of p53-stimulated modulator of apoptosis 
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(PUMA), a Bcl-2 protein family subclass [117]. The combinatorial delivery of exosomes (Exo) and 
MSCs into acute MI via intramyocardial injection enhanced the cardiac function, reduced the 
inflammatory response, and improved the microenvironment via Exo injection [118].

6. IMMUNOMODULATION OF MSCS AFTER ISCHEMIC INJURY
Mesenchymal stem cells turned up as dominant modulators of both the innate and adaptive 
immune systems. Numerous MSC-mediated immunomodulatory effects are mediated by host 
cells. The elimination of cellular debris, activation of resident precursor cells, the compensatory 
growth of residual cardiac tissue, quantitative and qualitative changes in the vascular network, the 
development of fibrotic scar, and inflammatory reactions were found to guide the regeneration 
process after cardiac damage [119]. MSCs have been shown in numerous clinical trials to be 
immune suppressive for at least 12 months following transplantation [120]. Nonetheless, anti-
inflammatory M1 macrophages, soluble mediators such as TGF-1, prostaglandin E2, hepatocyte 
growth factor (HGF), indoleamine 2, 3-dioxygenase, soluble HLA G5, heme oxygenase-1, and anti-
inflammatory interleukin 10 (IL10) are well-known [121]. MSC reduces the stimulating receptors 
of natural killer (NK) cells in the innate system, and in the adaptive system, they inhibit B cell and 
dendritic maturation, suppress T helper (Th) cell and cytotoxic T cell (Tc) proliferation, and prevent 
T-cell production of pro-inflammatory cytokines [122]. In mouse hearts, after the MI’s inception, 
human MSCs functioned to reduce inflammatory response by secreting TNF-stimulated gene-6 
(TSG-6) induced protein intravenously. This study discovered that inducing this molecule was 
also related to a fall in infarct size, a decrease in the proteolytic wound to the heart, a decrease in 
fibrosis, and an improvement in cardiac dysfunction [123]. Regulatory T cells (Treg) contributed to 
statin-induced cardioprotection against ischemia-reperfusion injury through specific depletion, 
reduced infarct size, and inhibited inflammatory responses [124]. Modification of MSCs with 
these growth factors and cytokines showed the beneficiaries by improving vascularization and 
cardiac remodeling, reducing inflammation and enhancing angiogenesis [125].

7. MSCS IN ANIMAL MODELS OF MI
Even though the successive characteristics of mesenchymal precursors/stem cells are already 
illustrated, in vivo experiments in animal models of the particular ailment are mandatory to 
implement those studies into humans. Preclinical studies helped to explore the regenerative 
capacity of MSCs in small and large animal replicas of acute and chronic ischemic heart 
ailments [126].

In experimentation, small animals like mice, rats, and rabbits are often castoff as models 
for cardiovascular diseases due to their small size, simple to handle, low maintenance, and 
inexpensive cost [127]. The first experiment by Orlic et al. was shown in female mice with an 
acute MI. Intramyocardial administration of green fluorescent protein (GFP) named lineage 
c-kit BM-MSC improved cardiac regeneration. They made the assumption that BM-derived 
stem cells would engraft myocardiocytes, endothelial cells, smooth muscle cells, and vascular 
structure in the infarct area, repairing myocardium in vivo [48] Adipose-derived stem cells 
(ADSC) implantation in rats after coronary infarction increased the secretion of VEGF, that is, 
enhancement of angiogenesis and neovascularization under hypoxia conditions after a week 
of infusion [109]. The transplantation of BM-MSC into the dilated cardiomyopathy (DCM) rabbit 
model differentiated into cardiomyocytes-like cells and myocardial cells with the induction of 
5-azacytidine. Not only did they observe the upregulation of VEGF expression, but they also 
up-regulated the receptors such as Flt-1 and Flk-1 [128]. The DCM rat model was treated with 
human umbilical cord (hUC)-MSCs, which repressed the expression of TNF-, extra-cellular signal-
regulated kinase 1/2 (ERK1/2), and TGF-1 signalling pathways, resulting in reduced fibrosis and 
cardiac dysfunction [129]. In preclinical trials, common findings include reduced infarct size, 
improved LVEF, and vasculogenesis [130]. In addition, improved VEGF expression and blood 
flow in the infarct zone made the situation more beneficial [126, 131].

However, there are some drawbacks to using small in vivo animal models, such as minute 
heart size and anatomical variations in the coronary blood vessels, which result in a high 
failure rate in clinical transplantation [132]. Animals such as pigs, porcine, dogs, and sheep 
are utilised in scientific experiments since they are more human-like. Infusing BM-derived 
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MSCs intravenously into pigs with reperfusion/acute ischemia injury enhances left ventricular 
ejection fraction (LVEF), can enlarge ventricular arrhythmia in myocardial infarction hearts, and 
limits adverse wall thickening [133]. In another study, the intracoronary infusion of MSC cells 
into the porcine heart after five days of infarction showed the improvement of increased LVEF 
and scar reduction in infarct size [134]. Endomyocardial delivery of allogeneic mesenchymal 
precursor cells via catheter into sheep after four weeks post MI using three-dimensional 
echocardiography. It showed the inflation in the LV act (ejection fraction and wall stiffening) and 
neovascularization [135]. The combination of autologous MSC with CSC cell therapy improved 
myocardial contractile performance by reducing scar size by about 44.1 ±6.8%, improving EF 
by about 6.9± 2.8 EF units, and also diastolic strain, which exhibits increased cardiomyocyte 
mitotic activity in a swine model three months after ischemic/reperfusion injury [136]. In a 
porcine model of severe MI, the intracoronary jab of allogeneic adipose tissue procured-MSC 
improved myocardial perfusion, reduced infarct size, and enhanced the reparative process in 
cardiac function after two months [137, 138]. Despite this, none of these models can reliably 
reproduce the complexity and pathology that characterise human myocardial infarction. When 
applying laboratory findings to clinical trials, these limitations should be considered [139].

8. CLINICAL TRIALS OF MSC IN ISCHEMIC HEART DISEASE
Various clinical trials have been executed for ischemic heart disease (coronary heart disease) 
with transplanted (autologous/allogeneic) mesenchymal stem cells with neither acute nor 
chronic myocardial infarction. Some of the completed clinical trials are listed in Table 1.

The primary clinical trial was designed as randomised research. After three months of 
autologous MSC derived from bone marrow intracoronary insertion in patients with acute MI, 
a cardiac function such as left ventricular ejection fraction developed (Chen et al., 2004). Early 
studies in the control of prolonged ischemic cardiomyopathy remained limited, but since 2011, 
several major randomised studies have produced promising results.

Hare and his co-workers [68] published the results of the POSEIDON randomised trial. Thirty 
patients were enrolled with LV dysfunction due to ischemic cardiomyopathy (ICM), and a 
couple of autologous and allogeneic BM-MSC with a mean of 150 million cells was transferred 
via transendocardial injection. Both types of cells had similar effects at 13 months of follow-up, 
such as a reduced EED (infarct size) mean of about –33.21% (95% CI, –43.61% to –22.81%; 
P < .001), decreased LV end-diastolic volume, and increased EF.

STUDY n CELL SOURCE CONDITION DESIGN DELIVERY ID NUMBER

Chronic ischemic heart disease:

TRIDENT 30 Allogeneic BM Ischemic CM Phase II TESI NCT02013674

TAC-HFT 65 Autologous BM Ischemic MI Phase I/II TESI NCT00768066

PROMETHUS 9 Autologous BM Ischemic MI Phase I/II IM NCT00587990

MESAMI – I 10 Autologous BM Ischemic CM Phase I/II TESI NCT01076920

MyStromal Cell 60 Autologous ADSC Ischemic CM Phase II IM NCT01449032

Paulo et al 10 Autologous BM Ischemic CM Phase I/II IC NCT01913886

Kyriakos et al 11 Allogeneic BM Ischemic CM Phase II IM NCT01759212

POSEIDON 31 Autologous/Allogeneic BM Ischemic CM Phase I/II TESI NCT01087996

Vrtovec et al 110 Autologous BM Ischemic dilated CM Phase II IC NCT00629018

PRECISE 27 Autologous ADSC Ischemic CM Phase I IM NCT00426868

Perin et al 60 Allogeneic BM Ischemic CM Phase II TSEI NCT00721045

Acute Myocardial infarction:

SEED-MC 80 Autologous BM Acute MI Phase II/III IC NCT01392105

Lian et al 160 Allogeneic UC ST-elevation MI Phase II IC NC00114452

Table 1 List of few completed 
clinical trials of MSC therapy in 
ischemic heart disease.

Abbreviations: BM-Bone 
Marrow; ADSC- Adipose-
Derived Stem Cell; 
UC-Umbilical Cord; CM-
Cardiomyopathy; MI-
Myocardial Infarction; 
TESI- Transendocardial stem 
injection; IM- intramyocardial; 
IC-intracoronary; MSC-
Mesenchymal stem cells.
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In the PROMETHUS trial, a total of six people with chronic ischemic cardiomyopathy leading 
to CABG (cardio artery bypass grafting) were injected with autologous BM via intramyocardial 
injection into kinetic myocardial territories. After 18 months, patients who received MSCs had 
a higher LV ejection fraction (+9.4± 1.7 percent, P = 0.0002) and a lower scar mass (–47.5 ±8.1 
percent, P < 0.0001) than those who received placebo control. They also found that there was 
coherent limitation in scar size, perfusion, and enhancement in contractility [140]. However, 
because of the small number of participants and the deficit-managed placebo group, the notch 
and accuracy of these findings were limited.

The number of transplanted cells can limit the effect of MSC transplantation. Accordingly, 
TRIDENT conducted a safety comparative study of two doses of allogeneic BM-MSCs 
in ischemic cardiomyopathy. At random, thirty patients were given a transendocardial 
injection of either 20 million or 100 million cells. Scar size decreased equally in both groups 
after 12 months of follow-up: 20 thousand by –6.4 g (interquartile range, –13.5 to –3.4 g; 
P = 0.001) and 100 thousand by –6.1 g (interquartile range, –8.1 to –4.6 g; P = 0.0002), but 
the ejection fraction increased only in the 100 thousand by 3.7 U (interquartile range, 1.1 
to 6.1; P = 0.04). The importance of cell doses in regenerative capacity was highlighted 
in this study [141]. In another study, randomised 60 patients after ischemic myocardial 
infarction, transplanted better with allogeneic BM transendocardially with a cell dose of 
about 25/75/150 × 106. Three different doses were investigated, and it was discovered that 
a high dosage of allogeneic MSC cells was feasible and beneficial to this population [66]. 
Thus, the number of MSC cells transplanted into the targeted area will be more significant 
for better efficacy and treatment.

In addition to BM-MSCs, adipose tissue-derived mesenchymal stem cells (AD-MSCs) were used 
to treat ischemic cardiac disease. In a PRECISE study, in no-option patients with ischemic 
cardiomyopathy, AD-MSC improved total left ventricular mass, retained ventricular activity, 
myocardial perfusion, and contractility [142]. An ongoing phase I and II trial (UCMSC-Heart) is 
likely to assess the protection and virtue of umbilical cord procured mesenchymal stem cells 
(UC-MSCs) administered intracoronary in patients with chronic heart ischemia (Clinical Trial No: 
NCT02439541).

The mesenchymal cells were pretreated with growth factors and cytokines up to transplantation, 
which is a slightly different strategy. In the MystromalCell trial, sixty randomised patients were 
injected myocardially with autologous VEGF-stimulated adipose-derived MSCs (AD-MSC). 
Ahead of transplantation, AD-MSC was triggered to differentiate into an endothelial lineage by 
pre-culturing in VEGF-A165-stimulating medium for seven days. The AD-MSC group improved 
their exercise ability more than the placebo group.

Likely, a combination of MSCs with cardiac stem cells shows greater efficacy in treating 
ischemic myocardia. An ongoing clinical trial of CONCERT-HF (NCT02501811) phase II assessed 
the welfare, viability, and effect of autologous BM-MSCs and c-kit+ cardiac stem cells via 
transendocardial injection in patients with ischemic cardiomyopathy. A similar study, TAC-HFT-
II, was designed in which the autologous hMSC and hCSC were administered transendocardially 
with Biosenser Webster MyoStar NOGA in patients with ischemic heart failure.

Surprisingly, there’s no comparison clinical trial study between the sources like BM-MSCs and 
AT-MSC to know the effect of MSCs in the treatment of any heart disease. Likewise, there are no 
comparative studies involving the different routes of delivery methods for this disorder. Since 
MSC has been demonstrated to reduce scar size, improve regional blood flow and contraction, 
induce vasculogenesis, reduce fibrotic effects in diseased tissue, and improve quality of life, 
clinical trials have some limitations, including cell dosage, the timing of cell delivery, route of 
administration, cell processing, and study follow-up. However, efficacy experiments on a wider 
scale are also unlikely to be big randomized, double-blinded, inactive controlled setups in which 
a huge regiment of patients could take part, so that the available information can be used for 
finding an optimised treatment. Table 2 summarises the current clinical trials of ischemic heart 
disease (acute and chronic).

https://doi.org/10.5334/gh.1098


9. CHALLENGES AND CONTROVERSIES
Mesenchymal stem cells were characterized as amongst the most highly optimistic cells for 
myocardial infarction and have been demonstrated to be the thriving treatment for a variety of 
cardiovascular diseases [143–145]. However, these MSC encountered many controversies and 
challenges that need to be addressed in future research. Some of the challenges are:

1) MSCs have the trans-differentiation potential capacity to become functional cardiac and 
endothelial cells [146–148], but their capacity to evolve into epithelial and cardiac cells in 
vivo has yet to be completely verified owing to the shortfall of unique MSC cardiac markers 
[149]. However, due to extracellular vesicles and exosomes, the paracrine behaviour 
of MSCs following implantation promotes cardiac myocyte survival, proliferation, and 
therapeutic properties [150–152].

2) There have been few reports on the possibility of proarrhythmia and cell differentiation into 
undesirable cell types. Eventhough Price et al reported that the possibilities of finding pro-
arrhythmic electric remodelling associated with MSC treatment after infarction [10]. These 
multipotent stem cells transplanted into heart tissue can differentiate into noncardiac 
cells, which is undesirable [153]. Also, animal experimentation revealed that marrow-
derived MSC administration resulted in calcification and ossification of heart tissue, besides 
injury to the abdominal aorta [154, 155].

STUDY n CELL SOURCE CONDITION DESIGN DELIVERY ID NUMBER

Chronic ischemic heart disease:

MESAMI 2 90 Autologous BM Ischemic CM Phase II IM NCT02462330

HUC-Heart 79 Autologous/Allogeneic BM Ischemic CM-Pre CABG Phase I/II IM NCT02323477

UCMSC-Heart 40 Allogeneic UC Ischemic CM, HF Phase I/II IC NCT02439541

Dai et al. 45 Allogeneic UC Ischemic CM Phase I/II Collagen Scaffold NCT02635464

TAC-HFT II 55 Autologous BM ± CSC Ischemic CM Phase I/II Saline NCT02503280

SEESUPIHD 6 Allogeneic UC Ischemic CM Phase I/II IC NCT02666391

TPAABPIHD 200 Autologous BM Ischemic CM Phase I/II NYD NCT02504437

Guoping et al. 10 Allogeneic UC Ischemic CM Phase I IM NCT01946048

WJ-ICMP Tria 160 Allogeneic WJ Ischemic CM Phase II IC/IV NCT02368587

CONCERT-HF 144 Autologous BM + c-kit+ CSC Ischemic CM Phase II IM NCT02501811

Kyriakos et al. 5 Allogeneic BM Ischemic CM Phase II/III IM NCT01759212

Maskon et al. 80 Autologous BM Ischemic dilated CM Phase II IC NCT01720888

STEM-VAD 30 Allogeneic BM Ischemic CM Phase II IV NCT03925324

Scorem-Cells 40 Allogeneic WJ Ischemic CM Phase I/II IC NCT04011059

Harjula et al. 60 Autologous BM Ischemic CM+CABG Phase II IM NCT0041818

TEAM-AMI 124 Autologous BM Ischemic CM Phase II IC NCT0304772

Acute Myocardial infarction:

Musialek et al. 115 Allogeneic BM(Cardiocell) Acute MI Phase II/III IC NCT03418233

Lien et al. 8 Allogeneic UC Acute MI Phase I IC/IV NCT04056819

PT Prodia 15 Allogeneic UC Acute MI Phase I/II IC/IV NCT04340609

ESTIMATION 50 Autologous BM Acute MI Phase III IM NCT01394432

CIRCULATE 115 Allogeneic WJ Acute MI Phase II/III IC NCT03404063

RELIEF 135 Autologous BM Acute MI Phase III IC NCT01652209

AMICI 105 Allogeneic BM Acute MI Phase II IC NCT01781390

PUMP1 60 Allogeneic BM (Provacel) Acute MI Phase I IV NCT00114452

Prochymal 220 Allogeneic BM Acute MI Phase II IV NCT00877903

Table 2 Summary of on-going 
clinical trials of MSC therapy in 
ischemic heart disease.

Abbreviations: BM-Bone 
marrow; WJ-Wharton Jelly; 
UC-Umbilical Cord;  
CM-Cardiomyopathy;  
MI-Myocardial Infarction; 
TESI- Transendocardial stem 
injection; IM-intramyocardial; 
IC-intracoronary;  
IV-intravenous;  
NYD-Not Yet determined;  
MSC-Mesenchymal stem cells; 
CABG-Coronary artery bypass 
grafting; CSC-Cardiac stem 
cells.
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3) Despite numerous clinical trials involving MSCs in the treatment of cardiovascular disease, 
some scientists continue to question the nature of MSCs, claiming that mesenchymal 
stem cells cannot be distinguished based on morphology, cell surface markers, or 
immunological properties [156–158]. This demonstrates the critical nature of properly 
defining MSC with accurate nomenclature, as no stem cell character would be predictable 
in fibroblasts.

4) Despite these obstacles, the level of LVEF improvement seen with cell-based therapies is 
comparable to that seen with other pharmacological treatments [159]. Cellular therapies can 
promote cardiac repair and regenerate lost myocardial precursor cells, but they do not appear 
to improve myocardial contractility, according to one specific criticism. It is generally gauged 
as the left ventricular ejection fraction (LVEF) in patients with ischemic heart disorder. They 
compared that LVEF showed 2%–4% [160] and were not opposed to the distinctive effect of 
most commonly used pharmacological treatments. For example, beta-blockers +2.9% [161], 
angiotensin receptor blockade +1.3% [162], and aldosterone inhibition +2.0% [163]. So it is 
anticipated that improvements in stem cell therapy, such as enormous cell sources, standard 
delivery routes, and proper preparation protocols, will contribute to the advancement of 
cellular therapy in the therapeutics of cardiovascular disease.

10. HURDLES OF MSC THERAPY
There are many issues that need to be addressed to enhance MSC therapy in ischemic heart 
disease. Clinical benefits of MSC therapy have been demonstrated in several clinical trials. 
However, there is substantial uncertainty because efficacy criteria for different research are 
not coordinated. These factors could explain why stem cell therapy has yet to be implemented 
in a clinical setting. Otherwise, inadequate long-term survival and integration of transplanted 
cells with ischemic cardiac tissue is a huge concern in stem cell-based regenerative medicine 
[164]. Another big hurdle is the possibility of cell-to-cell contacts between injected cells and 
ischemic cardiomyocytes, which could result in decreased engraftment effectiveness. Indeed, 
transplantation of pluripotent stem cells may result in an increase in intracellular reactive 
oxygen species in infarcted cardiomyocytes, which is detrimental to engraftment survival, 
ultimately causing cell death via paracrine or cell-autonomous mechanisms. Nonetheless, 
each individual reacts differently, and the outcome of any surgery is based upon the body’s 
ability to recuperate. Given that MSCs have a low survival rate in the cardiac environment and 
that a significant proportion of transplanted cells may perish shortly after transplantation, 
further advancements to improve MSC survival are required [165]. Shani et al. observed that 
the infarcted myocardium’s environment induced a proinflammatory phenotype in MSCs and 
inhibited their survival and paracrine impact via TLR4 [166]. Meanwhile, further papers have 
been released to help improve the complicated microenvironment associated with heart 
disease. To maximise the effects of transplanted MSCs, myocardial transfection of HIF-1 with 
an adenoviral vector or injection of a p38MAPK inhibitor (SB203580) was utilised. The effect 
of the heart disease environment on transplanted MSCs and strategies for improving the 
microenvironment at the transplantation site are worth further investigation in the future [67].

11. FUTURE PERSPECTIVES OF MSC IN ISCHEMIC HEART DISEASE
To promote the effective cell-based, that is, mesenchymal stem cell treatment for IHD 
needs optimization of the product, the use of unlimited cell source both autologous and 
allogeneic, delivery methods, and recipient selection. Many sophisticated methods have been 
introduced to increase the MSCs efficacy. They involve i) genetic manipulation (e.g., increasing 
engraftment potential [167], which may be effective but also harmful and non-physiological, 
ii) pre-conditioning in vitro (e.g., with hypoxia or with pharmaceutical agents) to induce their 
differentiation [168, 169], iii) MSCs pretreatment with growth factors or cytokines (e.g., VEGF, 
basic FGF, and IGF-1) [170] to increase the paracrine properties, and iv) application of MSCs as 
microcapsules [171] and in scaffolds [172, 173]. MSC functional reforms, in collaboration with 
the host cardiac muscle, improve the ability of cellular therapy against MI [174]. Thus the future 
studies are expected to reveal the latent of mesenchymal stem cells from adult tissues in the 
ischemic myocardial treatment.

https://doi.org/10.5334/gh.1098
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12. CONCLUSION
Over a decade, mesenchymal cells have had a wide interest in treating cardiovascular disease 
owing to their prospective and differentiation. As discussed above, MSCs have a range of 
specific characteristics that make them more promising therapeutic agents in cell-based 
therapy. Rather than acting as typical stem cells which can differentiate into effector cells, 
they turned as governing cells that secrete mediating factors, stimulate growth conditions, or 
recruit those cells to perform regeneration actions in the damaged tissue. Allogeneic MSCs are 
particularly interested because of their ‘off-the-shelf’ therapeutic agents but are also free from 
fundamental limitations to autologous cells. Conclusively, many preclinical trials have shown 
promising results, Before MSC treatment can become a cure for a global health issue, IHD, 
large-scale, well-designed randomised clinical trials are required. Stem cell biology, regardless 
of its therapeutic potential, can hold great promise.
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	]. It is the major cause of death in urbanised nations and contributes significantly to the disease burden in developing nations []. Heart failure is prevalent, particularly in industrialised countries; it affects between 3% and 5% of the population and has developed into an evolving disease with high diagnostic costs []. For cardiac viability and optimal function, equity between myocardial oxygen quantity and demand is required []. Myocardial ischemia occurs when mitochondria fail to supply the energy dema
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	Current therapies include inhibition of the angiotensin-altering enzyme, beta and aldosterone barriers, and biventricular striding []. However, mortality and morbidity [] from HF cause these strategies to succeed only temporarily, necessitating novel strategies to inhibit and reverse cardiac dysfunction. Cell-based therapy became popular in the 1990s and is promoted as a promising field in regenerative medicine for repairing cardiac damage after MI []. Mesenchymal stem cells (MSCs) have occurred as a breakt
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	By fulfilling the criteria, mesenchymal stem cells can be reaped from numerous tissues at all progressive stages, such as fetal, young, adult, and old. Various reports have been published on the possible sources for isolating the cells. The most common and large utilised adult tissues are bone marrow [] and adipose tissue []. Then the young adult tissues such as umbilical cord tissue [] and placenta [] from which juvenile MSCs can be isolated noninvasively. The other sources include dental pulp, yellow liga
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	These four combined actions are more powerful to inhibit undesirable remodeling of organs damaged by ischemic injury. The predominant disease caused by an ischemic wound to the heart leads to the deprivation of contractile cardiomyocytes and replacing normal tissue with fibrotic scar tissue. To prevent this, the demonstration of MSCs injected into the frontier region of infarcts and applicable cardiac tissue in pre-clinical and clinical trial settings. It resulted in an anti-fibrotic effect, reducing scar s
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	The efficacy of the route of MSC administration needs to be assessed. The effective routes tested with MSCs are depicted in . Several methods of MSC delivery in vivo have been proposed to improve cardiac recovery, including 1) transendocardial stem cell injection (TESI) [], 2) intravenous infusion at the periphery [–], 3) injection catheter-based direct intramyocardial (DI) delivery [], and 4) intracoronary infusion delivery []. The route of administration appears to have a remarkable influence on the effec
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	5. PARACRINE EFFECT, EXTRACELLULAR VESICLES AND EXOSOMES
	Even though MSC can act through different mechanisms, the paracrine activity of MSC has been the focus of therapeutic effects in recent studies. Multiple growth factors and cytokines are secreted together as a “secretome”. These factors are soluble in water or encapsulated in extracellular vesicles (EV) or exosomes by culturing the cells in a “conditioned medium” []. Interleukin-1 (IL-1) and -6 (IL-6) for angiogenesis promotion and VEGF induction, hepatocyte growth factor (HGF) for cardiac progenitor cell m
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	In the myocardium, the secretion of paracrine factors has a pleiotropic effect, such as improvement in local angiogenesis, reduced cardiomyocyte death, low fibroblast activation, cardiac stem cell stimulation, and also a reduction in myocardial fibrosis, corresponding with the cell-mediated immune response []. Various preclinical research models have shown the secretion of soluble factors by the MSCs in different models. Nakanishi and coworkers reported that the up-regulated expression of cardiac progenitor
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	Extracellular vesicles and exosomes are membrane-limited cellular components used for regenerative therapy. Current research focuses on the supernatant of cells that have similar components to MSC. EVs range in size from 100 nm to 1 m and are formed by the detachment of cytoplasmic protrusions []. Contrarily, exosomes have a range of sizes between 30 and 100 nm. It leads to the fusion of multivesicular endosomes and plasma membranes released by MSCs, as well as exocytosis []. The secretome of EV from MSC ex
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	The latest research suggests the use of EVs and exosomes as the therapeutic paradigm in ischemic conditions. In the enriched exosome of miR-22 secreted from MSCs, the anti-apoptotic effects were pointed out through methyl CpG binding protein-2 (Mecp2) in ischemic preconditioning and in vivo, it significantly reduced cardiac fibrosis []. Another study on the highly purified exosome from an MSC-conditioned medium with a hydrodynamic radius of 55–65 nm was shown to mediate cardioprotection during myocardial is
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	6. IMMUNOMODULATION OF MSCS AFTER ISCHEMIC INJURY
	Mesenchymal stem cells turned up as dominant modulators of both the innate and adaptive immune systems. Numerous MSC-mediated immunomodulatory effects are mediated by host cells. The elimination of cellular debris, activation of resident precursor cells, the compensatory growth of residual cardiac tissue, quantitative and qualitative changes in the vascular network, the development of fibrotic scar, and inflammatory reactions were found to guide the regeneration process after cardiac damage []. MSCs have be
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	7. MSCS IN ANIMAL MODELS OF MI
	Even though the successive characteristics of mesenchymal precursors/stem cells are already illustrated, in vivo experiments in animal models of the particular ailment are mandatory to implement those studies into humans. Preclinical studies helped to explore the regenerative capacity of MSCs in small and large animal replicas of acute and chronic ischemic heart ailments [].
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	In experimentation, small animals like mice, rats, and rabbits are often castoff as models for cardiovascular diseases due to their small size, simple to handle, low maintenance, and inexpensive cost []. The first experiment by Orlic et al. was shown in female mice with an acute MI. Intramyocardial administration of green fluorescent protein (GFP) named lineage c-kit BM-MSC improved cardiac regeneration. They made the assumption that BM-derived stem cells would engraft myocardiocytes, endothelial cells, smo
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	However, there are some drawbacks to using small in vivo animal models, such as minute heart size and anatomical variations in the coronary blood vessels, which result in a high failure rate in clinical transplantation []. Animals such as pigs, porcine, dogs, and sheep are utilised in scientific experiments since they are more human-like. Infusing BM-derived MSCs intravenously into pigs with reperfusion/acute ischemia injury enhances left ventricular ejection fraction (LVEF), can enlarge ventricular arrhyth
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	8. CLINICAL TRIALS OF MSC IN ISCHEMIC HEART DISEASE
	Various clinical trials have been executed for ischemic heart disease (coronary heart disease) with transplanted (autologous/allogeneic) mesenchymal stem cells with neither acute nor chronic myocardial infarction. Some of the completed clinical trials are listed in .
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	The primary clinical trial was designed as randomised research. After three months of autologous MSC derived from bone marrow intracoronary insertion in patients with acute MI, a cardiac function such as left ventricular ejection fraction developed (Chen et al., 2004). Early studies in the control of prolonged ischemic cardiomyopathy remained limited, but since 2011, several major randomised studies have produced promising results.
	Hare and his co-workers [] published the results of the POSEIDON randomised trial. Thirty patients were enrolled with LV dysfunction due to ischemic cardiomyopathy (ICM), and a couple of autologous and allogeneic BM-MSC with a mean of 150 million cells was transferred via transendocardial injection. Both types of cells had similar effects at 13 months of follow-up, such as a reduced EED (infarct size) mean of about –33.21% (95% CI, –43.61% to –22.81%; P < .001), decreased LV end-diastolic volume, and increa
	68

	In the PROMETHUS trial, a total of six people with chronic ischemic cardiomyopathy leading to CABG (cardio artery bypass grafting) were injected with autologous BM via intramyocardial injection into kinetic myocardial territories. After 18 months, patients who received MSCs had a higher LV ejection fraction (+9.4± 1.7 percent, P = 0.0002) and a lower scar mass (–47.5 ±8.1 percent, P < 0.0001) than those who received placebo control. They also found that there was coherent limitation in scar size, perfusion,
	140

	The number of transplanted cells can limit the effect of MSC transplantation. Accordingly, TRIDENT conducted a safety comparative study of two doses of allogeneic BM-MSCs in ischemic cardiomyopathy. At random, thirty patients were given a transendocardial injection of either 20 million or 100 million cells. Scar size decreased equally in both groups after 12 months of follow-up: 20 thousand by –6.4 g (interquartile range, –13.5 to –3.4 g; P = 0.001) and 100 thousand by –6.1 g (interquartile range, –8.1 to –
	141
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	In addition to BM-MSCs, adipose tissue-derived mesenchymal stem cells (AD-MSCs) were used to treat ischemic cardiac disease. In a PRECISE study, in no-option patients with ischemic cardiomyopathy, AD-MSC improved total left ventricular mass, retained ventricular activity, myocardial perfusion, and contractility []. An ongoing phase I and II trial (UCMSC-Heart) is likely to assess the protection and virtue of umbilical cord procured mesenchymal stem cells (UC-MSCs) administered intracoronary in patients with
	142

	The mesenchymal cells were pretreated with growth factors and cytokines up to transplantation, which is a slightly different strategy. In the MystromalCell trial, sixty randomised patients were injected myocardially with autologous VEGF-stimulated adipose-derived MSCs (AD-MSC). Ahead of transplantation, AD-MSC was triggered to differentiate into an endothelial lineage by pre-culturing in VEGF-A165-stimulating medium for seven days. The AD-MSC group improved their exercise ability more than the placebo group
	Likely, a combination of MSCs with cardiac stem cells shows greater efficacy in treating ischemic myocardia. An ongoing clinical trial of CONCERT-HF (NCT02501811) phase II assessed the welfare, viability, and effect of autologous BM-MSCs and c-kit cardiac stem cells via transendocardial injection in patients with ischemic cardiomyopathy. A similar study, TAC-HFT-II, was designed in which the autologous hMSC and hCSC were administered transendocardially with Biosenser Webster MyoStar NOGA in patients with is
	+

	Surprisingly, there’s no comparison clinical trial study between the sources like BM-MSCs and AT-MSC to know the effect of MSCs in the treatment of any heart disease. Likewise, there are no comparative studies involving the different routes of delivery methods for this disorder. Since MSC has been demonstrated to reduce scar size, improve regional blood flow and contraction, induce vasculogenesis, reduce fibrotic effects in diseased tissue, and improve quality of life, clinical trials have some limitations,
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	9. CHALLENGES AND CONTROVERSIES
	Mesenchymal stem cells were characterized as amongst the most highly optimistic cells for myocardial infarction and have been demonstrated to be the thriving treatment for a variety of cardiovascular diseases [–]. However, these MSC encountered many controversies and challenges that need to be addressed in future research. Some of the challenges are:
	143
	145

	1) MSCs have the trans-differentiation potential capacity to become functional cardiac and endothelial cells [], but their capacity to evolve into epithelial and cardiac cells in vivo has yet to be completely verified owing to the shortfall of unique MSC cardiac markers []. However, due to extracellular vesicles and exosomes, the paracrine behaviour of MSCs following implantation promotes cardiac myocyte survival, proliferation, and therapeutic properties [].
	146–148
	149
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	2) There have been few reports on the possibility of proarrhythmia and cell differentiation into undesirable cell types. Eventhough Price et al reported that the possibilities of finding pro-arrhythmic electric remodelling associated with MSC treatment after infarction []. These multipotent stem cells transplanted into heart tissue can differentiate into noncardiac cells, which is undesirable []. Also, animal experimentation revealed that marrow-derived MSC administration resulted in calcification and ossif
	10
	153
	154
	155

	3) Despite numerous clinical trials involving MSCs in the treatment of cardiovascular disease, some scientists continue to question the nature of MSCs, claiming that mesenchymal stem cells cannot be distinguished based on morphology, cell surface markers, or immunological properties []. This demonstrates the critical nature of properly defining MSC with accurate nomenclature, as no stem cell character would be predictable in fibroblasts.
	156–158

	4) Despite these obstacles, the level of LVEF improvement seen with cell-based therapies is comparable to that seen with other pharmacological treatments []. Cellular therapies can promote cardiac repair and regenerate lost myocardial precursor cells, but they do not appear to improve myocardial contractility, according to one specific criticism. It is generally gauged as the left ventricular ejection fraction (LVEF) in patients with ischemic heart disorder. They compared that LVEF showed 2%–4% [] and were 
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	163

	10. HURDLES OF MSC THERAPY
	There are many issues that need to be addressed to enhance MSC therapy in ischemic heart disease. Clinical benefits of MSC therapy have been demonstrated in several clinical trials. However, there is substantial uncertainty because efficacy criteria for different research are not coordinated. These factors could explain why stem cell therapy has yet to be implemented in a clinical setting. Otherwise, inadequate long-term survival and integration of transplanted cells with ischemic cardiac tissue is a huge c
	164
	165
	166
	67

	11. FUTURE PERSPECTIVES OF MSC IN ISCHEMIC HEART DISEASE
	To promote the effective cell-based, that is, mesenchymal stem cell treatment for IHD needs optimization of the product, the use of unlimited cell source both autologous and allogeneic, delivery methods, and recipient selection. Many sophisticated methods have been introduced to increase the MSCs efficacy. They involve i) genetic manipulation (e.g., increasing engraftment potential [], which may be effective but also harmful and non-physiological, ii) pre-conditioning in vitro (e.g., with hypoxia or with ph
	167
	168, 169
	170
	171
	172, 173
	174

	12. CONCLUSION
	Over a decade, mesenchymal cells have had a wide interest in treating cardiovascular disease owing to their prospective and differentiation. As discussed above, MSCs have a range of specific characteristics that make them more promising therapeutic agents in cell-based therapy. Rather than acting as typical stem cells which can differentiate into effector cells, they turned as governing cells that secrete mediating factors, stimulate growth conditions, or recruit those cells to perform regeneration actions 
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	Figure 1 According to the International Society for Cellular therapy (ISCT) statement, Mesenchymal Stromal Cells defined as a) adherent to the plastic surface b) express Cluster Differentiation antigen, >98% positive for CD105, CD73, and CD105, and <2% negative for CD45, CD34, CD14 or CD11b, CD79alpha or CD19, HLA-DR surface molecules c) should differentiate into adipocytes, chondrocytes, and osteocytes.
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	Figure 2 Mechanism of action of Mesenchymal stem cells: I) MSC cells can a) transdifferentiation into endothelial cells and cardiomyocytes b) promote paracrine signals such as Vascular endothelial growth factor (VEGF), Hepatic growth factor (HGF), and Insulin-like growth factor (IGF) c) proliferate endogenous cardiac stem cells with C-Kit markers d) stimulate the growth of neovascularization and immunomodulation. II) Overview of formation of new endothelial cells, reduction in infarct size of damaged cells 
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	Figure 3 A diagram of various cell therapy approaches tested with MSCs is shown: a) transendocardial stem cell injection, b) peripheral intravenous infusion, c) intramyocardial delivery by injection catheter, and d) delivery via an intracoronary artery.
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