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Abstract The traditional way of tackling discrete optimization problems is by using
local search on suitably defined cost or fitness landscapes. Such approaches are how-
ever limited by the slowing down that occurs when the local minima that are a feature of
the typically rugged landscapes encountered arrest the progress of the search process.
Another way of tackling optimization problems is by the use of heuristic approxima-
tions to estimate a global cost minimum. Here, we present a combination of these
two approaches by using cover-encoding maps which map processes from a larger
search space to subsets of the original search space. The key idea is to construct
cover-encoding maps with the help of suitable heuristics that single out near-optimal
solutions and result in landscapes on the larger search space that no longer exhibit trap-
ping local minima. We present cover-encoding maps for the problems of the traveling
salesman, number partitioning, maximum matching and maximum clique; the practi-
cal feasibility of our method is demonstrated by simulations of adaptive walks on the
corresponding encoded landscapes which find the global minima for these problems.
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1 Introduction

Fitness landscapes have proved to be a valuable concept in the understanding of adap-
tation in evolutionary biology and beyond, by visualizing the relationships between
genotypes and effective reproductive success (Wright 1932, 1967). This concept has
been taken forward in the field of evolutionary computation, where the performance
of optimization algorithms utilizing local search has often been described as dynamics
on a fitness landscape, see, e.g., the book by Engelbrecht and Richter (2014).

However, fitness functions alone do not determine the performances of local search
algorithms, which depend also on the structure of the search spaces involved. These
in turn are determined by two largely independent ingredients: (1) the concrete repre-
sentations of the configurations that are to be optimized, referred to as encodings, and
(2) locality in the search space, referred to as a move set.

For many well-studied combinatorial optimization problems and related models
from statistical physics (such as spin glasses), there is a natural encoding. For instance,
tours of a traveling salesperson problem (TSP) are naturally encoded as permutations of
the cities concerned, while spin configurations are encoded as strings over the alphabet
{4, —} with each letter referring to a fixed spin variable. This natural encoding is
usually free of redundancy; any residual redundancies that occur usually arise from
simple symmetries of the problem which can easily be factored out. For instance,
TSP tours can start at any city so that they are invariant under rotations, while many
spin glass models are invariant under simultaneous flipping of all spins. This natural
or “direct” encoding is often referred to as the phenotype space, see, e.g., (Rothlauf
2006; Neumann and Witt 2010; Rothlauf 2011; Borenstein and Moraglio 2014).

In biology, fitness is conceptually understood as a property (function) of the geno-
type. It depends, however, on properties of higher-level structures such as molecular
structure, gene-regulatory networks, tissues, or organs, i.e., on a phenotype. The rela-
tionship of genotype and fitness, therefore, is a composition of a genotype—phenotype
map and phenotype-dependent fitness function. This decomposition has been studied
extensively in several distinct models systems, including RNA secondary structures,
(Schuster et al. 1994), gene-regulatory networks (Ciliberti et al. 2007), and metabolic
networks (Dykhuizen et al. 1987; Flamm et al. 2010). Here, we focus on the abstract
structure rather than the specifics of such models.

For a given encoding, irrespective of whether it is genotypic or phenotypic, the
performance of search crucially depends on the move set. Here, we will consider only
reversible, mutation-like moves. The search space therefore is modeled as an undi-
rected graph. More general settings are discussed, e.g., by Flamm et al. (2007). The
cost function assigned to a specific search space defines a fitness landscape. Evolu-
tionary algorithms can thus be viewed as dynamical systems operating on landscapes,
whose structure has, as a consequence, been studied extensively in the field (Reidys
and Stadler 2002; @stman et al. 2010; Engelbrecht and Richter 2014).
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Continuing the analogy with biology in evolutionary computation, an additional
encoding Y, the so-called genotype space, is often used (Rothlauf and Goldberg 2003;
Rothlauf 2006). The genotype—phenotype relation is determined by amap « : ¥ —
X U{@}, where & represents phenotypic configurations that do not occur in the original
problem, i.e., y € Y does not encode a feasible solution of the original problem
whenever «(y) = &. For example, a frequently used genotypic encoding for TSP
tours comprises binary strings for two cities which represent their presence (1) or
absence (0), for each of the possible adjacencies (Applegate et al. 2006). Most binary
strings, however, do not correspond to TSP tours.

In practice, genotypic representations are usually chosen with a high degree of
redundancy to tackle optimization problems which often also introduces neutrality,
i.e., the appearance of adjacent configurations with the same value of the cost func-
tion. Detailed investigations of fitness landscapes from molecular biology have shown
that degrees of neutrality can facilitate optimization (Schuster et al. 1994; Reidys and
Stadler 2002) due to the inclusion of extensive neutral paths which prevent trapping in
metastable states (Schuster et al. 1994; Fernandez and Solé 2007; Yu and Miller 2002;
Banzhaf and Leier 2006). On the other hand, “synonymous encodings” where geno-
types mapping to the same phenotype form tight clusters in the genotype space have
been advocated for the design of evolutionary algorithms (Rothlauf 2006; Choi and
Moon 2008; Rothlauf 2011). Rather than having neutral paths connecting remote areas
of the landscape, cost-equivalent configurations are locally clustered in synonymous
encodings.

Whatis clear is that, empirically, the introduction of arbitrary redundancy (by means
of random Boolean network mapping) does not increase the performance of mutation-
based search (Knowles and Watson 2002), suggesting that the inclusion of redundancy
should be suitably designed in order to facilitate optimization. One such approach was
that of Klemm et al. (2012), which emphasized the utility of such inhomogeneous
genotype—phenotype maps via the idea that low-cost solutions could be enriched and
optimization made more efficient in genotype space if the size of the preimage o~ (x)|
of the phenotypes were anti-correlated with the cost function f(x) . Of course, for
such anti-correlations to be imposed, « needs to become explicitly dependent on the
cost function.

2 Simplifying Landscape Structure by Encoding

Before delving into the technicalities, we present a conceptual outline of the key ideas
of this contribution. Our starting point is the twenty-year-old observation by Ruml
et al. (1996) that certain redundant encodings of the Number-Partitioning Problem
(NPP) allow simple, generic optimization heuristics to find dramatically improved
solutions. In previous work (Klemm et al. 2012) we found that this approach was not
limited to the NPP, but that suitably chosen redundant encodings also improved the
performance of heuristics on several other combinatorial optimization problems. In
the present work, our objectives are to understand (a) why the particular method used
by (Ruml et al. 1996) works so well and (b) how it can be generalized to essentially
arbitrary combinatorial optimization problems in a principled way.
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We focus in this contribution on black-box-type optimization scenarios in which
the information on the cost function f(x) is exclusively obtained by evaluating it for
specific configurations x € X in the search space X. The sequence of these function
evaluations is determined by the optimization heuristic. Practical algorithms of this
type propose candidates x € X for evaluation based on past evaluation results. These
candidates are chosen locally in the vicinity of past successful candidates with the help
of rules that depend on the representation of X. This explicitly or implicitly defines
a topological structure on X. For the purpose of the present contribution, we assume
that the topology of the search space X is expressed by a notion of adjacency that is
respected by the search process.

Intuitively, the most important obstruction for local optimization heuristics is the
presence of a large number of local optima that trap the search process. The aim of
a redundant encoding, therefore, is to provide an alternative representation Y of the
optimization problem that reduces the number of local optima and makes it easier to
find the globally optimal solution. Formulated over Y, we would wish that

(i) neighborhoods in Y are small enough to be searched in practice.
(ii) for every starting point there is a path to the global optimum such that the cost
function is decreasing, or at least non-increasing.

Condition (i) ensures that we still deal with local search heuristics, while condition (ii)
intuitively makes the landscape easy to search. Note that condition (ii) does not make
the optimization problem trivial, since the heuristics still have to find an efficient path
among possibly many very long ones. Its real significance is that it rules out traps and
guarantees that simple downhill search will be successful eventually.

Is it possible at least in principle to construct such an encoding? The prepartition
encoding, which performed best for the NPP (Ruml et al. 1996), provides an important
hint. Each particular encoding y € Y corresponds to a restricted version of the original
optimization problem, i.e., it can be seen as constraining the original search space X to
asubset ¢(y) € X. A deterministic approximation is then used to solve the restricted
problem on ¢(y). For every y € Y, this provides an upper bound on the cost function
f(y). Since the encoding is chosen such that there is also a code y for the global
optimum X € X, i.e., ¢(¥) = {x}, the task now becomes to find §, which minimizes
f by construction. The numerical results by (Ruml et al. 1996) suggest that this
auxiliary problem of minimizing the cost function of the encoding is much easier than
the original, despite the fact that the search space is much larger. Below we show that
this is case because (1) f does a good job at approximating the true solution F(y) of
the restricted optimization problem on ¢(y) and (2) the perfect solutions F(y) give
rise to landscapes with the desired properties mentioned above.

This observation suggests a general construction for “good” landscape encodings.
The first step is the construction of a genotype space Y and an encoding scheme ¢
that maps genotypes to restrictions of the original problem rather than a particular
phenotype y. This map has to satisfy certain conditions discussed in detail in Sect. 3.2
to be a good choice. The cost function then enters by guiding, for every genotype
y € Y, a heuristic that solves the restricted problem ¢(y).

Following the formal introduction of the general concepts, we construct landscape
encodings explicitly for several well-known examples. In Sect. 4, we focus on a par-
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ticularly useful construction that makes use of the fact that the restricted subproblems
on ¢(y) can be seen as smaller instances of the same type of optimization problem, or
alternatively, as coarse-grained problems. We show in particular that the NPP heuristic
that motivated our approach is also of this type. In Sect. 5, finally, we use numeri-
cal experiments to show that the encoding scheme proposed here also works well in
practice.

3 A Theory of Encoding Representations
3.1 Landscapes

Formally, an instance (X, f) of a combinatorial optimization problem consists of a
finite set X and a cost function f : X — R on X. The task of the combinatorial
optimization problem (X, f) is to find a global minimum x € X so that f(X) < f(x)
forall x € X.

A landscape (X, ~, f) consists of a finite set X endowed with a symmetric and
irreflexive (adjacency) relation ~ and a cost function f : X — R. A point x* € X is
a strict local minimum in (X, ~, f) if (i) f(x*) > f(X) and (ii) there isno x’ € X
with f(x’) < f(x*) and an f-non-increasing path x* = xo, x2, ..., x; = x/, that is,
xi—1 ~ x; and f(x;—1) > f(x;) holds for 0 < i < k. Note that a global minimum x
is not a strict local minimum as defined above.

For any X" C X, the restricted problem (X', fix/), where fix/(x) = f(x) for all
x € X', consists in findinga x’ € X’ sothat f(x') < f(x’) forallx’ € X’'. A restricted
landscape (X', ~, fix’) can be defined analogously.

3.2 Oracle Function and Cover-Encoding Map

A key ingredient in our reasoning is to consider the global solutions of restricted
optimization problems. This is formalized as follows:

Definition 1 The oracle function F : 2X — R of an optimization problem (X, f) is
F(X') := min f(x) (1)
xeX’

for all X’ € X. We use the convention F () = oc.

We say that a subset X’ C X is good if F(X') = F(X), i.e., if X’ contains a global
optimum, and bad if F(X") > F(X). The oracle function is by definition monotonic
in the following sense:

X'cX'= F(X")> F(X) (2

We call F an oracle function because in general there is no efficient algorithm for
computing it. In fact, if we had an efficient way to compute F, we would already have
solved the original optimization problem as well. Nevertheless, it is a useful theoretical
construct, as we shall see below. First, it guides our construction of encodings of the
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original optimization problem that have the potential of being easily solved, or at
least easier to solve. Second, it provides an inroad for constructing practical heuristics
provided we can come up with a good approximation for F.

We start by formalizing the idea of an encoding of a landscape.

Definition 2 A function ¢ : ¥ — 2% is a cover-encoding map for X if it satisfies
(YD) Uyey 00 = X.

Property (Y1) states that the collection of sets {¢(y)|y € Y} is a set cover of X. The
points y € Y can be thought as coding for a particular element of this set cover. In the
following, we will be interested in cover-encoding maps that satisfy some or all of the
following additional properties:

(YO) ¢(y) # 0.
(Y2) Forevery x € X thereisay € Y such that p(y) = {x}.
(Y3) Thereis y € Y such that p(y) = X.

Note that both (Y2) and (Y3) imply (Y1). Axiom (YO0) excludes infeasible points in
Y.

It is not hard to see that cover-encoding maps always exist. In particular, consider
any subset ¥ C Po(X) = 2% \ {#}, the set of non-empty subsets of X, such that (i)
the singletons {x} € Y for all x € X and (ii) {X} € Y. Then the identity ¢ is obviously
a cover-encoding map that satisfies (Y0), (Y1), (Y2), and (Y3).

Now consider an optimization problem (X, f) and let ¢ : ¥ — 2% be a cover-
encoding map for X. We define F : ¥ — R as the composition of ¢ with the oracle
function of (X, f), i.e., F(y) = F(¢(y)). In the following, we will be interested in
the relationship between the “encoded” optimization problem (Y, F) and the original
problem (X, f).

If condition (Y2) is satisfied, there is § € Y so that ¢(y) = {x} for every global
optimum of the original problem. For most applications, it is sufficient to find one
global optimum, hence we will consider the weaker condition:

(FO) Thereis y € Y so that (i) |¢(9)| = 1 and F(¢(3)) = f(%).

Condition (FO) simply states that there exists a code y € Y that identifies a global
optimum of the original problem (X, f). This is sufficient to consider (X, f) and
(Y, F) as “equivalent optimization problems.”

The identity cover-encodings from Yiax := Po(X) and Yiin = {{x}|x € X}U{X}
are the extreme cases. Yinax encodes all possible subproblems, while Yi, only encodes
the singletons, i.e., the evaluation of the cost function f for every x € X, as well as
the full optimization problem.

In this contribution, we are interested in search-based algorithms. Hence we fix an
adjacency relation ~ on Y. For the landscape (Y, ~, F), we consider the following
three properties:

(R1) Forevery y € Y with F(y) = F(3) there is a sequence y = yo, y1, ..., Yk =Y
such that y; ~ y;—j for0 <i < k and F(y;) = F().
(R2) Forevery y € Y with F(y) > F(y) thereis asequence y = yo, ¥1,..., Yk = J

such that y; ~ y;_1 for0 < i <k, F(y) = F(3) and F(y;_1) > F(y).
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(R3) Every y with ¢(y) # X has a neighbor y’ ~ y with ¢(y) C ¢(y').

In plain words, (R1) ensures that all minimum-cost encodings are connected by paths
staying at minimum cost. Under (R2), each configuration is the beginning of a path
to a minimum-cost configuration, with the value of the cost function not increasing
along the path. Property (R3) uses the fact that all configurations in Y are subsets of
X. It says that each configuration y € Y has a neighboring configuration properly
containing y. It is worth noting that (R3) is independent of the oracle function F.

For identity cover-encodings introduced above, a natural definition of adjacency is
toset y ~ y and y’ ~ y whenever (i) y C y/, (ii) y # y/, and (iii) if y C y” C y/
then y” = y or y” = y’. That is, two sets are adjacent if they are adjacent in the Hasse
diagram for set inclusion. By construction, every y € Y is connected by a sequence
of adjacent sets to all singletons {x} with x € y and to the full set y = X. Since ¢ is
the identity, (R3) holds. Using that y C y’ implies F (y) > F(y'), properties (R1) and
(R2) also follows immediately.

Taken together, the identity cover-encodings demonstrate that cover-encodings and
associated adjacencies satisfying (Y0) through to (Y3) as well as (R1), (R2), and (R3)
always exist.

Lemma 1 (R3) implies (R2) for any oracle function F.

Proof If ¢(y) = X, then F(y) = F(X) = f(%) = F(§) by construction. Now
consider an arbitrary starting point y. By (R3), there is a neighbor y' ~ y such
that ¢(y) C ¢(y’), and by Eq. (2), we therefore have F(y) < F(y) Repeating

the argument, we obtain a F-non-increasing sequence y, y’, y”, ..., y®, ... along
which ¢ is strictly increasing in each step. Since X is finite, there is a ﬁnlte k so that
e(y®) = X and thus F(y®) = F(3), i.e., (R2) is satisfied. o

The importance of conditions (R1) and (R2) stems from the following observation:

Theorem 1 Suppose (X, f), ¢ : Y — 2%, and the relation ~ on Y are chosen such
that (Y1), (FO), (RI), and (R2) are satisfied. Then the landscape (Y, ~, F) has no
strict local optimum.

Proof Let y € Y be an arbitrary starting point. If f’(y) = F(j)) then y, by (R1), is
not a local optimum but part of a connected neutral network that contains the global
optimum y. If F(y) # F(y) then F(y) > F(y) By (R2), there is a path with non-
increasing values of F that connects y to a point y" with F(y)=F (y) We already
know that there is a path with constant values of F leading from y’ to the global
optimum y. Thus y is connected by a F -non-increasing path to y. Hence y is, by
definition, not a strict local optimum. O

In particular, the identity cover-encodings satisfy the conditions of Theorem 1 and
thus their landscapes have no strict local optima. There are, however, also very different
general constructions with this property. In the remainder of this section, we consider
one example.
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Definition 3 Let (X, ~x, f) be an arbitrary landscape. Its square encoding is the map
0 X xX— 2%, (&§,x) — {&, x} for (§, x) € X x X. The neighborhood relation ~y
onY := X x X is given by

(x1,x2) ~y E1,8) & (x1 =& Axp2~x &)V (x2 =& Axy ~x &1)

The graph (Y, ~y) is the Cartesian square of the graph (X, ~x) (Hammack etal. 2016).
The idea behind this construction is to allow a local search algorithm to keep track
of the best solution so far in one variable and use the other variable for exploration.
Figure 1 shows an example.

Lemma 2 The landscape X x X, ~y, F satisfies (Y0), (Y2), (F0), (RI), and (R2).
In particular it has no strict local optima.

Proof Considering the properties of ¢, (Y0) is obtained with |¢(y)| > Oforally € Y;
(Y?2) is fulfilled choosing y = (x, x) for any x € X. This implies (Y0) so ¢ is a
cover-encoding map. We have (Y3) only in the trivial case | X| < 2. Property (FO) is
fulfilled with y = (X, X).

For y,y’ € Y, we write dy (y, y') for the standard graph distance, the length of a
shortest path, between y and y’; analogous notation for the distance dx on (X, ~x).
For (x1,x2) € Y and (§1,62) € Y, we have dy((x1, x2), (61, 62)) = dx(x1,81) +
dx (x2, &2).

Now let (x1, x3) = y € Y\{(x, X)}. Then x| # X # x,. We assume, without loss of
generality, f(x1) > f(x2) (otherwise swap x1 and x). Because (X, ~x) is connected,
we find a neighbor x” ~x x; with dx (x', X) = dx (x1, £) — 1. With y’ = (x', x2), we
have F(y') = min{f (x"), f(x2)} < f(x2) = F(y)anddy (), §) = dy(y, ) — 1. For
each element y € Y we thus find a y’ € Y that (i) is strictly closer to y than y is; and
(ii) does not evaluate at higher value than y under F. Using the argument inductively at
mostdy (y, y) times, the desired sequences in (R1) and (R2) are constructed. Therefore
properties (R1) and (R2) are fulfilled by (Y, ~vy, F). Theorem 1 now implies that there
are no strict local minima. O

3.3 Adaptive Walks

An adaptive walk on a fitness landscape (Y, ~y, F) is a Markov chain on the state space
Y with transition probabilities 7y, , = 1/d, for y ~y z and F(z) < F(y). Otherwise
my—; = 0, except for y = z where 7y, y is obtained by normalization of probability.
The degree d, of state y is the number of neighbors |{z € Y : z ~y y}|. Formulated
as a stochastic search algorithm, a neighbor z of the current (time ¢) configuration y
is drawn uniformly at random. If F(z) < F (), the walk proceeds to configuration z
at time ¢ + 1; otherwise it remains at configuration y.

Call Y the set of global minima of the landscape (Y, ~vy, F ). Assume that this
landscape does not have a strict local minimum. Then each realization of an adaptive
walk eventually hits a global minimum. Due to the absence of strict local minima,
the adaptive walk is trapped only at global minima. Each invariant measure of the

@ Springer



2162 K. Klemm et al.

(b)

(a) 5

N

> it

a:‘/ e

2 8

Q Q
9]

T
r s t
configuration x configuration x

Fig. 1 (Color figure online) Illustration of the square encoding. a Original landscape (X, ~, f) with
configurations X = {r, s, ¢}. The three configurations form a path under the adjacency relation ~. The cost
function f renders ¢ the unique global minimum, r a strict local minimum. Thus ¢ is not reachable from r
by a non-increasing path. b Landscape resulting from square encoding of the landscape in (a). Here, each
configuration is a tuple of configurations of the original landscape, (x,&) € X x X. The cost function
is F((x, £)) = min{f(x), f(§)}. On this landscape, a minimal cost configuration is reachable from all
configurations by a non-increasing path

adaptive walk therefore evaluates to zero on all configurations with non-minimum
cost. Property (R2) clearly is a necessary condition for an optimization problem to be
solvable by adaptive walks alone. The conditions of Theorem 1 are already sufficient
as it excludes strict local optima.

3.4 Examples of Cover-Encoding Maps

Let us now turn to constructing some problem-specific examples of cover-encoding
maps. We will then use some of these examples to show that some cover-encoding
maps are useful to construct good heuristic search algorithms for several well-studied
combinatorial optimization problems.

3.4.1 Prepartition Encoding for the NPP

An NPP instance is described by a list (ay, ..., a,) of numbers. We write [n] :=
{1,...,n} for the index set. We have to divide these n numbers into two subsets
with as equal a sum as possible. In other words, we assign to each index i a variable
x; € {—1, 41} so that

n
fx) = Zx,-ai — min! 3)
i=1
see, e.g., (Mertens 2006) for a review. The set X consists of all strings of —1 and +1 of
length n, the set Y consists of all functions [n] — [n]. The so-called prepartitioning
encoding (Ruml et al. 1996) of the NPP can be written in the following way: Each
function y : [n] — [n] defines the partition [T, := { y_l (k)|1 < k < n} whose classes
are the indices of the input numbers that are assigned the same value of y. As usual
we write [i] , for the class y_1 (k) that contains index i. For given IT, we now insist
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that the signs x; = x; whenever y(i) = y(j). This amounts to the restricted set of
configurations
() ={x € X|x; = x; if j € [i]1n,}. 4)

One easily checks that ¢(y) = X whenever y is a bijection, i.e., (Y3) is satisfied.
Furthermore, the subset Y* = {y € Y||y([n])| = 2} corresponds exactly to the
assignments of positive and negative signs: Writing y([n]) = {p, ¢} simply set x; =
+1if y(i) = pand x; = —1if y(i) = g. (More precisely, the choice of x; = +1
or x; = —1 is arbitrary; the symmetry can, however, easily be removed, e.g., fixing
x1 = +1 once and for all.) Conversely, every assignment of signs has a representation
as a bipartition in Y*. Thus (Y?2) is satisfied.

The most natural choice of an adjacency ~ on Y is to define y ~ y’ if and only
if y(i) # y'(i) for exactly one i € [n]. Unless y is a bijection, there is at least one
unused value k € [n] \ y([n]) and at least one pair j/, j” € [n] with y(j') = y(j").
The neighbor y” of y with y'(i) = y(i) fori # j” and y’(j”) = k corresponds to
refinement of the partition /7, because [j’]n)/, =["1m, \{J"}, [j”]n)/, = {;j”}, and all
other classes of 17; and 17)/, are the same. Thus (Y, ~) satisfies (R3).

An optimal solution x of the NPP (X, f) is a partition Q of [7] into exactly two
classes Q4 and Q_ sothat x; = +1fori € Q4 andx; = —1fori € Q_. A code
y € Y is good if there is a configuration in ¢(y) in which the signs can be assigned
in exactly this manner, i.e., if [T is a refinement of Q. Conversely, ¢(y) is good only
if it is a refinement of a bipartition €2 that represents a global minimum. Generically
Q is unique. Now consider two classes Q1 and Q5 in [1y that are contained in the
small class of €2, i.e., Q1, Q> C . Reassigning one element at a time from Q; to
Q1 thus corresponds to a sequence of codes y = yi, y2,...Y|0,| all of which are
encode refinements 2. Furthermore, y(,| is one class less than y. Repeating this step
at most n — 2 times eventually results in 2. Intermediate codes y; and y;_; are adjacent
by construction and satisfy F (i) = F (), i.e, condition (R1) is satisfied. Thus, we
conclude that the “oracle landscape” (Y, ~, F ) has no strict local minima.

3.4.2 Prepartition Encoding for the TSP

The cost function of TSP (Gutin and Punnen 2007) is
n
F) =" dniyniit) ©)
i=1

where m € X is a bijection 7 : [n] — C from the index set [n] to a set of cities C.
The index i specifies the position along the tour. For a city c, therefore, 7 ~!(¢) is its
position along the tour. The problem is parametrized by distances d : C x C — R
that satisfy d(c, ¢) = 0 for all ¢ € C but in general are neither symmetric nor do they
satisfy the triangle inequality.

Klemm et al. (2012) introduced the following version of a prepartition encoding.
Here, an arbitrary function y : C — [n] is used to restrict the possible orderings of
the cities along the tour as follows: For all cities ¢, d € C, the condition y(c) < y(d)
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implies 7 () < 77! (d). Again this defines a subset X y of the search space X of
each y. We use the same definition of adjacency in Y. Here, constant functions y
impose no restrictions on 7, i.e, ¢(y) = X whenever y(c) = y(d) forall ¢,d € C.
On the other hand, if y is bijective then X consists only of a single tour since in this
case y(¢) =~ (c) forall ¢ € C,i.e.,m = y~'. Thus, (Y2) and (Y3) are satisfied.

To address properties (R2) and (R1), we first observe that given an encoding y, we
can always move one city ¢ with y(c) = k to one of the classes defined by y with
an adjacent value k’. More precisely, suppose k' is such that (a) there is a city d so
that y(d) = k' and b) there are no cities e with y(e) = k”, for any k” between k
and k. If k¥’ > k, the city which we can move is the one with y(c) = k that appears
last in the optimal tour @ € ¢(y); similarly, if X’ < k, we can move the city ¢ with
y(c) = k that appears first in the optimal tour w € ¢(y). In the first case, we can
set k < y'(¢) < k/, while in the second case, we can choose k' < y'(¢) < k.
By construction @ € ¢(y’), and therefore I*:(y/) < F(y). It is also clear from the
construction that the step from y to y’ can always be chosen so that the number of
classes |y~ ! ([n])| remains constant, increases by one |y~ ([n])|, or decreases by one—
unless we already have |y_1 ([n])| = n, in which case only a decrease is possible, or
we have |y_1([n])| = 1, in which case only an increase is possible. Thus, we can
always find a path along which F (y) does not increase and along which |y_1([n])|
is non-increasing or non-decreasing, respectively. Note the moves keeping |y~ ([1n])]
constant might be necessary to move the values y(c) stepwise around in [n] to have
enough “space” to break up individual classes of y~!, so that its members in the end
have consecutive values of y. It is not hard to convince oneself that this is always
possible. As a consequence, we can always connect any y to a code with a single class
(for which ¢ (y) = X). For two adjacent classes, we simply join, one-by-one, the cities
of the smaller class to the larger one. Furthermore, the single-class code can be broken
by pulling a city at a time so that (R1) also holds. Note that (R3) is not necessarily
satisfied, however.

In contrast to the previous example of the NPP, here the paths are much more
involved and often longer. We therefore conjecture that the prepartition encoding is
less efficient for the TSP than for the NPP.

3.4.3 Spanning Forest Encoding for the NPP

A very different encoding for the NPP can be constructed as follows. Denote by Y the
set of all spanning forests of the complete graph K,,. For a detailed discussion of the
combinatorics of spanning forests, we refer to (Teranishi 2005). For each foresty € Y
denote by y, one of its connected components. Since y, is a tree and thus bipartite,
there is a uniquely defined bipartition (V;;, Vy.) of its vertex set. We assign g; = +1
fori € Vi and g; = —1 fori € V,_ to the other.

() = {x|xi = pagi, i € Vy,, pa = £1} (6)

Suppose the spanning forest y has kK components. Then, the sign pattern on each com-
ponent y, is uniquely defined by fixing independently the sign of the lexicographically
smallest i € Vy,. Thus, ¢(y) consists of exactly 2K distinct configurations. It follows
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that ¢(y) = X if y contains no edges. Denoting the complement of x by x, we have
¢(y) = {x, x} whenever y is a spanning tree. Since x and x represent the same solution
of the number partitioning problem, ¢ satisfies (Y2) and (Y3).

(R3) holds since removing an edge from the spanning forest y yields another span-
ning forest y’ that imposes fewer restrictions and thus corresponds to a larger subset
of X. In general, write y/ < y if y" is a subforest of y. Then ¢(y) C ¢(y'). The
unconstrained search space corresponds to the spanning forest yp without edges.
Conversely, every spanning tree 7 that defines the bipartition of the globally min-
imal solution of the original NPP encodes exactly this solution. Every sequence
f=9Yu_1 > Vg2 > >y > ypof spanning forests obtained by successive edge
deletions from 7 connects yo and f and each ¢(y;) also contains the global minimum
encoded by 7. Thus (R1) holds.

3.4.4 Subdivision Encoding for the TSP

An alternative encoding for the TSP uses a permutation ¢ : [n] — C of the set
of C cities and subdivision [T of [n] into consecutive intervals. We specify IT by
the upper bound of the interval, i.e., I, := {kl|i,—1 < k < i,}. Since the tours are
circular, we set igp = i;, and as usual consider the order < circular on [n]. Therefore,
I :={im+1,...,0in, 1,...01}. An encoded configuration y := (i, IT) fixes the order
Y of cities ¥ (k) within each of the index intervals [,,. The first city in interval I, is
Y(iy—1 + 1), the last city is ¥ (i,,). Thus, # € ¢(y) if 7 is obtained by permuting
the intervals [, and following the order given by v within each interval, as shown in
Fig. 2.

If IT is the discrete partition, then we obviously have ¢ (y) = X, while the indiscrete
partition uniquely specifies the tour 1. The encoding therefore satisfies (FO0), (YO0),
(Y1), (Y2), and (Y3). Consider any adjacency relation ~ on Y so that y ~ y" if IT" is
obtained by splitting a class (interval) into two or merging two intervals. Then (R3) is
clearly satisfied.

In order to consider (R1), we specify the adjacency relation ~ more stringently. If
y ~ y’, then either (i) y is obtained from y’ by splitting exactly one class of y’ into two
non-empty parts or vice versa, or (ii) y and y’ exhibit the same partition of the cities,
i.e., IT = IT'. In case (i), the ordering within each class in maintained. For the split

Fig. 2 Example for a
subdivision of the TSP. The
cities are subdivided into classes
of a partition within which their
order is fixed among all
restricted tours (full arrows).
The order in which the classes
are traversed remains free
(dotted arrows)

@ Springer



2166 K. Klemm et al.

interval I, = [¢'(iy—1+1), ..., ¥'(i)], thismeans thatanindex j € [iy—1+1, i, —1]
is chosen and the resulting intervals become I, = [/ (i,—1 +1), ..., ¥'(j — )] and
L, = [¥/'(j), ..., ¥ (iy)]. The ordering between intervals (classes of IT) remains
fixed. In case (ii), the partition and the ordering within the intervals both remain
unchanged, but the ordering of the intervals (classes of IT) changes. For our purposes,
itis notimportant which types of permutations between intervals are allowed, as long as
they form an ergodic set. Plausible choices are transpositions, canonical transpositions,
reversals, or even all permutations.

Now consider an encoded configuration y with X € ¢(¥). The intervals of specified
¥ are partial tours of the globally optimal solution. Moves on Y can now be performed
so that a new encoding y’ is obtained in a stepwise fashion, that uses the same intervals
and brings two partial tours that are consecutive in X into the desired order. During this
stepwise change of v, the encoded sets ¢(y) stay the same, and thus ¢ (y") = @(9).
Now the two appropriate consecutive intervals can be merged. This reduces m by
1 and makes ¢(y) smaller, but the globally optimal solution is still retained, i.e.,
X € ¢(y). The procedure can be repeated at most m — 1 times to reach the indiscrete
partition, which fully specifies the globally optimal tour. Thus, (R1) holds for all
choices of neighborhoods that allow merging/splitting of adjacent intervals and an
ergodic permutation of the intervals.

3.4.5 Sparse Subgraph Encoding for the Maximum Matching Problem

For a graph G = (V, E), a matching is a subset M C E of pairwise disjoint edges,
i.e., (V, M) is a graph with a maximum degree of at most 1. Denoting by X the set of
matchings on G, the maximum matching problem (MMP) (X, f) has the cost function
f giving the number of unmatched nodes

fon=|v e )

eeM

in a matching M. Thus, the MMP asks for a subset of edges that cover as many nodes
as possible without having any node contained in more than one edge (Lovasz and
Plummer 1986).

Now consider an edge subset S € E. In the present context, we call § sparse if
the graph (V, S) has maximum degree 2, so each connected component of (V, §) is
a cycle or path (including isolated nodes as trivial paths). Denote by Y the set of all
sparse subsets of E. Since a matching M is also a sparse subset of G, we have X C Y.

The cover-encoding map ¢ : ¥ — 2% assigns each S € Y the set of maximum
matchings of the graph (V, §). Now with S sparse, the maximum matching problem
on (V, S) is trivially solved separately on each connected component being a path or
cycle. For a path of odd length k, the maximum matching is unique with (k + 1)/2
edges; a path or cycle of even length k has exactly two disjoint maximum matchings
of cardinality k/2. A cycle of odd length k has exactly k pairwise different maximal
matchings of cardinality (k — 1)/2.
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For each matching x € X, we have ¢(x) = {x} so property (Y2) holds. Properties
(Y0) and (Y1) are fulfilled. With the choice y = x, (F0) is fulfilled. Property (Y3)
holds if and only if (G, E) is sparse itself.

We consider sparse subsets D and D’ as adjacent, D ~ D', if they differ at exactly
one edge, (DU D)\ (DND)| =1.

In order to demonstrate propertles (R1) and (R2), let y € Y \ {9}. We show that
thereis y’ ~y ywith F(y') < F(y)and [(y'UD)\ (y'NP)| < I(yUy)\(y N¥)I. Thus,
neighbor y’ is obtained from y either by adding an edge contained in y or removing an
edge not contained in y. If y D X, find an edges ¢ € y \ X and set y’ = y \ {e}, and we
are done. Otherwise, since y # J, there is an edge {v, w} =e € X\ y.If yU{e} =: z
is sparse, we are done using y' = z. Otherwise at least one of nodes v and w has
degree 3 in the graph (V, z); suppose node v has degree 3. Find a maximum matching
x € ¢(y). Since v has degree 2 in the graph (V, y), there is an edge ¢’ € y \ x incident
inv. Set y = y \ {¢}. We easily confirm F(y’) < F(y) in each of the cases above.
Sequences for properties (R1) and (R2) are obtained by induction.

3.4.6 String Encoding for the Maximum Clique Problem

For a graph G = (V, E), aclique is a node subset C C V inducing a fully connected
subgraph, i.e., {v, w} € E for all v, w € C with v # w. Denoting by X the set of
cliques of G, the maximum clique problem (MCP) (X, f) has the cost function f
giving the number of nodes

J(M) =[V\C] (8)
outside a clique M (Bomze et al. 1999).
For arbitrary/ € Nand any string of not necessarily distinctnodes (vy, v2, ..., v;) €
V!, we define the greedy clique yG (v, va, ..., v;) € V recursively by

v (1, v2, ..., v—1) U{y} if {v;, v} € Eforalli € [[ — 1]
Y6 i, vz, - v) = { yG(V1, V2, ..., V1) otherwise
©)
and yg (@) = @ for the empty string &.
We construct a cover-encoding map ¢ based on strings of length |V| =: n, so
Y = V" For a string y € Y, we denote the substring (suffix) from index & to the
end (index n) by (y)r+. Now ¢ maps a string y € Y to maximal greedy cliques over

suffices of y,

() ={yvc (k) : k € [n]and Vi € [n] : yc((V)i4) € Y ((¥)i4)} - (10)

So aclique C is contained in ¢(y) if and only if C is a greedy clique from a suffix of y
and none of the other greedy cliques from y properly contains C. This ensures that ¢
produces all the singletons, thus fulfilling property (Y2). We call y pure if |¢(y)| = 1.
A string y € Y is pure if and only if {y; : i € [n]} is a clique of G. We define strings
v, Yy’ € Y to be adjacent, in symbols y ~y y’, if and only if there is a unique index
i € [n] with y; # y! (Hamming distance 1).
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In order to prove properties (R1) and (R2), we first observe that there is a non-
increasing sequence of strings fromany y € Y toa pure y® € ¥ with o(y®) C ¢(y)
and F (y(p)) =F (y)- The sequence is obtained by finding a maximal C € ¢(y).If y is
not pure, there is i € [n] with y; ¢ C. The next string in the sequence can be obtained
by replacing the entry y; with an arbitrary element from C.

Ify, z € Y arepure with p(y) = ¢(z) = {C}and |C| < n, there is a non-increasing
sequence from y to z. It may be constructed by stepwise swapping operations. Since
|C| < n, there is at least one element in C found at two distinct positions in y so one
of these can be used as a temporary variable in the swap.

Now let y, y' € Y with F(y') < F(y). Find a maximal clique C € ¢(y) and a
maximal clique C’ € ¢(y’). We construct a non-increasing sequence from y to y’ by
concatenating the following sequences. First, a non-increasing sequence from y to a
pure y® e Y with F(y®) = F(y). Second, a non-increasing sequence from y®
to apure z € Y with {z1,22,...,z)c;} = C and {z1, 22, ..., z;c\¢)} = C \ C/, and
arbitrary z|c|+1, Z|c|+2; - - - » Zn € C. Third, a sequence from z to a string 7' is obtained
by assigning, step by step, nodes in C” \ C to entries from z|c|+1 to z,. The sequence
is non-increasing because each of its strings generates C under ¢. On the other hand,
Y6 ((Z)qe\cj+1)~) = C' so F(z') = F(y'). Now again by swap steps, we transform
7' into y’.

4 Coarse-Graining

Some of the restricted search spaces ¢(y) introduced above can also be thought of as
coarse-grainings of the original problem. In the following subsections, we show this
for the prepartition and spanning forest encodings of the NPP, as well as for the TSP.

4.1 Prepartition Encoding of the NPP

Consider the NPP instance with numbers {ay, a>,...,n}andlet IT = {Qq, ..., Ou}
be an arbitrary partition of [n] with classes (subsets) Q; so that m < n. Of course,
we can think of [T as the classes defined by the prepartition encoding, i.e., IT =
{y~Y(k)|k € [n]}. Set bj = Zier a;. Then the set of numbers {by, ..., b, } defines
an NPP on m numbers. In terms of a prepartition y this amounts to by = ) ;. y=1() Gi-
Note that if m = n, then [T is the discrete partition in which every class Q; contains
only a single element, and hence {ay, ...a,} = {b1, ..., by, }. In the general case, the
solutions of the two NPPs are related to each other in the following way. Denote the
variables for the smaller NPP by x;. € {41, —1} and write f, and f} for the cost
functions. Then, obviously

fa(x) = fp(x") whenever x; = x’; foralli € Q; (11)
j

An optimal solution x of the larger problem (X, f,) corresponds to a partition < of
[7] into exactly two classes Q4 and Q_ sothatx; = +1fori € Q4 and x; = —1 for
i € Q_. The coarse-grained NPP (X', f,) has an optimal solution with the same cost
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if (and in the generic case also only if) Q; € Q4 or Q; € Q_ holds for all j € [m],
i.e., if (and generically only if) the coarse-graining partition /7 is a refinement of the
partition 2 that encodes the globally optimal solution of the original problem.

4.2 Travelling Salesman Problems

Recall the subdivision encoding for the TSP and fix an encoding y = (¥, IT). The
length of the partial tour inside the interval [, is

Ly

bo= > dyt-tym (12)
k=iy—1+2

Furthermore, the road from interval 1, to interval I, is the road from v/ (i ,) to ¥ (i; 1+
1),1i.e.,

dpg = dy (i) (ig-1+1) (13)

Since a tour 7 € @(y) is uniquely defined by a permutation & : [m] — [m] of the
intervals, we have

L) =& + ) _ b (14)

u=1

where £(€) = Y, d(i).£+1) is the tour length of the TSP restricted to the connections
between the fixed intervals. With a slight change, one can also produce a TSP that
retains the original values of the cost function. To this end, we set

dhg = dy (i) (1) T (€p +Eq) /2 (15)

and /(&) =), Jé(i) £(i+1)- A short computation verifies £(rr) = ().
Note that we naturally obtain an asymmetric TSP even if the original problem was
symmetric since now d;?q # dc; , because in general we will have dx(i,)x (i, +1) 7#

A (i) (ip-1+1)-

4.3 Spanning Forest Representation of the NPP

Let us now return to the NPP. Let y be a spanning forest of K. For each connected
component (tree) 1y let Vf and V;~ be the corresponding bipartition of the vertex
set of ¢. Define

bi=|) ai— ) a (16)
iev,’ ieV,”

This defines an instance of the NPP with as many numbers b; as connected components
in y. A choice of sign z; € {41, —1} for ¢ implies a particular choice of sign for
each a;, i.e., each configuration z for the NPP with numbers {b} corresponds to a
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configuration x of the original problem with numbers {a}. Clearly, these coincide with
the configurations ¢(y) described in Sect. 3.4.3.

4.4 Some Remarks on Coarse-Grainings: Analogies with the Renormalization
Group?

It is tempting to speculate that the coarse-grainings we have observed in the above
are analogous to those observed in renormalization group theory, well known for its
use in analyzing spin glasses and related disordered systems (Rosten 2012). In our
context, it can be described as follows. For a given type of problem, such as the NPP
or the TSP, consider the space X of all possible instances of all sizes. A particular
instance (e.g., the NPP with n numbers a = {aj, a2, ..., a,}) is a point x € X. Now
we define a set Z of maps r : X — X that map larger instances to strictly smaller
ones. Of interest in this context are in particular those maps r that (approximately)
preserve salient properties. Since r(X) is a smaller instance than x, the map r is not
invertible. The maps in Z can of course be composed, and thus form a semi-group
which is known as the renormalization group (Wilson and Kogut 1974; Wilson 1971).
Of course, while renormalization groups in statistical physics are used to analyze the
typical behavior of large systems near criticality, our focus in the present optimization
context is on particular instances of systems that are typically large. This does not
yet rule out an analogy, assuming that something like an ergodic hypothesis applies,
where the behavior of typical instances is indeed that of the average. Thus, starting
from x = (X, f), or more precisely, an encoding y so that ¢(y) = x, we can think of
adjacent encodings y’ ~ y with |¢(y")| < |@(y)| as “renormalized” versions of ¢(y).
A path in (Y, ~) leading from x to the trivial instance thus can be seen as the iteration
of progressively renormalized samples.

A positive example of this analogy could be that of the spanning forest encoding
of the NPP with real-space renormalization schemes for Ising spins: an example of
an Z could be a so-called block spin transformation (Kadanoff 1966), where suitable
averages are taken over small local subsets of spins, which are then progressively
scaled up to larger system sizes to explore their critical behavior. Only certain block
variables will work for such schemes, depending on the underlying symmetries of the
problem, just as, in the earlier subsection, only the sums of numbers a; preserve the
optimal solutions. Such simple real-space scalings, do not, however, always exist for
our optimization schemes: the prepartition encoding of the TSP, for example, cannot
be rephrased as a coarse-grained (i.e., reduced-size) TSP. To see this, simply observe
that the evaluation of a tour in the restricted model still requires an optimization over
multiple incoming and outgoing connections (roads) for every city, i.e., the information
of inter-city distances cannot be collapsed in any way upon the transition from a larger
(less restricted) to a smaller (more restricted) problem. This does not, however, rule
out the possibility of, say, a renormalization-type scaling in some sort of generalized
Fourier space. In the case of landscapes on permutation spaces, the characters of
the symmetric group provide a suitable Fourier-like basis (Rockmore et al. 2002),
which seem to be applicable to TSP and certain assignment problems. These and
other possibilities are currently being explored, since it seems that deep similarities
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may underlie relatively superficial differences in the nature of the transformations
involved in renormalization groups and the optimization-facilitating encodings that
are the subject of this paper.

5 Heuristic Optimization over Y
5.1 General Considerations

So far, we were only concerned with the abstract structure of cover-encoding maps ¢ :
Y — 2% and the adjacencies ~ in their encodings Y. On this theoretical basis, we can
now construct a search-based optimization heuristic that generalizes the approaches in
(Ruml et al. 1996) and our earlier work (Klemm et al. 2012). The idea is very simple:
If we have an accurate and efficiently computable heuristic, we can quickly obtain
good upper bounds a s (y) > F( y) for each of the restricted problems (¢(y), f). The
properties (R1) and (R2) guarantee the existence of non-increasing paths from an
arbitrary initial encoding yp down to a final encoding 3. Steps to adjacent encodings
that decrease «  therefore will have a bias toward the optimal solution of the original
problem.

The fact that we have to rely on the quality of the estimate a f(y) ~ F (y) also
suggests that it should be more efficient to restart the search often rather than try to
overcome barriers of local minima in the landscape (Y, & 7). In the examples above,
local minima in (Y, a 7) can, as we have proved, appear only due to insufficient accu-
racy of the heuristic solutions « 7 (y) for some encodings.

The discussion above also implies guidelines for the construction of encodings:

1. The cover-encoding map ¢ : ¥ — X should be of a form that guarantees that
Y, ~, F) has no local optima, i.e., the properties (R1), (R2), (Y1), and (Y2)
should hold.

2. The paths in (Y, ~) connecting large sets ¢(y) to smaller ones should not contain
many steps along which the sets do not shrink. For instance, while the prepartition
encoding for the NPP always has a strictly coarse-grained neighbor, this is not
the case for the prepartition encoding for the TSP. We therefore suspect that other
encodings for the TSP will work better in general.

3. The heuristic producing « s (y) needs to be efficient, ideally not much slower than
the function evaluations for the initial cost function f.

In order to demonstrate that the theory developed above may also have practical
implications we probe instances of encoded landscapes by adaptive walks. To simulate
arealization of an adaptive walk, we first generate an initial state y(0) by a procedure
specific for the given landscape. At each time step ¢, we uniformly draw a neighbor z
of state y(r) and set y(r + 1) = z if F(z) < ﬁ(y(t + 1)), y(t + 1) = y(¢) otherwise.

We select the MMP and the MCP as examples because (1) oracle functions and
encodings can constructed that guarantee the absence of strict local minima; and (2)
there is a simple and efficient algorithm for exact computation of F(y) foreachy € Y.
So we do not require heuristics. We leave the combination of cover-encoding maps
with non-trivial heuristics for a future manuscript.
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5.2 Maximum Matching Problems

Figure 3 shows the time evolution of cost in adaptive walks on the encoded landscapes
of matchings encoded by sparse graphs, where the figure caption contains details on
the instances and the definitions are to be found in Sect. 3.4.5. Note the logarithmic
time axis in the plot.

Both on purely random graphs and on those with a planted perfect matching, a
solution of globally minimal cost is found. In addition to reaching a minimum-cost
solution, we observe another interesting feature of the dynamics. The sizes of sym-
bols (and annotated values in the uppermost curve) indicate the number of degrees
of freedom 8§ = log, |¢(y(¢))| of the solution y(¢) at time ¢. This is the number of
the connected components in the sparse graph, with two distinct maximum match-
ings. Departing from a singleton state (§ = 0), the number of degrees of freedom
first increases and then decreases during the descent of cost. So the optimization hap-
pens as a walk through states y € Y with large cardinality |¢(y)| of the encoded
set. Furthermore as a particular feature of this encoded landscape, the optimization
dynamics eventually returns to low 8, having |¢(y(#))] = 1 with a single optimal
solution selected at large time 7.

0 e e e
0 3 5 10 14 16 32

180

160

19
1310
5‘*_;-.. B3 % 161610 11 97

”“-—.—-—

140

120 —

100 —

cost (unmatched nodes)

0 Cl Ll TR = - C- W
10° 10" 10° 10' 10°

time (update attempts / N)

Fig.3 (Color figure online) Time evolution of cost in adaptive walks on the landscape of matchings encoded
by sparse subgraphs. Radius of symbols is proportional to the number of degrees of freedom (paths of even
length # 0 and cycles of odd length) in the encoded state. Upper set of curves: 10 realizations, each on
an independently generated ER random graph on 500 nodes with edge probability p = 2/(N — 1), i.e.,
average degree 2. Lower set of curves: 10 realizations on graphs (500 nodes) with perfect matching planted
first, then adding each of the remaining possible edges with p = 1/(N — 2), resulting in average degree
2. Each adaptive walk is initialized by a random maximal matching L(0). Departing from the empty set,
L(0) is generated by considering the edges of the graph G in the order of a random uniform permutation
and adding an edge to L(0) if the result remains a matching
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Fig. 4 (Color figure online) Time evolution of cost in adaptive walks on the landscape of cliques encoded
by node sequences. For each graph size |V|, 100 random graph instances with parameter p = 1/2 are
generated independently. For each instance, an adaptive walk on the encoded landscape is performed with
starting state (1, 1,..., 1). Plotted values are differences between F (y(t)) of the state y(¢) held by the
adaptive walk at time ¢ and the optimal cost F (X), averaged over the 100 instances. Length of error bars is
the standard deviation over these instances. The exact F (x) is computed with a branch-and-bound algorithm
(Ostergard 2002)

5.3 Maximum Clique Problems

Figure 4 shows the time evolution of the cost of adaptive walks on the encoded land-
scapes of graph cliques encoded by node sequences. The figure caption contains details
on the instances and relevant definitions can be found in Sect. 3.4.6. We plot the dif-
ference with the minimum cost F(y), so that a plotted value of 0 means the global
optimum has been found.

Our tentative conclusions are that the time to reach the optimal solution scales
moderately with problem size. The standard deviation over realizations (error bars in
the plot) also indicates a moderate variation of optimization time across these randomly
generated instances.

6 Discussion and Conclusions

In this contribution we have shown that, in principle, it is possible to construct a
genotypic encoding for any given phenotypically encoded combinatorial optimization
problem with the property that the encoded landscape has no strict local minima. The
construction hinges on three ingredients: a cover-encoding map ¢ : ¥ — 2% that
satisfies a few additional conditions, a suitable adjacency relation on Y, and an oracle
function that (miraculously) returns the optimal cost value on the restrictions of the
original problem to the covering sets ¢ (). Of course, if we had such an oracle function
in practice, we would not need a search heuristic in the first place.
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Nevertheless, the concepts of oracle functions and cover-encoding maps are not just
an empty exercise. We have seen that cover-encoding maps ¢ give rise to practically
useful encodings provided there is a good deterministic heuristic for the restriction
of the optimization problem to ¢(y). For the NPP, it turns out that the Karmarkar—
Karp differencing algorithm (Karmarkar and Karp 1982; Boettcher and Mertens 2008)
provides a very good approximation to the oracle function. The prepartition encoding
proposed by Ruml et al. (1996), on the other hand, ensures that the landscape of
the oracle function is of the desirable type that has no local minima. Together these
two facts make the work of Ruml et al. (1996) a showcase application of the theory
developed here.

The numerical simulations of Sect. 5 strongly suggest that encodings with local-
minima-free landscapes indeed admit efficient optimization by local search-based
methods also for other optimization problems. Hence the theoretical results obtained
here are of practical relevance provided a sufficiently accurate approximation to the
oracle function can be computed. The precise meaning of the phrase “sufficiently
accurate approximation” remains an open question for future research. We suspect,
however, that the main problem arises when the approximation claims o y ( y) < a(y),
suggesting that a step from y to y’ be accepted, while F(y') > F(y) holds, suggesting
the step to y” should not be taken.

The construction of encodings for several well-known optimization problems also
highlights the connections between encodings and a natural notion of coarse-graining
for optimization problems. This also suggests a link to renormalization group meth-
ods commonly used in statistical physics. While it is clear that there is not a trivial
correspondence, and that real-space coarse-grainings are just a particular subclass of
encodings, this connection certainly deserves further study. The formalism laid out
here at least provides a promising starting point.

An important issue in biology is the fact that encodings as symbolized by the
genotype—phenotype map are themselves subject to evolutionary changes because the
mechanisms of development evolve. It is well known that features of the genotype—
phenotype, such as robustness (Wagner 2005) and accessibility (Fontana and Schuster
1998; Ndifon et al. 2009) have a key influence on evolution in the long term. Mathe-
matical approaches that focus on the properties of encodings thus may become a very
useful component in formal theories of evolvability and developmental evolution.
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