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Pivotal trial of an autonomous AI-based diagnostic system for
detection of diabetic retinopathy in primary care offices
Michael D. Abràmoff 1,2,3,4, Philip T. Lavin5, Michele Birch6, Nilay Shah7 and James C. Folk1,2,3

Artificial Intelligence (AI) has long promised to increase healthcare affordability, quality and accessibility but FDA, until recently, had
never authorized an autonomous AI diagnostic system. This pivotal trial of an AI system to detect diabetic retinopathy (DR) in
people with diabetes enrolled 900 subjects, with no history of DR at primary care clinics, by comparing to Wisconsin Fundus
Photograph Reading Center (FPRC) widefield stereoscopic photography and macular Optical Coherence Tomography (OCT), by
FPRC certified photographers, and FPRC grading of Early Treatment Diabetic Retinopathy Study Severity Scale (ETDRS) and Diabetic
Macular Edema (DME). More than mild DR (mtmDR) was defined as ETDRS level 35 or higher, and/or DME, in at least one eye. AI
system operators underwent a standardized training protocol before study start. Median age was 59 years (range, 22–84 years);
among participants, 47.5% of participants were male; 16.1% were Hispanic, 83.3% not Hispanic; 28.6% African American and 63.4%
were not; 198 (23.8%) had mtmDR. The AI system exceeded all pre-specified superiority endpoints at sensitivity of 87.2% (95% CI,
81.8–91.2%) (>85%), specificity of 90.7% (95% CI, 88.3–92.7%) (>82.5%), and imageability rate of 96.1% (95% CI, 94.6–97.3%),
demonstrating AI’s ability to bring specialty-level diagnostics to primary care settings. Based on these results, FDA authorized the
system for use by health care providers to detect more than mild DR and diabetic macular edema, making it, the first FDA
authorized autonomous AI diagnostic system in any field of medicine, with the potential to help prevent vision loss in thousands of
people with diabetes annually. ClinicalTrials.gov NCT02963441
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INTRODUCTION
People with diabetes fear visual loss and blindness more than any
other complication.1 Diabetic retinopathy (DR) is the primary
cause of blindness and visual loss among working age men and
women in the United States and causes more than 24,000 people
to lose vision each year.2,3 Adherence to regular eye examinations
is necessary to diagnose DR at an early stage, when it can be
treated with the best prognosis,4,5 and have resulted in substantial
reductions in visual loss and blindness.6 Despite this, less than
50% of patients with diabetes adhere to the recommended
schedule of eye exams,7 and adherence has not increased over
the last 15 years despite large-scale efforts to increase it.8 To
increase adherence, retinal imaging in or close to primary care
offices followed by remote evaluation using telemedicine has also
been widely studied.9–11

Artificial intelligence (AI)-based algorithms to detect DR from
retinal images have been examined in laboratory settings.12–15

Recent advances incorporate improved machine learning into
these algorithms have led to higher diagnostic accuracy.16,17

However, in addition to high diagnostic accuracy, responsible and
safe implementation in primary care requires autonomy (i.e., a use
case that removes the requirement for review by human experts),
instantaneous image quality feedback to the primary care based
operator in order to reach a reliable disease level output in the
vast majority of patients, a realtime clinical decision at the point of

care, and consistent diagnostic accuracy across age, race and
ethnicity.12,13,18,19 Studies comparing an AI system against an
independent, high-quality gold standard that includes fundus
imaging and Optical Coherence Tomography (OCT) imaging
protocols have not previously been conducted; FDA has not
previously authorized any such system.
The Wisconsin Fundus Photograph Reading Center (FPRC) has

historically been the gold standard for trials that require grading
of the severity of DR, including the Epidemiology of Diabetes
Interventions and Complications/Diabetes Control and Complica-
tions Trial (EDIC/DCCT), Diabetic Retinopathy Clinical Research
Network (DRCR.net) studies, as well as pivotal phase III studies.20,21

The FPRC has adopted the use of a widefield stereoscopic retinal
imaging protocol (4W-D), that includes four stereoscopic pairs of
digital images per eye, each pair covering 45–60°, equivalent to
the area of the retina covered by the older, modified 7-field stereo
film protocol.22,23 Traditionally, the presence of Diabetic Macular
Edema (DME) was determined from the stereo fundus photos, but
more recently, Optical Coherence Tomography (OCT) has become
the reference modality for determining the presence or absence
of center-involved DME.24 The 2017 revision of the American
Academy of Ophthalmology’s Preferred Practice Pattern recom-
mends people with no or mild DR be followed annually, whereas
those with more than mild DR, and/or DME (abbreviated to
mtmDR), are recommended to receive evaluation and considera-
tion for treatment.25,26
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In this study, we evaluate the diagnostic performance of an
autonomous AI system for the automated detection of DR and
DME, termed mtmDR. Study subjects were people with diabetes,
not previously known to have DR or DME, under an intent-to-
screen (ITS) study design. Ten study sites were all in primary care
offices, and the AI systems were operated by existing staff at those
sites, using standardized training and operator materials to
facilitate use of the system. The FPRC imaging on the other hand
was conducted by FPRC certified expert photographers.

RESULTS
Study population
A total of 900 participants were enrolled at 10 sites, of which 892
participants completed all procedures. A subset of 819 of these
participants could be fully analyzed, see Fig. 1, giving an
analyzable fraction of 92% (95% CI, 90%–93%). Median age was
59 years (range, 22–84 years); 47.5% of participants were male. For
the entire group of participants 16.1% were Hispanic, 83.3% were
not Hispanic, and 0.6% unknown. Also, 63.4% were white, 28.6%
African American, and 1.6% Asian (Table 1). Finally 7.1% had type
1 diabetes, 92.9% had type 2 diabetes. The 819 participants whose
results could be fully evaluated and the 73 participants whose
results could not be analyzed, differed significantly with respect to
lens status, while mean age, ethnicity, race, and HbA1C level were
not significantly different (Table 1). The enrichment strategy led to
319 enriched participants; the 621 No/Mild DR participants
included 218 participants from enrichment while the 198 mtmDR
participants included 101 participants from enrichment. In the
subset of participants enrolled without enrichment, mean HbA1C
± std was 8.1 ± 1.6 mmol/l, while for all participants overall mean
HbA1C ± std was 9.4 ± 2.3 mmol/l. According to the FPRC, 11/
819 subjects had “enlarged cup to disc ratio”, and 26/819 subjects
had “any drusen” and/or “any retinal pigment epithelium
atrophy”—none of these subjects had increased retinal thickness
on OCT.
A total of 198 mtmDR participants were fully analyzable

according to the FPRC reading protocol, thus prevalence of
mtmDR was 23.8% (198/819). Of these, twenty-nine had CSDME
according to fundus photography; 19 participants had center-
involved DME according to OCT; and 42 participants had either
CSDME and/or center-involved DME, with corresponding pre-
valences of 3.5% for CSDME, 2.3% for center-involved DME, and
5.1% for any DME according to both of these assessments.
Average centerfield thickness was 239 µm (±0.05 µm) in the
participants with CSDME (from fundus photographs only), and

304 µm (±0.06 µm) in the participants with center-involved OCT
DME. See Supplemental Table 1 for the DR frequency distribution
according to ETDRS severity levels and to DME.

AI system characteristics
The AI system correctly identified 173 of the 198 fully analyzable
participants with fundus mtmDR. Logistic regression yielded a
primary sensitivity of 87.2% (95% CI, 81.8%–91.2%) to fundus
mtmDR, and 85.9% (95%% CI, 82.5%–88.7%) to multimodal
mtmDR. Observed sensitivity to fundus mtmDR was 87.4%
(97.5% CI lower bound, 81.1%) (173/198). The logistic regression
model did not identify any significant effects for age, sex, race,
ethnicity, HbA1C, lens status, or site, on sensitivity. The retro-
spective power was 93%. The AI system had a sensitivity to fundus
vtDR of 97.4% (95% CI 86.2%–99.9%) (37/38), and to multimodal
vtDR of 92.2% (95% CI 81.1%–97.8%) (47/51). Among these, it
identified 28 of 29 (96.6%; 95% CI, 82.2%–99.9%) participants with
CSDME (fundus photographs only), 16 of 19 participants (84.2%;
95% CI, 60.4%–96.6%) with center-involved DME (OCT only), and
all participants with ETDRS level 43 or higher (including all
16 subjects with proliferative DR), with an mtmDR detected output.
Among the 621 fully analyzable participants who did not have

fundus mtmDR according to FPRC grading, there were 556
participants with an mtmDR not detected output. Logistic
regression yielded a primary specificity of 90.7% (95% CI,
88.3%–92.7%) for fundus mtmDR, and yielded 90.7% (95% CI,
86.8%–93.5%) specificity for multimodal mtmDR, both after
correction for enrichment. Observed specificity to fundus mtmDR
was 556/621 or 89.5% (97.5% CI lower bound, 86.5%). A logistic
regression model did not identify any significant effects of sex,
ethnicity, race, HbA1C, lens status, or site, on specificity, while
increased specificity was observed in subjects over 65 years of age
(p= 0.030). The retrospective power was 87%. See Table 2.
Among the 73/892 non-analyzable participants, 40 (4%) lacked

a completed FPRC grading. In the worst case scenario (forcing all
40 subjects to a grading that is the opposite of the AI-system, in
other words, the FPRC grading was set at mtmDR+ if the AI
system output was mtmDR not detected and vice versa), the
sensitivity and specificity would have been 80.7% (two-sided 95%
CI, 76.7%–84.2%) and 89.8% (two-sided 95% CI, 85.9%–92.7%)
respectively. These results would still rule out the pre-specified
inferiority hypotheses.
Of the 852 participants that received a completed FPRC grading,

33 participants (4%) received an insufficient image quality output
from the AI system after completion of the AI system protocol.
Thus image-ability, defined as the percentage of participants with
a completed FPRC grading and with a disease level AI system
output, was 819/852 (96.1%; 95% CI, 94.6–97.28%). In the 33
participants with AI system insufficient image quality, the
prevalence of mtmDR was 10/33 (30%), comparable to the
mtmDR prevalence in the fully analyzable dataset. For the AI
system protocol, 76.4% of participants did not require pharmaco-
logic dilation, while 23.6% required dilation to obtain an AI system
disease level output. The majority of participants, 64.7%,
completed the AI system protocol of 4 photographs the first
time, 8.5% were able to complete the protocol after a single retry,
3.2% needed 2, 19.7% needed 3, 3.4% needed 4 and 0.5% needed
five retries. There were 5/11 subjects with enlarged optic disc
cups, and 13/26 subjects with any drusen or RPE atrophy, received
an “mtmDR detected” output.

DISCUSSION
The results of this study show that the AI system in a primary care
setting robustly exceeded the pre-specified primary endpoint
goals with a sensitivity of 87.2% (>85%), a specificity of 90.7%
(>82.5%), and an imageability rate of 96.1%. Sensitivity is a patient
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Fig. 1 Waterfall diagram showing the final disposition of each
participant in the enrolled, intention to screen (ITS), and fully
analyzable populations
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safety criterion, because the AI system’s primary role is to identify
those people with diabetes who are likely to have DR that requires
further evaluation by an eye care provider. Previous studies have
shown that board-certified ophthalmologists that perform indirect
ophthalmoscopy achieve an average sensitivity of 33%,27 34%,28

or 73%9 compared to the same ETDRS standard.
Specificity is also an important consideration, because it affects

the number of people with diabetes who receive a referral but do
not need one because they have only no or mild DR. Because all
referrals will be evaluated by an eye care provider however, this
will not increase the risk of that person receiving unnecessary
treatment. The American Academy of Ophthalmology Preferred
Practice Pattern (PPP 2017 revision) recommends that people with
no or mild DR (ETDRS levels 10–20 and no DME) are followed
annually, those with moderate DR (ETDRS level 35–47), and no
DME receive more frequent follow-up, and those with more than
moderate DR (level 53 or higher), or DME receive immediate
evaluation.26 The AI system had a sensitivity of 97.6% in
identifying people that require immediate evaluation according
to the PPP. Primary care providers may not feel comfortable
evaluating the retina of a person with diabetes themselves. In that
context, an autonomous—i.e., without human expert reading of

the retinal images—AI system is helpful if it can identify those
people who should receive referral to an eye care provider.
To our knowledge, the severity of DR and diabetic macular

edema according to the ETDRS severity scale and OCT in a primary
care diabetes population has not been determined previously. The
only available studies reported on participants who were followed
for some type of intervention, had some level of DR at inclusion, or
did not have an ETDRS severity scale reading by a reading
center.29–31 In the fully analyzable sample in this study, age, sex,
ethnicity, and racial distribution were representative of the US
diabetes population,7 and the prevalence of mtmDR in this
representative sample was 23.8%.
Additionally, the study yielded two reading center based

gradings for DME: 1) CSDME, based on fundus photographs, and
2) center-involved DME, based on OCT. The prevalence of DME
measured accordingly was lower than typically reported at 3.5%
for CSDME, and 2.3% for center-involved DME. Previous studies
reported that the majority of DME detected on OCT was
detectable by fundus photography, but of the 19 cases in this
study that had center-involved DME, only 6 (32%) were identified
as such by the FPRC reading center from fundus photographs.
These results confirm an earlier report that fundus photography
may be underestimating the prevalence and incidence of DME in
people with diabetes, compared to OCT.32 Nevertheless, 84% of all
cases with center-involved DME were detected by the AI system.
Sensitivity and specificity met endpoints for fundus mtmDR,
defined as ETDRS level ≥35, or having CSDME, or both, all
determined from fundus photographs only. It also met sensitivity
and specificity endpoints for multimodal mtmDR, defined as ETDRS
level ≥35 (determined from fundus photographs), or having
CSDME (determined from fundus photographs), or having center-
involved DME (determined from OCT), or any combination of
these. All cases of the most severe forms of DR, including
proliferative DR, were detected.

Table 1. Demographic characteristics of the analyzable (n= 819) and non-analyzable (n= 73) ITS subsets

Category Subgroup Analyzable % (n/N) Not analyzable % (n/N)

Age (years) <65 69.1% (566/819) 52.1% (38/73)

≥65 30.9% (253/819) 47.9% (35/73)

Ethnicity Hispanic or Latino 16.4% (134/819) 13.7% (10/73)

Not Hispanic or Latino 83.0% (680/819) 80.8% (59/73)

Unknown 0.6% (5/819) 5.5% (4/73)

HbA1c7 <7 11.6% (95/819) 23.3% (17/73)

≥7 86.7% (710/819) 76.7% (56/73)

Unknown* 1.7% (14/819) 0% (0/73)

HbA1c9 <9 46.4% (380/819) 54.8% (40/73)

≥9 51.9% (425/819) 45.2% (33/73)

Unknown* 1.7% (14/819) 0% (0/73)

Lens Status Phakic with opacities or Cannot Grade 10.4% (85/819) 47.9% (35/73)

Pseudophakic or no opacities 89.6% (734/819) 52.1% (38/73)

Race American Indian or Alaskan Native 0.4% (3/819) 0.0% (0/73)

Asian 1.5% (12/819) 4.1% (3/73)

Black 28.2% (231/819) 46.6% (34/73)

Mixed Race 1.2% (10/819) 1.4% (1/73)

Other-Mexican 0.1% (1/819) 0.0% (0/73)

Other-Puerto rican 0.1% (1/819) 0.0% (0/73)

Refuse to provide 1.1% (9/819) 0.0% (0/73)

Unknown 3.5% (29/819) 1.4% (1/73)

White 63.9% (523/819) 46.6% (34/73)

* These subjects had diabetes diagnosed by means other than HbA1C – see Methods

Table 2. AI system diagnostic accuracy

Point estimate 95% CI Superiority endpoint

Sensitivity 87.2% 81.8%–91.2% 85.0%

Specificity 90.7% 88.3%–92.7% 82.5%

Point estimates for sensitivity and specificity were calculated on the 819
participants that were analyzable, using the prespecified logistic regres-
sion. The superiority endpoints were previously discussed with FDA.
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While there is widespread evidence for the effectiveness and
cost-effectiveness of early detection of DR,33 this is presently not
the case for glaucoma,34 macular degeneration35 and many other
eye diseases, and thus the present study was not designed or
powered to analyze diagnostic accuracy on other retinal
abnormalities in people with diabetes. However, we observe the
following about so-called incidental findings: 6/819 subjects with
enlarged optic disc cups were not flagged by the AI system. Of
these, an estimated 33% will have some form of glaucoma.36 Thus,
~2/819 subjects (~0.2%) would not have been referred to an eye
care provider for disease while possibly having some form of
glaucoma. Similarly, 13 subjects with drusen or RPE atrophy, all
without retinal thickening, were not flagged, so 13/819 subjects
(1.6%), would not have been referred to an eye care provider—
some of these with non-exudative age-related macular degenera-
tion and intermediate drusen warranting preventative supple-
ments.37 We wish to emphasize that these are observations only,
given that the 95% confidence intervals around their estimates
include 0%.
As expected, sensitivity of the AI system was lower than that of

the almost identical AI system tested on a laboratory dataset,
which found a sensitivity of 97%.16 Sources for the lower
sensitivity are likely to be:

● The use of stereo widefield photography, covering an area of
the retina more than twice the size of that imaged for analysis
by the AI system. Stereo photography allows CSDME to be
estimated even in the absence of any other retinal lesions
such as exudates. In the case of the laboratory study, the
reference standard was determined from the same non-stereo
images as available to the AI system, which does not allow the
expert readers to estimate DME in the absence of exudates;

● The use of experienced ophthalmic photographers to obtain
the reference standard stereo widefield photographs. This
results in an overall higher image quality than that obtained
by the primary clinic staff after 4 h of training that was
available to the AI system;

● The prospective, ITS paradigm used in this study reduced
selection and spectrum bias compared to laboratory studies.

The AI system is “physiologically plausible” to some degree,
given its multiple, redundant, lesion-specific detectors for
biomarkers,38 leading to increased robustness to small perturba-
tions in input images,39 and because the biomarkers are based on
over a century of worldwide clinical experience, lower expected
risk of ethnic or racial bias.40 And in fact, diagnostic accuracy of
the AI system was robust to sex, race, ethnicity, lens status and
metabolic control, though specificity was higher in those over age
65. This is likely related to the prevalence of highly reflective
internal limiting membrane in younger people, which can be
mistaken for exudates due to DME.12

As anticipated, the presence of lens opacities due to cataract
significantly increased the number of imaging attempts required
to get sufficient quality images, as well as the requirement for
dilation, however sufficient image quality was obtained in 96.1%.
While selective dilation may be a challenge to scalable clinical
implementation in some cases, the operator is explicitly advised
on the need for dilation by the AI system: if an operator cannot
capture three images of sufficient image quality without
pharmacologic dilation, the system recommends the use of
dilation drops.
In this regulated pivotal trial, the AI system was compared to

the highest quality reference standard as determined by the FPRC,
and met predetermined sensitivity and specificity standards for
the autonomous detection of more than mild DR or DME in
people with diabetes but no history of DR in primary care settings.
The results, in part, led FDA to authorize IDx-DR for “for use by

health care providers to automatically detect more than mild
diabetic retinopathy (mtmDR) in adults (22 years of age or older)

diagnosed with diabetes who have not been previously diagnosed
with DR”, as, the first autonomous diagnostic AI system authorized
by FDA in any field of medicine - without the need for a clinician
to also interpret the image or results.41 At a high level, the results
demonstrate the ability of autonomous AI systems to bring
specialty-level diagnostics to a primary care setting, with the
potential to increase access and lower cost. For people with
diabetes, autonomous AI systems have the potential to improve
earlier detection of DR, and thereby lessen the suffering caused by
blindness and visual loss.

METHODS
Autonomous AI diagnostic system
The autonomous AI system, IDx-DR, has two core algorithms, an Image
Quality AI-based algorithm, and the Diagnostic Algorithm proper. The
complete AI system was locked before the start of this study (see below).

Image quality algorithm
The image quality algorithm is implemented as multiple independent
detectors for retinal area validation as well as focus, color balance and
exposure, and is used interactively by the operator to detect, in seconds,
sufficient image quality for the Diagnostic algorithm to rule out (or in)
mtmDR, and thus maximize the number of subjects that can be imaged
succesfully. As its input it takes four retinal images, and its output is
whether quality is sufficient and if not, whether this is due to field of view
or image quality.42

Diagnostic algorithm
The evolution of the diagnostic algorithm has been described extensively
in publications spanning almost two decades.12,18,19,43–45 It is a clinically-
inspired algorithm, and therefore has independent, validated detectors for
the lesions characteristic for DR, including microaneurysms, hemorrhages
and lipoprotein exudates,40 the outputs of which are then fused into a
disease level output, using a separately trained and validated machine
learning algorithm.46 The detectors have been implemented as multilayer
convolutional neural networks (CNN),47 except the microaneurysm
detector which is a multiscale featurebank detector,45,47 with substantially
improved performance on a standardized laboratory dataset.16 In fact, in a
laboratory study, its area under the receiver operator characteristics curve
(AUC) of 0.980 (95% CI 0.968–0.992) was not statistically different from a
perfect algorithm always outputting the truth, given the variability of the
expert readers creating that truth.46

Each detector CNN was independently trained and validated to detect
its assigned lesions from a region of a retinal image, using a total of over 1
million lesion patches from retinal images from people with and without
DR.16,48 We consider these clinically inspired diagnostic algorithms with
lesion-specific detectors for biomarkers, to be “physiologically plausible”,
as they mimic the functional organization human visual cortex.38 Such
“physiologically plausible” systems with explicit, multiple, partially depen-
dent detectors and a separate module for the higher level clinical decision
have parallels in the human and primate ventral visual cortex, with specific
subregions dedicated to the detection of particular categories of
objects.50–52 Downstream, in human experts, the higher level clinical
decision is made in a part of the extrastriate cortex known as the fusiform
face area, which is involved in making a clinical diagnosis from radiologic
images, as has been found in functional imaging studies of radiologists
when making clinical decisions.53

These physiologically plausible algorithms have been shown to be more
robust to small perturbations in input images, possibly because they have
partially dependent, and thus redundant detectors.39 Additionally, micro-
aneurysms have been long recognized as the earliest retinal sign of DR
that is seen on ophthalmoscopic examination, as recognized for the first
time in the key paper by Friedenwald.40 However, decades before then,
microaneurysms, and also hemorrhages, neovascularizations, IRMAs,
exudates, and other abnormalities were already known to be the signs
for DR.54 Clinicians managing DR are aware that, although the incidence
and prevalence of DR vary across racial, ethnic and age categories, the
above signs are constant across races and ethnicities—in other words,
whether or not someone with diabetes, showing multiple retinal
hemorrhages and neovascularizations is of Hispanic or non-Hispanic
descent, for instance, does not affect whether the clinician will diagnose
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DR. Using detectors designed to detect these racially invariant biomarkers
minimizes the risk of ethnic or racial bias in algorithm output.
The diagnostic algorithm uses four sufficient quality images and then

takes seconds to make a clinical decision (at the point of care) and output a
disease level indicating, whether more than mild DR and or macular
edema is present.

Study design. From January 2017 to July 2017, 900 participants were
prospectively enrolled in this observational study at 10 primary care
practice sites throughout the United States. The study was approved by
the institutional review board for each site, and all participants provided
written informed consent. The study, which was funded by IDx LLC, was
designed by the authors with input from the U.S. Food and Drug
Administration (FDA) on the endpoints, statistical testing, and study design
(see below). Emmes Corp, a contract research organization (CRO), provided
overall project management, including data management and indepen-
dent monitoring and auditing services for all sites. CCR, Inc., an Algorithm
Integrity Provider (AIP), was contracted to lock the AI system, hold any
intermediate and final results and images in escrow, and interdict access to
these by the Sponsor, from prior to the start of the study until final data
lock. Because the Sponsor was thus interdicted from access to the AI
system, the AIP performed all necessary maintenance and servicing
activities during the study as well as throughout closeout.

Study population. The target population was asymptomatic persons, ages
of 22 and older, who had been diagnosed with diabetes and had not been
previously diagnosed with DR. A diagnosis of diabetes was defined as
meeting the criteria established by either the World Health Organization
(WHO) or the American Diabetes Association (ADA); Hemoglobin A1c
(HbA1c) ≥ 6.5% based on repeated assessments; Fasting Plasma Glucose
(FPG) ≥ 126mg/dL (7.0 mmol/L) based on repeated assessments; Oral
Glucose Tolerance Test (OGTT) with two-hour plasma glucose (2-hr PG) ≥
200mg/dL (11.1 mmol/L) using the equivalent of an oral 75 g anhydrous
glucose dose dissolved in water; or symptoms of hyperglycemia or
hyperglycemic crisis with a random plasma glucose (RPG) ≥ 200mg/dL
(11.1 mmol/L).55,56 Exclusion criteria are listed in Table 3.
To help enroll a sufficient number of mtmDR participants for the

evaluation of sensitivity, a stepwise enrichment strategy, as indicated in
the prespecified protocol, was utilized mid-study to recruit sufficient
numbers of mtmDR participants. The enrichment strategy sought higher
risk participants with elevated HbA1c (>9.0%) levels or elevated Fasting
Plasma Glucose; this enrichment was independently activated by the
statistician while always remaining masked to the AI system outputs and
the ETDRS disease levels. To account for any unintentional spectrum bias in
the no/mild population, the study pre-defined a specificity outcome
parameter to correct for any potential spectrum bias resulting from this
enrichment strategy as co-primary.

Site initiation. All primary care sites in the study identified one or more in-
house operator trainees to perform the AI system protocol (see below).
After installation of the equipment by the Sponsor at the site, but before
any participant was recruited, AI system operator trainees had to attest
that they had not previously performed ocular imaging. Also, before start
of study recruitment at each site, AI system operator trainees underwent a
one-time standardized 4 h training program. They were trained how to
acquire images, how to improve image quality if the AI system gave an
insufficient quality output, and how to put images for analysis into the AI
system. No additional training was provided to any of the AI system

operators for the duration of the study. Independently, FPRC certified
expert photographers were identified in geographic locations close to
each site by the CRO, and documented 4W-D FPRC certification was
required before any participant was imaged.22 The CRO independently
completed site initiation visits at each site to ensure each site met all the
good clinical practice requirements prior to start of enrollment.

Study protocol. All participants gave written informed consent to
participate in both the AI system protocol, as well as the FPRC imaging
protocol, using two different cameras:
The AI system protocol consisted of the following steps:

1. Operator takes images with a nonmydriatic retinal camera (NW400,
Topcon Medical Systems, Oakland, NJ) according to a standardized
imaging protocol with one disc and one fovea centered 45° image
per eye;

2. Operator submits images to the AI system for automated image
quality and protocol adherence evaluation;

3. If the AI system outputs insufficient quality, steps 1–2 are repeated
until sufficient quality is output or 3 attempts were made. If the AI
system still indicates that images are of insufficient quality, the
participant’s pupils are dilated with tropicamide 1.0% eyedrops,
(provided by the Sponsor at each site), until the pupil diameter is at
least 5 mm in each eye or 30minutes have passed, and steps 1–2 are
repeated until sufficient quality is output or 3 attempts were made. If
the AI system still outputs that images are of insufficient quality, the
AI system output of insufficient quality is automatically provided to
the CRO via secure data transfer;

4. Whenever the AI system indicates sufficient quality, the AI system
disease level output (either mtmDR detected or mtmDR not detected)
is automatically provided to the CRO via secure data transfer; the
final AI system output provided to the CRO after this protocol was
mtmDR detected, mtmDR not detected or insufficient quality

The FPRC imaging protocol was then conducted, and consisted of the
following steps, all performed by an FPRC certified photographer:

1. If participant is not already dilated, dilating eye drops of tropicamide
1.0% are administered;

2. Digital widefield stereoscopic fundus photography is performed,
using a camera capable of widefield photography, (Maestro, Topcon
Medical Systems, Oakland, NJ) according to the FPRC 4W-D stereo
protocol, by an FPRC certified photographer;22

3. Anterior segment photography for media opacity assessment is
performed according to the Age Related Eye Disease Study,57 by an
FPRC certified photographer;

4. OCT of the macula is performed using a standard OCT system
capable of producing a cube scan containing at least 121 B scans,
(Maestro, Topcon Medical Systems, Oakland, NJ) according to the
FPRC OCT protocol, by an FPRC certified photographer.22

The FPRC certified photographers were masked to the AI system outputs
at all times.

Reference standards. The FPRC grading protocol consisted of determina-
tion of ETDRS Severity Scale (SS) levels for fundus photographs and
standardized OCT grading, as follows: the 4W-D images were read by three
experienced and validated readers at the FPRC according to the well-
established ETDRS SS, using a majority voting paradigm.12,58 The macular
OCT images were evaluated for the presence of center-involved DME by

Table 3. Study exclusion criteria

unable to understand the study

unable to or unwilling to sign the informed consent

indicate persistent vision loss, blurred vision, or floaters

previously diagnosed with macular edema, severe non-proliferative retinopathy, proliferative retinopathy, radiation retinopathy, or retinal vein
occlusion

history of laser treatment of the retina or injections into either eye, or any history of retinal surgery;

currently participating in another investigational eye study or actively receiving investigational product for DR or DME

a condition that, in the opinion of the investigator, would preclude participation in the study;

contraindicated for imaging by fundus imaging systems used in the study because of hypersensitivity to light, recently underwent photodynamic
therapy, or was taking medication that causes photosensitivity
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experienced readers at the FPRC according to the DRCR grading
paradigm.24 For each participant, the ETDRS levels were mapped to
mtmDR+ (ETDRS level 35 or higher and /or DME present), or mtmDR-
(ETDRS level 10–20 and DME absent), taking the worst of two eyes to
correspond to the outputs of the AI system at the participant level.16 To
measure sensitivity for the cases requiring immediate followup, called
vision threatening DR, we defined vtDR+ as ETDRS level 53 or higher, and/
or DME present, See Supplemental Table 2 for the mapping from ETDRS
and DME levels to dichotomous mtmDR- and mtmDR+ and vtDR+.
Because DME can be identified both on the basis of retinal thickening on
stereoscopic fundus photographs, as well as on the basis of retinal
thickening on OCT, we separately analyzed both. Stereoscopic fundus-
based Clinically Significant DME (CSDME) was identified if there was either
retinal thickening or adjacent hard exudates < 600 µm from the foveal
center, or a zone of retinal thickening > 1 disc area, part of which is less
than 1 disc diameter from the foveal center, according to the FPRC, in any
eye.22,58,59 OCT based center-involved DME was identified if a participant
had central subfield (a 1.0 mm circle centered on the fovea) thickness that
was >300 µm according to the FPRC, in any eye.20 Accordingly, we further
specify the definition of mtmDR where relevant:

fundus mtmDR+ is defined as

● ETDRS level ≥ 35 (determined from fundus photographs)and/or
● CSDME (determined from fundus photographs)

and multimodal mtmDR+ is defined as:

● ETDRS level ≥ 35 (determined from fundus photographs), and / or
● CSDME (determined from fundus photographs) and / or
● center-involved DME (determined from OCT).

and similarly for vtDR+ . FPRC readers were masked to the AI system
outputs at all times, masked to the fundus photograph reading when
evaluating the OCT images, and masked to OCT readings when evaluating
fundus photographs.

Primary and secondary outcomes. The primary outcomes were the
sensitivity and specificity of the AI system, which had a pre-set threshold
and was locked, to detect fundus-based mtmDR+ according to the FPRC
grading. The CRO received all final FPRC gradings and the final AI system
outputs for all participants. FPRC staff, primary care site personnel, Sponsor
personnel, and the statistical team were masked at all times to the AI
system outputs. There were no interim analyses. The analysis was
conducted following statistical analysis plan finalization and final database
lock.

Statistical analysis. Study success was pre-defined as both sensitivity and
specificity (see below) of the AI system in the US diabetes population. The
hypotheses of interest were

H0 : p < p0 vs:HA : p � p0

where p is the sensitivity or specificity of the AI system and p0= 75% for
the sensitivity endpoint and p0= 77.5% for the specificity endpoint under
the null hypotheses. The alternative hypotheses were 85% for sensitivity
and 82.5% for specificity, reflecting anticipated enrollment numbers, and
pre-specified regulatory requirements. One-sided testing was further pre-
specified for both sensitivity and specificity; a one-sided 2.5% Type I error
was used resulting in a one-sided 97.5% rejection rule per hypothesis. To
preserve Type I error, study success was defined as requiring both null
hypotheses to be rejected at the end of the study, e.g.

Pπ HA Datajð Þ>0:975:

The primary sensitivity calculation was performed using a logistic
regression model including all mtmDR participants without any baseline
covariate adjustment while the primary specificity calculation was
performed using a logistic regression model with enrichment as a baseline
covariate. A Firth adjustment was used to project sensitivity without any
baseline covariate adjustment while the specificity was projected using
absent enrichment status to diffuse spectrum bias60; enrichment was
intended to increase the number of mtmDR cases based on stepwise
increase of HbA1C levels, and thus expected to cause enrichment
spectrum bias. Therefore, the specificity calculation was prespecified to
correct for such spectrum bias; no such correction was prespecified for
sensitivity analysis, because the goal was to shift the frequency of more
severe DR cases. No data imputation was used for primary analyses.

Analyses were based on the data from the ITS population: participants
who had valid results on both the FPRC imaging and reading protocol, and
the AI system output, except where indicated; reported subgroup analyses
were prespecified; subgroups < 10 participants are not reported. Results
are reported as posterior means, medians and with corresponding two-
sided 95% confidence intervals (CI). All analyses were conducted with the
use of SAS software, version 9.1. Sample sizes for these hypotheses were
calculated for at least 85% power and one-sided 2.5% Type 1 error,
requiring samples of 149 mtmDR positive participants and 682 mtmDR
negative DR participants.
The study protocol and statistical analysis plan are available in the

Supplementary information.

Code availability
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Data and materials availability
The datasets generated during the current study that were used to
calculate the primary outcome parameters are available upon reasonable
request from the corresponding author, M.D.A., as well as from P.T.L.
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