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Abstract: Liquid biopsy is a minimally invasive method for detecting soluble factors, including
circulating tumor DNA (ctDNA), in body fluids. ctDNA carrying tumor-specific genetic or epigenetic
alterations is released into circulation from tumor cells. ctDNA in the plasma contains somatic
mutations that have occurred in the tumor, and reflects tumor progression and therapeutic effects
promptly and accurately. Furthermore, ctDNA is useful for early detection of recurrence and
estimation of prognosis and may be utilized for diagnosis and personalized medicine for treatment
selection. Thus, in the near future, it will be possible to select the most appropriate treatment based
on real-time genetic information using ctDNA.

Keywords: circulating tumor DNA; liquid biopsy; colorectal cancer; minimal residual disease;
and biomarker

1. Liquid Biopsy and Circulating Tumor DNA

It is important to identify tissue-based biomarkers before treatment to predict the prognosis and
efficacy of systemic therapy in metastatic colorectal cancer (mCRC) [1]. For, example, KRAS and NRAS
mutations [2–4] and HER2 amplification [5,6] are negative predictive factors of efficacy for epidermal
growth factor receptor (EGFR) inhibitor in mCRC. BRAF V600E mutation is a strong predictive factor
of poor prognosis and negative predictor of standard chemotherapy [7,8]. In contrast, HER2-targeted
therapies are an effective approach for HER2-positive mCRC [9,10]. Furthermore, microsatellite
instability is a predictive factor of efficacy for immune checkpoint inhibitors in mCRC [11,12]. Although
tissue biomarkers are most useful in estimating prognosis and predicting therapeutic response, a new
diagnostic concept referred to as ‘liquid biopsy’ has drawn attention over the past few years [13,14].
Liquid biopsy is defined as a minimally invasive method for detecting several soluble factors such
as circulating tumor DNA (ctDNA), circulating tumor cells, and exosomes using body fluids [15–17].
Among them, the studies of ctDNA are rapidly increasing owing to the advancement of molecular
technology that facilitates the detection and quantification of tumor-associated genomic variants.
Cell-free DNA (cfDNA) is extracellular DNA present in a number of body fluids including blood,
urine [18], cerebrospinal fluid [19], pleural fluid [20], ascites [21], and saliva [22]. It is derived from
both normal and cancer cells undergoing apoptosis and necrosis [23]. cfDNA concentrations may
change according to comorbidities such as cerebrovascular disorder [24], or physical condition [25].
cfDNA clearance rapidly occurs in several organs such as the kidney, liver and spleen and their half life
time is very short, approximately from several minutes to hours [26–28]; these data suggest that cfDNA
analysis may represent a real-time tumor burden. ctDNA defines the fraction of cfDNA that originates
from tumor cells, generally inferred by the detection of somatic variants, and are a small fraction of the
total cfDNA that contains point mutations, rearrangements, amplifications, and even gene copy number
variations. The comparison between conventional biopsy and liquid biopsy reported by the joint
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review of ctDNA by the American Society of Clinical Oncology/College of American Pathologists [29]
is shown in Table S1. A liquid biopsy can deliver more complete information regarding the patient’s
entire tumor burden, because the sample represents all tumor DNA present in the circulation as
opposed to the spatial limitations of a biopsy sample from a single lesion within a single anatomic
site [30]. To understand the clinical significance of ctDNA, investigation of the relationship between
clinicopathological factors and ctDNA is of importance. The sensitivity and specificity of ctDNA
detection in plasma has been correlated with tumor size and stage in CRC [31,32]. Furthermore, the
significant association between ctDNA and metastatic organs, particularly in liver metastasis, has
been suggested [31,33]; however, no relationship has been observed in peritoneal metastasis [31,33]
and lung metastasis in CRC [31,34]. Thus, it is necessary to take into account the stage and patient
background factors in order to interpret ctDNA results accurately.

2. Advancement of Detection Systems of ctDNA

ctDNA includes DNA alterations that are tumor-specific genetic abnormalities (for example: point
mutations, deletions/insertions), epigenetic alterations (for example: methylation of tumor suppressor
gene promoter), and loss of heterozygosity [23,35]. The high concordance of RAS/BRAF mutational
status between ctDNA and tumor tissue based on examination has been reported in mCRC [33,34,36].
The methodologies used for the detection of ctDNA are shown in Table S2 [37–47]. Generally, real-time
PCR methods that apply mutation-specific PCR have been used to detect plasma RAS/BRAF mutation.
Because new technologies such as BEAMing (beads, emulsion, amplification, and magnetics) [41]
and droplet digital-PCR (dPCR) [32] have been developed, the detection sensitivity of ctDNA has
improved greatly. However, PCR-based detection methods enable the detection of only a few known
mutations [48]. The detection sensitivity of the Sanger method, a first generation sequencing method,
is very low at about 10% and hence not suitable for ctDNA detection. The detection sensitivity of
next-generation sequencing (NGS) with deep sequencing has increased to 0.1-1.0% [42,44]. In ctDNA
analysis using NGS, it is possible to detect newly emerged mutations after treatment, and evaluate
serial changes in the tumor genome and the mechanism of treatment resistance. On the other hand,
NGS has been reported to have higher PCR error and misreading than dPCR, and the high cost is also a
challenge in clinical application [49]. Therefore, dPCR and NGS should be used according to the clinical
or research purpose and after understanding their characteristics. Furthermore, as one of the latest
developments in the methodology of ctDNA, the PCR assay panel is designed based on phylogenetic
analysis, targeting clonal and subclonal single nucleotide variants to facilitate non-invasive tracking of
the patient-specific tumor phylogeny [50]. Using this technology, a multicenter cohort study has shown
that, in multivariate analysis, ctDNA status is independently associated with relapse after adjusting
for known clinicopathological risk factors in stage I to III CRC [51]. Therefore, because this technology
uses tissue DNA obtained from individual patients, it may contribute further to personalized medicine
compared to conventional gene panels in CRC.

3. Clinical Utility of ctDNA for Advanced CRC

ctDNA analysis can be useful to detect cancer at an early stage in patients, to detect minimal
residual disease (MRD), and to detect early relapse after curative surgery [52]. Furthermore, it can
also be useful to predict early chemotherapeutic responses and to monitor secondary resistance of
chemotherapy in patients with metastasis [52]. In this section, we review the clinical utility of ctDNA
for MRD/recurrence monitoring, prediction of chemotherapeutic response, and prediction of secondary
resistance to chemotherapy in patients with CRC.

3.1. Minimal Residual Disease and Recurrence Monitoring

The purpose of postoperative adjuvant chemotherapy is to reduce the risk of recurrence and
improve prognosis. To date, the indication for postoperative adjuvant chemotherapy is based on
pathological biomarkers, such as invasion depth (T factor) and the presence or absence of lymph
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node metastasis (N factor). Postoperative fluoropyrimidine and oxaliplatin combination therapy is
recommended as the standard treatment for stage III patients and stage II patients with a high risk
of recurrence, but not for other stage II patients [53,54], although there is not enough evidence to
support this classification. Furthermore, although previous reports showed that several biomarkers
predict the efficacy of adjuvant chemotherapy, such as microsatellite instability status [55–57], 18q loss
of heterozygosity [58,59], and distinct gene signatures [60–62], among others, the development of
molecular markers that more accurately predict the risk of recurrence is still extremely urgent, as they
have not yet been used in clinical practice.

3.1.1. Previously Reported Clinical Relevance of ctDNA for Adjuvant Chemotherapy

ctDNA analysis can be useful to detect in patients cancer at an early stage, to detect MRD, and to
detect early relapse after curative surgery. Detection of ctDNA after curative surgery may signal the
presence of MRD even in the absence of any other clinical evidence of disease (Figure 1) [63,64].

Cancers 2020, 12, x 3 of 11 

pathological biomarkers, such as invasion depth (T factor) and the presence or absence of lymph 

node metastasis (N factor). Postoperative fluoropyrimidine and oxaliplatin combination therapy is 

recommended as the standard treatment for stage III patients and stage II patients with a high risk of 

recurrence, but not for other stage II patients [53,54], although there is not enough evidence to 

support this classification. Furthermore, although previous reports showed that several biomarkers 

predict the efficacy of adjuvant chemotherapy, such as microsatellite instability status [55–57], 18q 

loss of heterozygosity [58,59], and distinct gene signatures [60–62], among others, the development 

of molecular markers that more accurately predict the risk of recurrence is still extremely urgent, as 

they have not yet been used in clinical practice. 

3.1.1. Previously Reported Clinical Relevance of ctDNA for Adjuvant Chemotherapy 

ctDNA analysis can be useful to detect in patients cancer at an early stage, to detect MRD, and 

to detect early relapse after curative surgery. Detection of ctDNA after curative surgery may signal 

the presence of MRD even in the absence of any other clinical evidence of disease (Figure 1) [63,64]. 

 

Figure 1. Minimal residual disease (MRD) monitoring and early diagnosis of relapse. Liquid biopsy 

approaches might be well suited to measuring MRD, as residual tumor components can be detected 

with high sensitivity. Because MRD-positive patients have higher risk of relapse, early diagnosis of 

relapse may improve patient outcomes. This figure reflects a representative case of our own original 

data. 

Liquid biopsy approaches might be suitable for estimating MRD, because residual tumor 

components can be detected using high sensitivity methods. Tie et al. [63] reported a prospective 

cohort study in patients with stage II colon cancer after curative resection to evaluate clinical utility 

of postoperative ctDNA status about MRD detection. ctDNA was analyzed using the Safe-SeqS 

method, which is a low error rate sequencing technology. A unique identifier is assigned to each DNA 

molecule to be analyzed using amplification and deep sequencing of universally tagged DNA 

molecules. This allows for differentiation between real mutations and errors introduced during the 

amplification and sequencing processes. Postoperative ctDNA was detected in 14 of 178 cases (7.9%); 

of the 14 cases, 11 cases relapsed (78.6%). In contrast, recurrence was observed in 16 of 164 cases 

Figure 1, Osumi et al.

2 4 6 8 10 12 14 16 18 20

Months since surgery

Adjuvant  
chemotherapy

%
 m

u
ta

n
t 
a

lle
le

s
 

0

RelapseSurgery

Surveillance

0 

2 

4 

6 

8 

10 

12 
APC R1450Ter 

KRAS G12V 

Early detection of 
relapse 

Detection of minimal 
residual disease 

Figure 1. Minimal residual disease (MRD) monitoring and early diagnosis of relapse. Liquid biopsy
approaches might be well suited to measuring MRD, as residual tumor components can be detected with
high sensitivity. Because MRD-positive patients have higher risk of relapse, early diagnosis of relapse
may improve patient outcomes. This figure reflects a representative case of our own original data.

Liquid biopsy approaches might be suitable for estimating MRD, because residual tumor
components can be detected using high sensitivity methods. Tie et al. [63] reported a prospective
cohort study in patients with stage II colon cancer after curative resection to evaluate clinical utility of
postoperative ctDNA status about MRD detection. ctDNA was analyzed using the Safe-SeqS method,
which is a low error rate sequencing technology. A unique identifier is assigned to each DNA molecule
to be analyzed using amplification and deep sequencing of universally tagged DNA molecules. This
allows for differentiation between real mutations and errors introduced during the amplification and
sequencing processes. Postoperative ctDNA was detected in 14 of 178 cases (7.9%); of the 14 cases,
11 cases relapsed (78.6%). In contrast, recurrence was observed in 16 of 164 cases (9.8%), where
ctDNA was negative after surgery. The postoperative ctDNA-positive cases had significantly shorter
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recurrence free survival (RFS) (HR 18.0, p < 0.001) than the negative cases, and the 3-year RFS rate
were 0% for ctDNA-positive and 90% for negative cases. Further, postoperative ctDNA status was an
independent prognostic factor for RFS in multivariate analysis, with or without adjuvant therapy [65].
Tie et al. [66] also reported on the clinical utility of ctDNA for MRD in patients with locally advanced
rectal cancer (T3/T4 and/or lymph node metastasis-positive). ctDNA was analyzed using Safe-SeqS
methods. In their study, 23 cases (15.0%) relapsed and although there was no association between
pre-treatment ctDNA levels and RFS, patients who were positive for ctDNA after chemoradiotherapy
also had significantly shorter RFS (post-chemoradiotherapy, HR 6.6, p < 0.001, after surgery: HR 13.0,
p < 0.001). Three-year RFS rate was 33.0% for ctDNA-positive cases and 87.0% for negative cases after
surgery. Postoperative ctDNA status was an independent prognostic factor for RFS in multivariate
analysis irrespective of postoperative adjuvant therapy (with adjuvant therapy: HR 10.0, p < 0.001;
without adjuvant therapy: HR 22.0, p < 0.001). Another study also reported the results of the clinical
utility of ctDNA as a biomarker for the detection of MRD, identification of patients at a high risk of
recurrence, and early detection of recurrence by longitudinal ctDNA analysis in patients with stage I to
III CRC [51].

These results suggest that ctDNA may be useful for assessing the risk of postoperative recurrence,
monitoring the efficacy of adjuvant chemotherapy, and as a biomarker for the early detection of
recurrence in patients with CRC after curative resection. ctDNA may improve the treatment outcomes
by helping administer a more intensive treatment to patients with MRD at an increased risk of relapse.
Furthermore, ctDNA may also contribute to preventing unnecessary comorbidities and adverse events,
because physicians can easily select patients who are likely to benefit from adjuvant chemotherapy.
Currently, clinical trials stratifying treatments according to ctDNA status are ongoing, and further
novel findings regarding ctDNA for MRD are expected.

3.1.2. Prospective Trials to Validate the Clinical Utility of ctDNA for Adjuvant Chemotherapy

Planned clinical trials to validate clinical utility of ctDNA for adjuvant chemotherapy are
summarized in Table S3. Among them, the DYNAMIC-III trial (ACTRN 12617001566325) is a
multicenter phase II/III randomized controlled study to compare the standard treatment with treatment
based on the result of ctDNA analysis in stage III colon cancer after curative resection. The purpose
of the DYNAMIC-III study is to determine whether chemotherapy based on the presence or absence
of ctDNA after curative surgery for stage III CRC is more effective than standard of care treatment.
In this trial, subjects will be randomly assigned 1:1 between the standard and experimental treatment
groups based on ctDNA information obtained 5–6 weeks after surgery with curative resection for
stage III colon cancer. In the group that determines treatment selection based on the results of
ctDNA, if ctDNA is positive, treatment intensity is escalated, while if ctDNA is negative, treatment
intensity is de-escalated or the treatment period is shortened. The endpoints of this study are as
follows: (i) a de-escalation treatment strategy is non-inferiority in terms of the rate of 3-year RFS
and (ii) an escalation treatment strategy is superior in the 24 months RFS compared to the standard
of care treatment. Second, IMPROVE Intervention Trial Implementing Non-Invasive Circulating
Tumor DNA Analysis to Optimize the Operative and Postoperative Treatment for Patients with CRC
(ClinicalTrials.gov Identifier: NCT03748680) is also currently ongoing. The purpose of the IMPROVE
Intervention Trial is to evaluate the efficacy and safety of adjuvant chemotherapy for ctDNA positive
patients after curative surgery in stage I/II CRC. The endpoint of this study is to evaluate whether
adjuvant chemotherapy (FOLFOX or CapeOx) improves the disease free survival (DFS) in patients
with MRD (ctDNA positive) to whom adjuvant chemotherapy has not been recommended as the
standard treatment. Finally, the CIRCULATE study is an investigator-initiated, multicenter; prospective,
randomized, controlled trial (ClinicalTrials.gov Identifier: NCT04089631), which is also ongoing. The
purpose of the CIRCULATE study is to validate the efficacy of adjuvant therapy in patients with
stage II colon cancer. The endpoint of this study is to compare the DFS of patients who are positive
for postoperative ctDNA, with and without the administration of capecitabine. Based on the above
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data, blood-based ctDNA testing is expected to update the current primary tumor/regional lymph
nodes/metastasis (TNM) classification of cancer staging. The development of new TNM staging, the
so-called “TNM and Blood: TNMB system” may outperform the current TNM cancer staging system.

3.2. Treatment Response, Clonal Evolution, and Resistance

Liquid biopsies may play an important role in the monitoring the treatment response and/or
resistance to systemic therapy (Figure 2) [65,67].
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Figure 2. Evaluation of chemotherapeutic response and prediction of resistance to chemotherapy. Serial
tumor-specific mutation analysis in the blood of patients is useful to monitor response and resistance
to molecular targeted drugs. Early decrease of mutant allele after chemotherapy may predict better
therapeutic response and clinical outcomes. Furthermore, liquid biopsies can detect the emergence of
resistant clones of chemotherapy before radiographic confirmation of disease progression. This figure
reflects a representative case of our own original data.

The clinical relevance of ctDNA analysis for monitoring the therapeutic response has been reported
in patients with mCRC [67–69]. High basal ctDNA levels were associated with a short overall survival,
and ctDNA assessment could act an early surrogate marker of treatment response [70,71]. Early
changes in ctDNA levels during chemotherapy with molecular targeted drugs can predict the treatment
outcomes [65,72–74]. Similarly, liquid biopsies have been used to identify mechanisms of resistance
to EGFR inhibitor therapy in patients with mCRC [75]. Interestingly, the emergence of resistant
KRAS mutated clones could be detected up to several months before radiological evidence of disease
progression [76,77]. Mutations in the EGFR extracellular domain that negate the binding of EGFR
inhibitors, such as cetuximab and panitumumab, have been detected in patients with CRC who had
achieved a partial response or stable disease after EGFR inhibitor therapies [78]. Mesenchymal-epithelial
transition amplification, which is reported as one of the resistance factors of EGFR blockade, has also
been detected in the plasma of patients with mCRC after initiation of EGFR inhibitor therapy [79].
Furthermore, Russo et al. [80] longitudinally monitored plasma ctDNA to assess LMNA–NTRK1 gene
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fusion status in a patient with mCRC during treatment with the tyrosine kinase receptor inhibitor,
entrectinib. Information obtained from liquid biopsies has enabled us to detect previously unknown
mutations related to resistance to entrectinib [80]. These findings suggest the potential of ctDNA
analyses for monitoring of clonal evolution and guiding therapeutic decisions. Serial ctDNA analysis
in patients with CRC demonstrated elevation of mutant KRAS clones during anti-EGFR therapy and
a later decline in the mutant KRAS clones upon the withdrawal of anti-EGFR therapy [67]. Some
studies reported that the emergence of resistant KRAS mutated clones during anti-EGFR therapy
influenced the clinical outcomes of patients treated with anti-EGFR therapy. Cremolini et al. [81]
reported that patients without plasma RAS mutations showed a partial response; in contrast, patients
with plasma RAS mutations did not exhibit a partial response. Furthermore, patients without plasma
RAS mutation had significantly longer progression free survival (PFS) than those with plasma RAS
mutation, with a median PFS of 4.0 vs. 1.9 months (p = 0.03) in the CRIKET cetuximab re-challenge
trial [81]. These results suggest that screening of EGFR signaling pathway by liquid biopsy may
contribute to select patients that would benefit from anti-EGFR antibody re-challenge. As evidence of
successful re-challenge strategies with targeted therapies may be found in patients with other tumor
types, such as melanoma or non-small cell lung cancer, it is necessary to verify the re-challenge strategy
of anti-EGFR antibody using ctDNA for mCRC.

4. Conclusions

ctDNA is a promising biomarker that can obtain quantitative and qualitative comprehensive tumor
DNA in a minimally invasive manner. ctDNA assays will guide the choice of the most appropriate
chemotherapy treatments, and predict early recurrence, chemotherapeutic response, and resistance.
However, currently, most of them are only being used in the context of clinical trials. Thus, as ctDNA
analysis is expected to be a useful decision-making tool that would contribute to precision medicine,
further data collection from prospective studies is required to definitely establish ctDNA analysis as a
future clinical application.

Supplementary Materials: The following are available online at http://www.mdpi.com/2072-6694/12/6/1566/s1,
Table S1: The comparison of ctDNA versus tissue biopsy testing, Table S2: Comparison of technologies used for
ctDNA analysis, Table S3: Planned clinical trials to evaluate the utility of circulating tumor DNA for adjuvant
chemotherapy in stage II or III colon cancer.
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