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Abstract

Background: There has been an increasing body of epidemiologic and biochemical evidence implying the role of
cerebral insulin resistance in Alzheimer-type dementia. For a better understanding of the insulin effect on the
central nervous system, we performed microarray-based global gene expression profiling in the hippocampus,
striatum and prefrontal cortex of streptozotocin-induced and spontaneously diabetic Goto-Kakizaki rats as model
animals for type 1 and type 2 diabetes, respectively.

Results: Following pathway analysis and validation of gene lists by real-time polymerase chain reaction, 30 genes
from the hippocampus, such as the inhibitory neuropeptide galanin, synuclein gamma and uncoupling protein 2,
and 22 genes from the prefrontal cortex, e.g. galanin receptor 2, protein kinase C gamma and epsilon, ABCA1 (ATP-
Binding Cassette A1), CD47 (Cluster of Differentiation 47) and the RET (Rearranged During Transfection)
protooncogene, were found to exhibit altered expression levels in type 2 diabetic model animals in comparison to
non-diabetic control animals. These gene lists proved to be partly overlapping and encompassed genes related to
neurotransmission, lipid metabolism, neuronal development, insulin secretion, oxidative damage and DNA repair.
On the other hand, no significant alterations were found in the transcriptomes of the corpus striatum in the same
animals. Changes in the cerebral gene expression profiles seemed to be specific for the type 2 diabetic model, as
no such alterations were found in streptozotocin-treated animals.

Conclusions: According to our knowledge this is the first characterization of the whole-genome expression
changes of specific brain regions in a diabetic model. Our findings shed light on the complex role of insulin
signaling in fine-tuning brain functions, and provide further experimental evidence in support of the recently
elaborated theory of type 3 diabetes.

Background
Diabetes mellitus is a chronic and heterogenous meta-
bolic disorder affecting millions of patients worldwide.
Type 1 diabetes is characterized by absolute insulin defi-
ciency due to viral or autoimmune destruction of pan-
creatic beta cells, while the major feature of the more
common type 2 variant is obesity-linked impairment of
intracellular insulin signaling [1-3]. Apart from its well-
known effect on blood sugar levels, insulin is known to
regulate the growth, differentiation and metabolism of its

target cells at multiple levels [1]. Insulin signaling path-
ways have been shown to converge on and modulate the
transcription of a plethora of genes [2]. In light of this, it
is not surprising that gene expression microarrays
revealed dramatic alterations in global gene expression
profiles of several organs such as skeletal muscles and
adipose tissue [3], intestine [4] and the liver [5] both in
type 1 and type 2 diabetes.
Although the brain does not count as a classical target

organ of insulin, it has recently been shown that this
polypeptide hormone plays a crucial role in human neu-
rophysiology, and dysregulation of insulin receptor sig-
naling in various mental illnesses [6].
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It has long been known that insulin can pass the blood
brain barrier by receptor mediated endocytosis [7]. More-
over, it turned out that several brain regions are capable of
producing insulin in situ [8]. The insulin receptor and
insulin receptor substrate-1 (IRS1) are expressed in vegeta-
tive nuclei of the hypothalamus, in amygdala, hippocam-
pus and in the neocortex [9]. Based on this expression
pattern, cerebral insulin signaling has been implicated in
the regulation of neurotransmission, feeding and cognitive
functions [10].
Along with leptin, insulin seems to be a negative feed-

back signal in well-fed state due to its ability to reduce
appetite and body weight. It might be assumed that obe-
sity and hyperinsulinism lead to desensitization of insu-
lin receptors situated in the blood brain barrier, giving
rise to central insulin resistance [11].
There are several lines of mostly indirect evidence sup-

porting the role of insulin signal transduction in learning
and long-term memory. The first observations date back
to the famous Rotterdam study, revealing that type 2 dia-
betes doubled the risk of patients to develop Alzheimer-
type dementia, while individuals suffering from type 1
diabetes and receiving insulin therapy had four times the
risk [12]. These results were corroborated by more recent
studies showing that subjects with elevated body mass
index, obesity, insulin resistance and diabetes have an
increased risk of dementia and cognitive impairment,
suggesting a causal link between decreased insulin secre-
tion and the progression of mental decline [13]. Subse-
quently, post-mortem brain studies unveiled that cerebral
insulin, insulin receptor and IGF levels are inversely pro-
portional with the progression of Alzheimer’s disease
[14]. On the other hand, intranasal and intravenous insu-
lin administration has reportedly improved the cognitive
functions of patients suffering from memory disorders,
while intracerebroventricular insulin enhanced memory
formation in rodents [15,16]. Moreover, intracerebral
administration of streptozotocin, a drug known to induce
type 1 diabetes by impairing pancreatic b cells when
added intravenously, also led to insulin depletion in the
brain with subsequent neurodegeneration [17].
The interrelationship between diabetes and Alzheimer’s

disease seems to be mutual as neurotoxins termed amy-
loid beta-derived diffusible ligands have been shown to
compromise cerebral insulin signaling [18]. On the other
hand, oxidative stress elicited by reactive advanced glyca-
tion end products (RAGEs) that are characteristic of dia-
betes might accelerate neuronal damage in memory
disorders [19].
Based on these observations, a group of researchers have

recently defined Alzheimer’s as a neuroendocrine disorder
and coined the terms “type 3” or „brain-type” diabetes
[20], pointing out that this condition can simultaneously
be characterized both by central insulin deficiency and

insulin resistance. Their work highlighted the importance
of impaired insulin signaling in the dysfunction and apop-
totic death of cortical neurons.
Although global transcriptome profiling has already

been carried out in Alzheimer’s disease [21], according to
our best knowledge this is the first study aiming to analyze
whole genome gene expression profiles of various cerebral
areas in streptozotocin-induced and spontaneously dia-
betic Goto-Kakizaki rats as model animals for type 1 and
type 2 diabetes, respectively. Our results demonstrated an
altered expression pattern in the hippocampus and pre-
frontal cortex of type 2 diabetes model, while no such
changes were found in the corresponding brain areas of
the type 1 model animals.

Results
The Agilent rat whole genome custom array encompassed
41,129 different oligonucleotide probes according to the
latest annotation of the rat genome. Following normaliza-
tion and technical screening of raw data, approximately
15-26% of all probes remained. Filtering out genes without
significant expression changes resulted in a more drastic
reduction of transcript numbers. Statistical analysis and
post-screening procedures highlighted spectacular differ-
ences in expression profiles of type 2 diabetic brains.
Importantly, it turned out that Goto-Kakizaki rats exhib-
ited profound changes in gene expression profiles, while
no genes showed significant changes in the transcriptomes
of streptozotocin-treated rats versus control animals.
Detailed analyses of variations obtained in expression pro-
files of the studied brain regions of Goto-Kakizaki rats
demonstrated large changes in the hippocampus and pre-
frontal cortex, as 266 versus 147 probes were found to be
differentially expressed, respectively, as compared to Wis-
tar controls. Of them, 83 were found in both brain terri-
tories. In contrast, only 3 genes with altered expression
were identified in the striatum, although they were found
in the other two regions as well (Table 1 for detailed gene
lists, see Additional File 1). In summary, we obtained a
cohort of region-specific or overlapping expression altera-
tions in the Goto-Kakizaki rat model save the striatum
that did not show any region-specific patterns at all.
Next, we wished to assign biological relevance to our

gene lists by ordering them in biochemical pathways.
The Biological Process domain of the Gene Ontology
database provided the most extensive pathway assign-
ment. 64 genes from the hippocampus and 36 from the
prefrontal cortex were found to be members of certain
pathways (Table 1).
Finally, gene expression changes fulfilling the criteria of

mathematical-statistical selection and pathway analysis
were validated by real time PCR using TaqMan Low
Density Arrays. It should be noted that only genes with
commercially available TaqMan probes could be analyzed.
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Therefore, 42 out of the 64 hippocampal and 27 out of the
36 prefrontal genes were subject to validation. Finally, 30
genes from the hippocampus (71%) and 22 genes from the
prefrontal cortex (82%) were validated (Table 2; for
detailed gene lists, see Additional File 2). According to our
results, 9 genes showed changes both in the hippocampus
and in prefrontal cortex in the type 2 diabetes model (for
a detailed list, see Additional File 2). Finally, pathway ana-
lysis revealed that most genes with altered expression pat-
terns in the hippocampus are involved in oxidative stress
and DNA damage signaling, cell cycle regulation, develop-
ment and lipid metabolism of the central nervous system
as well as in the regulation of feeding behavior (Table 2
and Figure 1).
Regarding the prefrontal cortex, perturbed expression of
a set of neurotransmission and lipid metabolism related
genes has been unveiled with significant overlap with
the hippocampal alterations (Table 3 Additional File 2
and Figure 1). These findings seem to be consistent with
functional cerebral impairments described in diabetic
individuals such as cognitive deficit, increased appetite
and food ingestion, and development of depression [22].
It would be of importance to clarify whether genes with
altered expression patterns are controlled by insulin-
dependent transcription factors such as members of the
forkhead (FOXO) family [23].

Discussion
Insulin regulates gene expression via a set of transcrip-
tion factors including the FOXO family [24]. As insulin
and its receptors are both known to be expressed and to
govern important functions in the brain, it seemed rea-
sonable to search for altered gene expression patterns in
animal models of type 1 and type 2 diabetes characterized
by absolute or relative insulin deficiency. Here we
demonstrated a substantial difference in the gene expres-
sion pattern of type 2 diabetic rats vs. control animals.

The genetically determined, spontaneously diabetic
Goto-Kakizaki rats exhibited profound gene expression
alterations suggesting that long-standing impairment of
insulin signaling has a well detectable effect on the cen-
tral nervous system. On the other hand, we could hardly
detect any alterations in the streptozotocin-induced dia-
betic animal model (Table 1), suggesting that acute insu-
lin deficiency and/or elevated blood sugar levels do not
influence significantly the cerebral gene expression pat-
tern, or at least it is undetectable four weeks after the
streptozotocin treatment in a microarray based experi-
ment. It is tempting to speculate that streptozotocin-
induced diabetic rats might successfully compensate
peripheral insulin deficiency by increased cerebral insulin
production. However, this presumption seems to contra-
dict the fact that activation of the ins2 gene was not
detected - maybe due to low sensitivity of the whole gen-
ome custom array.
Three main brain regions have been studied here: the

prefrontal cortex and hippocampus were analyzed due to
their well-known roles in learning and memory forma-
tion, while the striatum seemed to be an easily dissectable
control region where no insulin action had been pre-
sumed. It is also interesting to note that streptozotocin-
treted rats exhibited some gene expression alterations in
the hippocampus only. These observations are in a good
agreement with the findings of Agrawal et al., showing
that insulin and its receptor are mostly expressed in this
brain region, and intracerebroventricular administration
of streptozotocin induced memory deficit in rats [25].
Streptozotocin has been proven to induce insulin defi-

ciency and hyperglycemia (≥ 15 mM) within 72 hours in
treated animals, and they were alive for 4 weeks following
beta-cell destruction. In our opinion, this time window
should have been enough to alter gene expression pro-
files in the brain as there are several reports highlighting
the early effects of streptozotocin on gene expression in
various organs [26]. The major drawback of the global
microarray method is its minor sensitivity compared to
that of TaqMan-based quantitative reverse transcription
PCR assays. However, the high RT-PCR validation rate of
microarray data in Goto-Kakizaki rats (71% in the hippo-
campus and 82% in the prefrontal cortex, respectively)
convinced us of the reasonably good reliability of the
chip hybridization technique. Theoretically, some minor
gene expression alterations in the brains of type 1 dia-
betic model animals might have been left undetected by
the chip hybridization technique, therefore, we are com-
mitted to validate the “non-changed” status of a set of
genes which were significantly altered in type 2 diabetic
animals using open-array real-time PCR assays.
Analyzing the specific genes, the mRNA levels of gala-

nin, an inhibitory neuropeptide with pleiotropic roles
were substantially upregulated in the hippocampus.

Table 1 Number of genes with significant expression
changes in specific brain areas of diabetes models vs.
control rats.

Type 2 diabetes
model

Type 1 diabetes
model

Hipp Pfc Str Hipp Pfc Str

Statistical analysis 504 232 3 7 0 0

Post-screening 266 147 3 0 0 0

Genes in significant pathways 64 36 0 0 0 0

Genes to be validated* 42 27 0 0 0 0

Validated genes 30 22 0 0 0 0

The table represents significant genes remaining following each stage of the
normalization-evaluation procedure. For details, see Methods and Results
sections. Abbreviations used: Hipp: hippocampus; Pfc: prefrontal cortex; Str:
striatum.

* Reduction was due to technical criteria of the TaqMan RT-PCR system (only
genes with commercially available TaqMan probes could be validated).
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Notably, galanin were identified in almost all perturbed
pathways of the hippocampus (Table 2). Our results cor-
roborated the findings of Mei et al. who detected elevated
galanin expression in the celiac ganglion in diabetic rats
[27]. Intracerebroventricular administration of galanin or
its overexpression in transgenic mice was shown to com-
promise hippocampus-dependent learning processes
[28,29]. Galanin has been proposed to play a role in
depression-like behavior [30]. On the other hand,
improvement of cognitive functions has been reported in
animals treated with galanin receptor antagonists [28].
As cerebral insulin deficiency presents with similar symp-
toms, it is tempting to speculate that impairment of cere-
bral functions in diabetes might be mediated at least in
part by elevated galanin levels. This assumption is sup-
ported by the fact that plasma galanin levels have been
found to be significantly elevated in patients with type 2
diabetes [31], and increased plasma galanin levels were

measured following oral glucose load in a healthy popula-
tion [32]. If we managed to find a causal relationship
between cerebral insulin deficiency and galanin overex-
pression, we might be able to ameliorate cerebral symp-
toms of diabetes via pharmacological modulation of
galanin receptors and to slow down the progression of
type 3 diabetes [20].
The role of galanin receptors is also highlighted by

our results which demonstrated altered galanin receptor
2 expression levels in the prefrontal cortex (Table 3).
Type 2 galanin receptors are mostly expressed in the
perikaryon of neurons, mediating calcium signals and
promoting the survival of neurons [33], and their stimu-
lation reportedly elicited antidepressive effects [34].
Apart from galanin and its receptor, there are several

other validated genes as well, which have already been
implicated in the pathogenesis of both diabetes and psy-
chiatric disorders in some respect. For instance, Chi3l1

Table 2 List of significant pathways in the hippocampus of type 2 diabetic rats.

GO Biological processes HIPPOCAMPUS Validated Not validated

Insulin/GH secretion GO:30073: insulin secretion Gal

GO:30252: growth hormone secretion Gal

Oxidative stress DNA
damage cell cycle

GO:6950: response to stress Gal

GO:305: response to oxygen radical Cxcl4(Pf4)

GO:303: response to superoxide Akap3

GO:302: response to reactive oxygen species Gal Nudt15_predicted

GO:15992: proton transport Ucp2

GO:6977: DNA damage response, signal transduction by p53 class
mediator resulting in cell cycle arrest

Ptprv

GO:42770: DNA damage response, signal transduction Ftcd

GO:7346: regulation of progression through mitotic cell cycle Snf1lk

GO:6269: DNA replication, synthesis of RNA primer NM_001008768
(Prim1)

GO:7089: traversing start control point of mitotic cell cycle Cdk10

Lipid metabolism GO:1573: ganglioside metabolism Gm2a

GO:6695: cholesterol biosynthesis Acaa2 Acaa2

Eating/feeding behavior GO:7631: feeding behavior Gal, Agrp

GO:42755: eating behavior Agrp Stat3

Development of the
nervous system

GO:7399: nervous system development Gal, Mobp,
Mobp, Cntn3

Ednrb, RGD1311340_predicted,
Stat3, XM_242005

GO:7422: peripheral nervous system development Sncg Ednrb

Others GO:50776: regulation of immune response Gal, Il22ra2

GO:6952: defense response Mx2

GO:7194: negative regulation of adenylate cyclase activity Grm2

GO:6032: chitin catabolism Chi3l1

GO:42572: retinol metabolism Retsat

GO:45123: cellular extravasation Itgam

GO:19637: organophosphate metabolism Pter

GO:6928: cell motility Akap3, Grm2 Stat3

GO:9615: response to virus Mx2, Oas1 XM_215121

Data were obtained using the GO pathway analysis software; specific GO pathway identification numbers are provided in the second column. “Validated genes”
were confirmed by quantitative PCR analysis. Validated genes found in more than 2 significant pathways are shown in bold.
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(YKL-40, chitinase 3-like 1) has recently been shown to
represent an obesity-independent novel marker of type 2
diabetes [35]. On the other hand, Chi3l1 has been
regarded as a schizophrenia susceptibility gene, a mediator
of stress-induced cellular responses [36]. SNCG (synuclein

gamma) has recently been termed an adipocyte-neuron
gene that is coordinately expressed with leptin in human
obesity and might promote adipocyte differentiation [37].
Apart from its well-known role in the development of
neurodegenerative diseases [38], SNCG has also been

A B 
Figure 1 Distribution of significant genes by functional categories in the hippocampus (A) and in the prefrontal cortex (B) of Goto-
Kakizaki rats. The number of significantly altered pathways is also indicated in each category.

Table 3 List of significant pathways in the prefrontal cortex of type 2 diabetic rats.

GO Biological processes PREFRONTAL CORTEX Validated Not validated

neurotransmission GO:7611: learning and/or memory Galr2, Prkcc, Gm2a

GO:7268: synaptic transmission Galr2, Prkcc, Grm2

GO:1507: acetylcholine catabolism in synaptic cleft Colq

GO:1504: neurotransmitter uptake Slc17a6

GO:17158: regulation of calcium ion-dependent exocytosis Trpv6

lipid metabolism GO:1573: ganglioside metabolism Gm2a

GO:45332: phospholipid translocation Abca1

others GO:9649: entrainment of circadian clock Bhlhb2

GO:8228: opsonization Cd47

GO:6032: chitin catabolism Chi3l1

GO:6547: histidine metabolism Ftcd

GO:7497: posterior midgut development Ret

GO:30277: maintenance of gastrointestinal epithelium Tff1

GO:6936: muscle contraction Galr2, Lsp1 Sgca_predicted

GO:19882: antigen presentation NM_001008842, RT1-Aw2 (Y13890)

GO:9615: response to virus Oas1 XM_215121

GO:7635: chemosensory behavior Prkcc, Prkce Prkce

Data were obtained using the GO pathway analysis software; specific GO pathway identification numbers are provided in the second column. “Validated genes”
were confirmed by quantitative PCR analysis. Validated genes found in more than 2 significant pathways are shown in bold.
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implicated in depression [39], dopamine release [40] and
as an interacting partner of the dopamine transporter in
rats [41].
Perturbation of brain signaling pathways could also be

a very important hallmark of type 2 diabetes. Here we
identified three genes of cerebral signaling (protein
kinase C gamma and epsilon, and the RET tyrosine
kinase) with altered cerebral expression profiles in Goto-
Kakizaki rats. They have been shown to play a pathophy-
siological role in brain dysfunction previously. For
instance, expression of the neuron-specific gamma iso-
form of protein kinase C (Prkcc) that has been implied in
the regulation of learning and memory formation (Addi-
tional File 2) was more than twofold upregulated in the
prefrontal cortex of Goto-Kakizaki rats (Additional File
2). Schlaepfer et al. demonstrated that certain poly-
morphisms of the Prkcc gene are associated with beha-
vioral disinhibition and attention deficit hyperactivity
disorder (ADHD) in humans, while PKC-gamma defi-
cient mice exhibited impulsivity, anxiety and increased
ethanol consumption [42]. Importantly, the epsilon iso-
form of PKC (Prkce) is also overexpressed in the type 2
diabetic model (Additional File 2). This kinase is report-
edly involved in neuronal ion channel activation, apopto-
sis and insulin exocytosis. Recently, Prkce has been
implicated in the loss of insulin secretory responsiveness
during the development of type 2 diabetes [43], while
others highlighted its role in the pathomechanism of
drug dependence and addiction [44]. Shelton et al.
revealed decreased Prkce protein levels in post mortem
brain specimens of patients with major depression [45].
Finally, we demonstrated changes in the expression level
of the RET protooncogene, a receptor tyrosine kinase
containing cadherin-like repeats in its extracellular
domain, that plays a pivotal role in neural crest develop-
ment. Mutations in this gene might elicit multiple endo-
crine neoplasia type 2B with diabetes [46]. Interestingly,
RET activity has been shown to modulate and shape the
brain dopaminergic systems which are known mediators
of several personality traits [47].
As far as the theory of type 3 diabetes is concerned,

our microarray data revealed a couple of genes which
might provide a link between diabetes and neurodegen-
eration. Apart from the already mentioned synuclein
gamma, uncupling protein 2 (UCP2), the ABC-transpor-
ter ABCA1 and the cell surface antigen CD47 should
also be mentioned in this context. UCP2, a well-known
inner mitochondrial membrane protein, responsible for
energy dissipation and heat production, has been found
to associate with obesity, diabetes and regulation of
insulin secretion [48]. On the other hand, the UCP2
gene is induced in a ghrelin-dependent fashion and pro-
tects from neurodegeneration [49]. UCP2 expression
was significantly downregulated in the hippocampus of

our type 2 diabetic rat model (Additional File 1), imply-
ing that its neuroprotective effect might be absent from
the diabetic brain.
Mutations in the cholesterol efflux pump ABCA1 have

been associated with Tangier’s disease. Beyond that,
ABCA1 has been implicated in insulin secretion from pan-
creatic beta cells [50], and some single nucleoide poly-
morphisms (SNPs) of this gene have been demonstrated
to associate with dementia (rs2230805) [51] and Alzhei-
mer’s disease (rs1800977 and rs2422493) [52]. We found
significant downregulation of ABCA1 levels in the prefron-
tal cortex of Goto-Kakizaki rats (Additional File 2); hence
it seems logical to assume that elevated cytosolic choles-
terol levels might impair the viability of neurons via affect-
ing membrane fluidity.
The gene for CD47 encodes a membrane protein which

is involved in the increase in intracellular calcium con-
centration that occurs upon cell adhesion to the extracel-
lular matrix. There is ample evidence supporting the role
of CD47 in pancreatic insulin secretion [53]. Moreover,
CD47 has been shown to interact with amyloid beta pep-
tide in Alzheimer’s disease [54]. We measured elevated
CD47 mRNA levels both in the hippocampus and in the
prefrontal cortex of type 2 diabetes model animals, pro-
viding a plausible link between central insulin resistance
and Alzheimer-type neurodegeneration.

Conclusion
In conclusion, our study shed light on the seminal role of
insulin in maintaining the functions of the central ner-
vous system by unveiling characteristic perturbations in
cerebral gene expression profiles in type 2 diabetic rats.
We identified several cerebral expression changes in
genes which were previously assumed to play a role in
pancreatic insulin secretion, implying that these genes
might mediate insulin production and exocytosis in the
brain as well. Our results should prompt further investi-
gations to decipher insulin signaling pathways in the
brain and a detailed analysis of the transcriptional regula-
tion of diabetes-associated genes having been identified
in this study.

Methods
Animals
Experiments were performed on ten-week old male rats
(weighing 286 ± 60 g). Streptozotocin-treated inbred white
Wistar rats were used as model animals for type 1 dia-
betes, and Goto-Kakizaki rats were the polygenic non-
obese models of type 2 diabetes [55]. Wistar rats at 6
weeks of age, weighing approximately 170 g, were injected
with 65 mg/body mass kg streptozotocin intravenously.
The development of diabetes was confirmed by elevated
fasting blood sugar levels (≥ 15 mM measured 72 hrs fol-
lowing the injection), and the streptozotocin-treated rats
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were sacrificed by cervical dislocation 4 weeks after the
injection. Diabetic animals as well as their age- and body
mass matched Wistar controls and age-matched Goto-
Kakizaki rats were kept on normal chow. All experimental
protocols were in accordance with the guidelines of the
Committee on the Care and Use of Laboratory Animals of
the Council on Animal Care at the Semmelweis Univer-
sity, Budapest, Hungary (ethical permission No.: TUKEB
99/94).

Tissue harvesting
9 animals from each group at 10 weeks of age were
anaesthetized with phenobarbital and killed by decapita-
tion. The brain was removed and the striatum, hippo-
campus and prefrontal cortex were dissected. Samples
from 3-3 identically treated animals were pooled. That
means, 3 biological parallels were prepared from each
brain region of type 1 or type 2 diabetic and control ani-
mals, amounting to a total of 27 different pooled samples.
Excised tissue samples were immediately fixed in RNAla-
ter RNA stabilization reagent (Qiagen).

Sample preparation and oligonucleotide microarray
hybridization
Total RNA was extracted from samples by homogenization
using the RNeasy Kit (Qiagen), according to the manufac-
turer’s instructions. RNA integrity and purity were checked
both by agarose gel electrophoresis and with an Agilent
2100 Bioanalyzer. Samples of acceptable quality fulfilled
the following criteria: OD260/280 > 1.8, OD260/230 > 1.8
and RIN > 7. Reverse transcription was performed using
1000 ng of total RNA from each sample. Labeling of sin-
gle-stranded cRNA, hybridization and scanning were car-
ried out at the Microarray Core Facility of the Department
of Genetics, Cell- and Immunobiology of Semmelweis
University, using Agilent’s One-Color Microarray-Based
Gene Expression Analysis Protocol, Version 5.5 (G4140-
90040). Labeling of samples was performed with Agilent’s
Low RNA Input Linear Amplification Kit PLUS assay
using the Cy3 dye. Dye incorporation was controlled by a
Nanodrop spectrophotometer; all samples were labeled
with an efficiency of 10.2 - 17.5 pmol Cy3/μg cRNA.
1650 ng of cRNA were hybridized to Agilent’s Rat Whole
Genome Custom Arrays. Arrays were run on all 27 biologi-
cal samples. Hybridized arrays were imaged with Agilent’s
Microarray Scanner, Agilent Feature Extraction Software
version 9.1 in the extended dynamic range at 100% and
10% laser beam intensities at a resolution of 5 μm.

Data analysis
Data analysis was performed using the GeneSpring GX
software (Agilent Technologies, version 7.3). For nor-
malization, the samples were grouped according to
brain areas. In this way, gene expression data from

treated samples in groups were normalized to the med-
ian of control samples of each group. As quality control,
genes with poor hybridization signals (flag screening)
and those with unaltered expression (not showing a
minimum of 2-fold difference between their maximal
and minimal expression levels under any conditions)
were excluded from subsequent analysis. Statistical ana-
lysis of data obtained from the normalization and
screening procedures was performed to select probes
with at least a twofold, statistically significant expression
alteration in type 1 or type 2 diabetic animals compared
to Wistar controls using Welch’s t-test supplemented
with the Benjamini-Hochberg multiple correction test
with a p = 0.05 cutoff. Finally, a post-screening proce-
dure was implemented to exclude false positive probes,
i.e. signals with “absent” flag in at least 2 out of 3 biolo-
gical replicates, and those with raw intensity signals less
than 100 arbitrary units.
The Gene Ontology database (URL: http://www.geneon-

tology.org)was used to assign biological relevance to our
data and to identify genes by ordering them in relevant bio-
chemical pathways. Biochemical pathways were regarded
significantly altered if they comprised a significant number
of genes from our lists (p < 0.05).

Validation by real-time PCR
Genes that fulfilled the criteria of technical, statistical and
pathway analyses were validated by the quantitative
reverse transcription PCR-based TaqMan Low Density
Array (Applied Biosystems) system, according to the
manufacturer’s protocol. cDNA samples for this test
were synthesized from the same RNA samples that had
been prepared for microarray hybridization. Relative gene
expression data were obtained using the 2(-Delta Delta
CT) method described by Livak and Schmittgen in detail
[56].
Briefly, six genes were selected as potential housekeep-

ing (internal control) genes for normalization of RT-PCR
data [histone deacetylase 3 (Hdac3), ATP-citrate lyase
(Acly), beta-actin (Actb), beta-2 microglobulin (B2m),
TATA box binding protein (Tbp), 18S ribosomal RNA
(18S)]. By cross-checking their relative expression levels
and scattering scores, we chose the following 3 genes
with most stable and constant expression: Hdac3, Tbp
and B2m. The expression of all target genes was normal-
ized to the mean of the expression of the housekeeping
genes (relative quantification). Cycle threshold (CT)
values were set in the exponential range of the amplifica-
tion plots using the 7300 System Sequence Detection
Software 1.3. ΔΔCT-values corresponded to the differ-
ence between the CT-values of the genes examined and
those of the arithmetical mean of the expression of the 3
housekeeping calibrator (internal control) genes. Relative
expression levels of genes were calculated and expressed
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as 2-ΔΔCT. Finally, the Mann-Whitney test (p < 0.01) was
used for statistical analysis of qRT-PCR data.

Data deposition
The data discussed in this publication have been depos-
ited in NCBI’s Gene Expression Omnibus (Edgar et al.,
2002) and are accessible through GEO Series accession
number GSE34451 (http://www.ncbi.nlm.nih.gov/geo/
query/acc.cgi?acc=GSE34451).

Additional material

Additional file 1: List of differentially expressed genes in the brain
areas of Goto-Kakizaki rats. Genes are ordered according to their fold
expression changes. Genes are identified both by gene name, Genbank
accession number and gene symbol. The file contains four table sheets
displaying genes with significantly altered expression levels (more than
twofold or less than 0.5 fold) in the hippocampus only ("Hippocampus”,
180 genes), in the prefrontal cortex only ("Prefrontal cortex”, 61 genes),
both in hippocampus and prefrontal cortex ("Hipp&Pfc”, 83 genes) and
both in hippocampus, prefrontal cortex and striatum ("Hipp&Pfc&Str”, 3
genes), respectively. In the corporate lists genes are ordered according to
their fold expression changes observed in the hippocampus.

Additional file 2: List of validated genes in the brain areas of Goto-
Kakizaki rats. Genes are shown in alphabetical order of gene symbols.
Genes are identified both by gene name, Genbank accession number
and gene symbol. The file contains three table sheets displaying genes
with RT-PCR validated, significantly altered expression levels (more than
twofold or less than 0.5 fold) in the hippocampus only ("Hippocampus”,
30 genes), in the prefrontal cortex only ("Prefrontal cortex”, 22 genes),
both in hippocampus and prefrontal cortex ("Hipp&Pfc”, 9 genes),
respectively. In the corporate lists genes are ordered according to their
fold expression changes observed in the hippocampus.
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