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Developing a synthetic psychosocial stress 
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Abstract 

Objectives:  Among many challenges in cardiovascular disease (CVD) risk prediction are interactions of genes with 
stress, race, and/or sex and developing robust estimates of these interactions. Improved power with larger sample size 
contributed by the accumulation of epidemiological data could be helpful, but integration of these datasets is dif-
ficult due the absence of standardized phenotypic measures. In this paper, we describe the details of our undertaking 
to harmonize a dozen datasets and provide a detailed account of a number of decisions made in the process.

Results:  We harmonized candidate genetic variants and CVD-risk variables related to demography, adiposity, hyper-
tension, lipodystrophy, hypertriglyceridemia, hyperglycemia, depressive symptom, and chronic psychosocial stress 
from a dozen studies. Using our synthetic stress algorithm, we constructed a synthetic chronic psychosocial stress 
measure in nine out of twelve studies where a formal self-rated stress measure was not available. The mega-analytic 
partial correlation between the stress measure and depressive symptoms while controlling for the effect of study 
variable in the combined dataset was significant (Rho = 0.27, p < 0.0001). This evidence of the validity and the detailed 
account of our data harmonization approaches demonstrated that it is possible to overcome the inconsistencies in 
the collection and measurement of human health risk variables.

Keywords:  Data harmonization, GxE interaction, CVD-risk, Mega-analysis, Synthetic psychosocial stress, Depressive 
symptoms, Correlation
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Introduction
Psychosocial stress, defined as aversive or demanding 
environmental conditions that exceed the resources of 
an organism, has often been implicated in the genesis of 
cardiovascular disease (CVD) and CVD-risk factors [1, 
2]. Stress also may play a significant role in modifying 
the impact of genetic factors on CVD-risk [3, 4]. A better 
understanding of how genes interact with stress to con-
tribute to CVD pathways might be gained by developing 
robust estimates of gene-by-stress interactions across the 
disease pathways in the context of genetic variations and 
demographic differences.

Detecting and generalizing statistical interaction 
typically requires considerably larger sample sizes than 
needed for statistical main effects [5]. Moreover, some 
interactions are observable only in limited situations 
and may not be broadly generalizable [6]. One approach 
to overcoming these challenges is to exploit the large 
accumulation of epidemiological data, thereby increas-
ing sample size and statistical power. These data can be 
used to conduct a conventional meta-analysis, a poten-
tial new standard of original research [7], in which an 
aggregate estimate is generated using summary statistics 
from individual new studies or already reported in the lit-
erature [8]. Alternatively, the individual-level data can be 
combined into a single harmonized dataset upon which 
new analyses are carried out. This latter approach is often 
referred to as mega-analysis [8].
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Studies with inconsistent measurements, protocols, 
and methods may lead to inconsistent conclusions. 
Moreover, the integration of measures across studies 
with heterogeneous measurement protocols, units and 
coding can be a significant challenge. This challenge has 
resulted in several data harmonization efforts [9–11], but 
these have focused mostly on the design and standardi-
zation of measures for use in future studies. A more sig-
nificant challenge is the circumstance in which there may 
not be an explicit measure of the phenotype of interest 
in existing studies. In pursuing our work on psychosocial 
stress, we were immediately confronted by the absence 
of an explicit measure of psychosocial stress in many 
studies. Thus, an important undertaking in our previ-
ous work was to develop an algorithm for constructing a 
valid measure of psychosocial stress from extant datasets 
with no explicit stress measure [4]. We refer to this as a 
“synthetic” measure of psychosocial stress to distinguish 
it from formal self-rated measures developed specifically 
to assess stress. Our synthetic stress algorithm is based 
on the items of the formal, self-rated measure of chronic 
psychosocial stressors known as “chronic burden” in the 
Multi-Ethnic Study of Atherosclerosis (MESA) [12]. The 
MESA chronic burden measure, as well as similar indi-
cators of stress, are associated with a range of CVD-risk 
factors [3, 13–16].

In the present paper, we provide a detailed illustration 
of a number of decisions made in the process of creat-
ing the synthetic stress measure, the harmonization of 
inconsistency among CVD-risk variables, and subse-
quent combining the harmonized data from a dozen 
different studies into a single dataset. We also provide a 
mega-analytic estimate of association between stress and 
depressive symptoms. The harmonized data matrix also 
included single nucleotide polymorphisms (SNPs) EBF1 
rs4704963, 5HTR2C rs6318, and BDNF rs6265, which we 
found associated with CVD-risk factors in the presence 
of stress in our earlier work [3, 17, 18]. These efforts will 
allow us to develop robust estimates of gene-by-stress 
interactions.

Main text
Methods and material
Data sources
We used a dozen (six dbGaP and six Duke) datasets in 
this data harmonization study. The dbGaP public-access 
datasets were from the Women’s Health Initiative (WHI) 
Study [19]; Coronary Artery Risk Development in Young 
Adults Study (CARDIA) [20]; Atherosclerosis Risk in 
Communities Study (ARIC) [21]; Framingham Off-
spring Cohort [22]; Multi-Ethnic Study of Atheroscle-
rosis (MESA) [23]; and Jackson Heart Study (JHS) [24]. 
The Duke datasets were from the Community Health 

and Stress Evaluation (CHASE) Study [25]; Duke Fam-
ily Heart Study (DFHS) [26]; Duke Caregiver Study 
(DCS) [27]; and three cohorts for Studies of a Targeted 
Risk Reduction Intervention through Defined Exer-
cise (STRRIDE), i.e., STRRIDE I [28], STRRIDE–Aero-
bic Training/Resistance Training (AT/RT) [29], and 
STRRIDE Pre-Diabetes (PD) [30] studies. A brief descrip-
tion of the contributing studies is provided in the Addi-
tional file 1.

Building a synthetic stress measure
Using the algorithm described in [4], we constructed our 
synthetic stress measure in four out of six dbGaP data-
sets and five out of six Duke datasets where a self-rated 
formal stress measure was not available. The MESA and 
JHS datasets included a self-rated stress measure. In the 
absence of items that specifically query about stress, the 
algorithm uses proxy indicators of the domains used in 
the MESA chronic burden measure [12]: financial strains, 
relationship or marital problems, difficulties with job 
or ability to work, serious health problems of spouse or 
someone close, and one’s own serious health problems. 
The steps of our algorithm [4] included searching the 
most suitable proxy item for as many of the five compo-
nents as possible, scoring them as 0 or 1 using the proxy 
item, and creating the synthetic Singh et  al. [4] chronic 
stress ordinal variable by summing all available binary 
components. Our analysis in previous work suggested 
that a synthetic variable developed using incomplete set 
of two (worst case), three, or four proxy items could still 
be useful, when all five proxy items were not available.

Pseudocodes We provide a description and pseudoco-
des for the construction of synthetic stress measure in all 
studies in the Additional file 1.

Validation of synthetic stress measure
Assuming that the samples under study were at least 
broadly similar culturally, we evaluated the distribu-
tions of the synthetic stress measure in each dataset and 
compared them with available self-rated measures, and 
expected the shape of distributions to be reasonably simi-
lar across studies. We provided additional support for the 
validity of the synthetic stress measure by evaluating its 
well-known association (Spearman correlation) with a 
measure of depressive symptoms.

Mega-analysis We also estimated a partial correla-
tion of stress and depressive symptoms in harmonized, 
combined data whilst controlling for the effect of study 
dummy variables.

Additional steps in data harmonization
Harmonizing variability in units and coding For phe-
notype measures that were presented in different units 
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across the studies, we used accepted conversion factors 
(Additional file  1: Table  S1) to create a corresponding 
single unified variable. The inconsistent codings for sex 
and race were also reconciled. Ordinal measures of a 
phenotype that differed in terms of the number of possi-
ble responses (e.g., chronic stress, depressive symptoms) 
were converted to z-scores (SD = 1, mean = 0) within 
each study.

Accounting for data sources In order to facilitate the 
mega-analysis using combined multiple datasets, we cre-
ated vectors of dummy indicators for each study. These 
variables enable adjustment for study origin and as pos-
sible effect modifiers in fixed effects models. More details 
on the choice of dummy variable over random effects 
coding are provided in Additional file 1.

Dealing with outliers Extreme outlying values can 
unduly influence statistical estimates of association or 
central tendency and are typically excluded or trimmed 
to less extreme values. One potential challenge in this 
regard is that it is not always possible to determine 
whether outliers are the actual measured values or the 
result of errors. More details on outlier detection and 
removal are provided in Additional file 1.

Summary statistics Finally, we evaluated summary sta-
tistics and distributions of harmonized data variables in 
order to evaluate consistency in the harmonized meas-
urements and differences across the study cohorts.

Genetic data: identifying proxy SNPs
We harmonized the candidate SNPs of interest 
(rs4704963, rs6318, and rs6265, as reviewed above) 
across all datasets. We identified proxy SNPs for a miss-
ing SNP using two criteria (1) a high score of the proxy 
SNP with the SNP of interest (Linkage Disequilibrium 
R2 ≥ 0.95) and (2) availability of same proxy SNP in each 
dataset. The SNP data for each study was subjected to a 
standard quality control before selecting the candidate 
SNPs (Additional file 1).

Results
The distribution of the chronic psychosocial stress 
z-scores are presented in Fig. 1. The synthetic stress vari-
able appears for all datasets, with the exception of MESA, 
which used the aforementioned chronic burden meas-
ure, and JHS, which, in addition to the five domains, also 
assessed stress due to legal problems, racism/discrimina-
tion, and neighborhood characteristics. The similarity in 
shapes of z-scores distributions (i.e., flat, skewed toward 
the right; kurtosis = 2.19–7.92, skewness = 0.20–2.34) 
adds additional support to our contention that the syn-
thetic stress was assessing a similar underlying construct 
in different studies.

The Spearman correlations of the synthetic measures 
(Table  1) for all datasets except CARDIA (Rho = 0.07) 
were reasonably strong (Rho = 0.20–0.57), significantly 
different from zero (p < 0.001), and similar in magni-
tude to those observed for the self-rated measures (i.e., 
MESA and JHS). Some of the possible reasons for the 
weak correlation in CARDIA may be due to the facts that 
the available CES-D depression measure was assessed 
in a later exam that followed baseline and that it was the 
youngest cohort (mean age 24.97 years). Controlling for 
the effect of study variable, mega-analytic partial corre-
lation between stress and depression in combined data-
set was significant (Rho = 0.27, p < 0.0001). As expected, 
the significant correlations between the measures of 
synthetic stress and depressive symptoms in all datasets 
except one further supports the validity of our method 
for the construction of synthetic stress measures in data-
sets that lacked a self-rated measure.

Although the units for blood pressure, BMI, and age 
were consistent across the datasets, studies differed in the 
units of other measures such as fasting glucose, insulin, 
and lipids (Additional file 1: Table S2 Panel A and B). The 
codings for sex and race were also inconsistent across 
the datasets. Finally, the CES-D depression measure was 
also scored differently in Framingham Heart Study (range 
0–0.85) as compared to other datasets and a shortened 
version of the CES-D was used in WHI, which were 
converted to z-scores. While the uniformity in the sum-
mary statistics of harmonized variables (Additional file 1: 
Table  S3) support the tenability of the harmonization 
process, they also demonstrate the underlying differences 
in each cohort in terms of age and CVD-risk factors. The 
distribution plots of each CVD-risk variable for each 
datasets (Fig. 2a, b) provide a comparison of harmonized 
measurements across all the datasets and document the 
consistency of our harmonization approaches.

The harmonization of three SNPs, which moderated 
the influence of stress on CVD-risk endophenotypes in 
our prior research, resulted in proxy SNPs in the place 
of missing SNPs in dataset(s) with perfect LD score 
(R2 = 1.0). The minor allele frequency (MAF) differences 
among the Whites and Blacks suggested that race-strati-
fied analysis of genetic association might be preferred for 
these SNPs (Additional file 1: Table S4).

Discussion
In our previous work [4], we provided an algorithm 
to construct synthetic stress measure and a system-
atic comparison of a synthetic and self-rated measure 
with evidences for unidimensionality using the MESA 
dataset. In the present work, we describe the details of 
our undertaking to harmonize twelve datasets and we 
provide the set of proxy indicators and pseudocodes for 
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Fig. 1  a Distributions of chronic stress z-scores in dbGaP public-access datasets, i.e., MESA, Framingham Offspring, ARIC, CARDIA, WHI and JHS, and 
b Duke datasets, i.e., CHASE, DFHS, Duke Caregiver, STRRIDE-AT/RT, and STRRIDE-PD. With the exception of MESA and JHS, the stress measure is a 
synthetic variable for all datasets
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constructing synthetic stress in nine out of twelve stud-
ies in hope that it will help the scientific community in 
further work. Two studies (MESA, JHS) had a formal 
self-rated stress measure and one study (STRRIDE-I) 
did not have any proxy indicator for synthetic meas-
ure. The construction of a synthetic stress measure in 
datasets that did not have a self-rated formal stress 
measure is a key innovation in the current study. The 
broad domains of psychosocial stress that we have used 
in our synthetic stress construction algorithm [4] have 
been frequently used as part of formal stress measures 
[12, 31]. Thus, our synthetic stress measure is consist-
ent with that of others using similar stress domains, 
which are apparently sufficient to capture life stress, 
even when not all present [4]. Past research has found 
one or more of these domains to be associated with a 
number of CVD-risk factors, such as, glucose metabo-
lism [32], blood pressure [33], mortality [34], cortisol 
[35], and depressive symptoms [36]. Another important 
aspect of our work was to obtain insights from large 
sample resulting from combining the datasets. Sum-
marizing results over multiple studies, either through 
conventional meta-analysis, or as in our case using 
mega-analysis (Table  1), is thought to produce a more 
robust estimate of the associations under study, and 

potentially more generalizable insights [37]. We pro-
vide additional discussion in the Additional file 1.

Conclusions
We illustrated our method used to construct a synthetic 
stress measure with evidences of its validity. Our work 
provides ways by which to harmonize and operational-
ize the existing data and overcome the inconsistencies 
in the collection and measurement of human health risk 
variables that we hope will complement and support 
other ongoing efforts to standardize measurements in 
new studies. This works also provides the opportunity 
of future work to perform more robust and informative 
mega-analytic tests of our prior findings on gene-by-
stress interactions modifying expression of endopheno-
types in CVD pathways.

Limitations
We have so far chosen not to impute for missing vari-
ables and indicators in our approach. This choice is 
supported by our prior work [4] showing that the stress 
scores which include less than the full set of indica-
tors still behave similarly in terms of associations with 
other phenotypes, such as depressive symptoms. A for-
mal measure designed explicitly to assess stress would 

Table 1  Spearman’s correlation of synthetic and self-rated stress measures with CES-D depression measure

a   Combined estimate derived from mega-analytic partial correlation between standardized (z-scores) stress and depression measures whilst controlling for the effect 
of study variable in combined dataset

Dataset Stress measure Depression measure Rho P-value

MESA Self-rated Center for Epidemiological Studies-Depres-
sion Scale (CES-D)

0.35 < 0.0001

Framingham Offspring Cohort Synthetic CES-D 0.23 < 0.0001

CARDIA Synthetic CES-D 0.07 < 0.001

ARIC Synthetic Maastricht Vital Exhaustion Score 0.28 < 0.0001

WHI Synthetic Shortened CES-D 0.2 < 0.0001

JHS Self-rated CES-D 0.32 < 0.0001

CHASE Synthetic Beck Depression Inventory (BDI) 0.31 < 0.001

DFHS Synthetic CES-D 0.25 < 0.0001

Caregiver Synthetic CES-D 0.42 < 0.0001

STRRIDE-AT/RT Synthetic Self-rated 0.4 < 0.0001

STRRIDE-PD Synthetic Self-rated 0.54 < 0.0001

Combined estimatea 0.27 < 0.0001

(See figure on next page.)
Fig. 2  a Distributions of harmonized phenotypes in dbGaP public-access datasets. Each notched box plot shows the distribution (i.e., five point 
summary statistics, outliers, and notches based on the median ± 1.58 * IQR/sqrt(n)) of one variable in the six dbGaP studies, i.e., ARIC, CARDIA, 
FRAMINGHAM, JACKSON HEART, MESA, and WHI; and b six Duke studies, i.e., CAREGIVER, CHASE, DFHS, STRRIDE-1, STRRIDE-AT/RT, and STRRIDE-PD. 
The scales for fasting glucose, insulin, HbA1C, and triglyceride were log transformed, and the standardized depression measure was square root 
transformed



Page 6 of 8Singh et al. BMC Res Notes  (2018) 11:504 



Page 7 of 8Singh et al. BMC Res Notes  (2018) 11:504 

generally be the most desirable choice to use in inves-
tigations; however, when the formal measure is not 
available, the five-component synthetic stress measure 
appears to serve as an acceptable utilitarian solution.

Additional file

Additional file 1. The additional file provides more details on the data 
sources of contributing studies; proxy indicators and pseudocodes for 
synthetic stress measure; SNP quality control; coding for studies from 
multiple sources; outlier detection and removal; and additional discussion 
on the need for data harmonization, harmonization steps and alternative 
approaches, and insights from large sample resulting from combining the 
datasets.
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