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Simple Summary: Ion channels are proteins that control the movement of ions across the membranes
of cells, thus regulating their physiological functions. In T lymphocytes, ion channels control the Ca2+

influx that, in turn, promotes proliferation and effector functions. In the context of cancer, T cells
have the role of fighting tumor cells. However, the tumor microenvironment negatively regulates
T cell antitumor capabilities. Therefore, it is of utmost importance to understand the relationship
between the tumor microenvironment and the ion channel apparatus of T cells to overcome the
tumors’ immunosuppressive capabilities.

Abstract: Competent antitumor immune cells are fundamental for tumor surveillance and combating
active cancers. Once established, tumors generate a tumor microenvironment (TME) consisting of
complex cellular and metabolic elements that serve to suppress the function of antitumor immune
cells. T lymphocytes are key cellular elements of the TME. In this review, we explore the role of
ion channels, particularly K+ channels, in mediating the suppressive effects of the TME on T cells.
First, we will review the complex network of ion channels that mediate Ca2+ influx and control
effector functions in T cells. Then, we will discuss how multiple features of the TME influence the
antitumor capabilities of T cells via ion channels. We will focus on hypoxia, adenosine, and ionic
imbalances in the TME, as well as overexpression of programmed cell death ligand 1 by cancer cells
that either suppress K+ channels in T cells and/or benefit from regulating these channels’ activity,
ultimately shaping the immune response. Finally, we will review some of the cancer treatment
implications related to ion channels. A better understanding of the effects of the TME on ion channels
in T lymphocytes could promote the development of more effective immunotherapies, especially for
resistant solid malignancies.

Keywords: ion channels; potassium channels; antitumor immunity; tumor microenvironment

1. Introduction

The immune system is essential for cancer surveillance. However, it is recognized that
the unique milieu associated with tumors (known as the tumor microenvironment—TME)
is responsible for the functional abnormalities of the immune system that impair cancer
elimination [1,2]. The cellular components of the TME (which include fibroblasts, vascular,
and immune cells) together with extracellular, soluble, and metabolic features inhibit
the functions of a complex network of antitumor immune cells that would otherwise
prevent tumor growth and metastasis [3,4]. Effector T cells are key players in the fight
against cancer, and the presence of cytotoxic CD8+ and Th1 CD4+ T cells in the tumor is
associated with a favorable prognosis and response to immunotherapies. However, the
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aforementioned alterations in the TME negatively affect the T cell capacity to infiltrate
the tumors and kill cancer cells, which, to this day, remain the rate-limiting steps towards
an effective antitumor response [5]. In order for T cells to infiltrate the tumor and exert
their antitumor functions, it is imperative that the appropriate movements of ions across
plasma and intracellular membranes occur, as T cells are critically dependent on ion channel
regulated-Ca2+ signaling for their function [6].

This review focuses on the role that ion channels, particularly of the potassium (K+)
class, play in mediating the immunosuppressive effects of the TME on T cells. Following
a brief overview of the current understanding of the role of ion channels in normal T cell
function, we will discuss the negative impact of the metabolic (hypoxia, adenosine, and
electrolyte imbalance) and cellular (programmed cell death ligand 1, PD-L1) components of
the TME on T cell immune surveillance and their dependence on K+ channels. Furthermore,
we will highlight the important role that K+ channels play in response to immune check-
point inhibitors and the potential benefits of developing new single agent or combination
cancer immunotherapies targeting K+ channels.

2. Ion Channel Network in T lymphocytes

Ion channels and transporters form an intricate network responsible for intracellu-
lar ion homeostasis and Ca2+ levels necessary for effector functions in T lymphocytes
(Figure 1) [7,8]. Intracellular Ca2+, in fact, regulates the activation of Ca2+-dependent
transcription factors, the expression of most activation genes in T cells, and mechanical
functions such as exocytosis and motility [9–11]. The expression profile and role of different
ion channels in T cell function have been described in detail by others [7,8,12]. Briefly, there
are five major ion channels in human T cells, with each playing a unique and key role
in ion homeostasis: Ca2+ release-activated Ca2+ (CRAC) channels; two K+ channels, the
voltage-gated K+ channel Kv1.3 and the Ca2+ dependent K+ channel KCa3.1; and transient
receptor potential (TRP) channels (e.g., TRPM4 and TRPM7).

The first of these ion channels that play a direct role in controlling intracellular Ca2+

levels are the CRAC channels. CRAC channels allow the influx of Ca2+ after T cell re-
ceptor (TCR) stimulation [8] (Figure 1). These channels are formed by two different sub-
units, ORAI1 (ORAI calcium release-activated calcium modulator 1)—and/or its homologs
ORAI2 and ORAI3—and STIM1/STIM2 (stromal interaction molecule 1/2) accessory pro-
teins [6]. ORAI subunits represent the pore-forming subunits of the CRAC channel and
are localized in the plasma membrane. Conversely, STIM proteins are on the endoplasmic
reticulum (ER) membrane and play a key role as Ca2+-sensors. The contribution of these
channels to the T cell response to antigen presentation is the following: antigen presenta-
tion and recognition at the TCR/CD3 complex activates phospholipase Cγ (PLCγ), which
cleaves phosphatidylinositol 4,5-bisphosphate (PIP2) into inositol (1,4,5)—trisphosphate
(IP3) and diacylglycerol (DAG) (Figure 1). IP3 then binds to its receptor located on the
ER, resulting in the release of Ca2+ from the ER store. The STIM subunits detect the Ca2+

depletion from the ER, oligomerize and migrate next to the plasma membrane, where they
interact with ORAI, leading to its opening and, consequently, Ca2+ influx into the T cell
(store-operated calcium entry—SOCE) [7,8,13,14]. Early studies in human and murine T
cells revealed that the production of cytokines, such as interleukin-2 (IL-2), interleukin-4
(IL-4), and interferon-γ (IFN-γ), and granule exocytosis required SOCE through STIM1 and
ORAI1 [11,15,16]. Furthermore, Weidinger and colleagues (2013) showed that the genetic
deletion of STIM1 and STIM2 in cytotoxic T cells in mice reduced cancer cell killing [17].
An increase in intracellular Ca2+ regulates important transcription factors such as nuclear
factor of activated T cells (NF-AT) and nuclear factor kappa B (NF-κB), which control the
transcription of multiple genes. It has been estimated that more than 80% of T cell activation
genes are regulated by Ca2+ [9]. The specificity of the transcription factor activated by Ca2+

influx depends on the shape and amplitude of the Ca2+ response [18].
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Figure 1. TCR-mediated regulation of the ion channel network in T lymphocytes. (1) Antigen stimu-
lates the T cell receptor (TCR); (2) TCR stimulation activates phospholipase C (PLCγ), which cleaves
phosphatidylinositol 4,5-bisphosphate (PIP2) to inositol (1,4,5)-trisphosphate (IP3) and diacylglycerol
(DAG); (3) IP3 binds to its cognate receptor (IP3R) on the endoplasmic reticulum (ER) and depletes
the ER Ca2+ store; (4) The depletion of Ca2+ in the ER causes the STIM protein (located on the ER
membrane) to oligomerize and associate with the ORAI subunits (located on the plasma membrane)
forming a functional CRAC channel (Ca2+ release-activated Ca2+ channel) that allows the influx
of Ca2+ into the cell; (5) The increase in intracellular Ca2+ depolarizes the cell thus activating the
voltage-gated K+ channel Kv1.3, which allows the efflux of K+ ions. While at the same time, the
increase in intracellular Ca2+ activates the Ca2+ dependent K+ channel KCa3.1, which also allows the
efflux of potassium ions; (6) The efflux of K+ ions hyperpolarizes the membrane; (7) TRP channels
can also play a role in Ca2+ influx directly (like TRPM7) or by regulating the membrane potential
(like TRPM4); (8) The negative membrane potential ultimately supports the electrochemical gradient
necessary for the sustained influx of Ca2+ through the CRAC channels and, consequently, the increase
intracellular Ca2+ levels needed for downstream functions such as cytokine production or release, T
cell proliferation and cytotoxicity.

Kv1.3 and KCa3.1, the principal K+ channels in human T cells, play a significant role in
Ca2+ influx by maintaining the electrochemical driving force necessary for Ca2+ entry into
the cell. The depolarization of the cell following CRAC-mediated Ca2+ influx activates the
voltage-dependent Kv1.3, while the increase in intracellular Ca2+ levels activates KCa3.1,
a Ca2+-activated voltage-independent K+ channel. The subsequent increase in K+ efflux
through these two K+ channels hyperpolarizes the plasma membrane and sustains the
influx of the positively charged Ca2+ ions through the CRAC channels [7,8,19]. Conversely,
activation of Na+ influx and Cl− efflux, and the inhibition of K+ efflux, all of which lead to
membrane depolarization, negatively regulate CRAC-mediated Ca2+ fluxes [7].

Lastly, TRP channels represent non-selective cation channels and are categorized
into six subfamilies (TRPA, TRPC, TRPV, TRPM, TRPP, TRPML) [20]. In T cells, TRPM7
channels allow Ca2+ and Mg2+ influx through the plasma membrane and are involved in
cell development and motility. In contrast, TRPM4 allows Na+ influx, thus contributing
to the depolarization of the membrane potential and reducing the driving force for Ca2+

entry [20,21].
Overall, each ion channel plays a significant role in a complex network that ultimately

shapes the effector functions of T cells.

3. Potassium Channels and T Cell Functions

Ion channels mediate T cell differentiation and T cell functions such as proliferation,
motility, cytokine release and cytotoxicity, and are implicated in multiple pathological
conditions including infections [22,23], autoimmunity [24–31], and cancer [32,33].
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Specific to K+ channels, their quantitative expression, and, consequently, their func-
tional role, varies depending on the T cell activation status (resting versus activated) and
subset (naïve—Tnaïve, central memory—TCM, and effector memory—TEM T cells) [7,8,19,31]
In general, resting human T cells predominantly express Kv1.3 compared to KCa3.1 chan-
nels. Upon activation, the type of K+ channel that is preferentially upregulated depends on
the T cell subset. Activated TEM cells (CD45RO+CCR7−) express high levels of Kv1.3 chan-
nels, while KCa3.1 channels are more abundant in activated naïve (CD45RO−CCR7+) and
TCM cells (CD45RO+CCR7+) [7,8,19,31]. Functionally, a seminal work by Wulff et al. in 2003
showed that autoantigen-specific TEM cells overexpressed Kv1.3, and their proliferative
capacity was selectively suppressed by Kv1.3 blockers [34]. A potential therapeutic role for
Kv1.3 channel blockers has been reported for many diseases where autoreactive TEM cells
contribute to disease pathology including rheumatoid arthritis, type-1 diabetes mellitus
and systemic lupus erythematosus (SLE) [27,35]. The functional capabilities of Tnaïve and
TCM are instead suppressed by KCa3.1 blockers which have been shown to be effective
in animal models of inflammatory bowel disease and asthma [36]. Interestingly, while
repeatedly stimulated antigen-specific T cells that acquire a TEM phenotype progressively
overexpress Kv1.3 and rely on it, and not KCa3.1, for their effector functions, in case of loss
of Kv1.3 function, KCa3.1 has been shown to compensate, maintaining the proliferation
and the effector responses of the T cells, though not to the full extent [37].

Overall, both K+ channels are implicated in proliferation and cytokine production.
Kv1.3 and KCa3.1 blockade suppress the proliferation of human T cells [7,38]. Conversely,
highly proliferative tumor-infiltrating lymphocytes (TILs), characterized by the high ex-
pression of the proliferation marker Ki67, express high levels of Kv1.3 [32]. Blockade of
Kv1.3 and KCa3.1 channels also suppresses the production of cytokines, including those
with antitumor functions such as IFN-γ, tumor necrosis factor- α (TNF-α) and IL-2, in
different subsets of effector T cells [39,40]. Kv1.3 channels are also implicated in T cell
differentiation and cytotoxicity. Kv1.3 channels regulate the differentiation of CD8+ T
cells, as evidenced by the fact that the expression of a dominant-negative Kv1.3 mutant
decreased the differentiation of activated CD8+ T cells into TEM cells and led to the re-
version of TEM cells into the TCM phenotype [29]. This is true also for CD4+ T cells, in
which Kv1.3 loss-of-function mutations have shown to (a) negatively impact CD4+ TCM
conversion into TEM cells, (b) lead to reversion of CD4+ TEM into TCM cells, and c) slow
down CD4+ TEM cell proliferation and differentiation by blocking the G2/M phase of
the cell cycle [41]. Knockdown of Kv1.3 in T cells has also been reported to shift the T
cell population from a memory to a naïve phenotype [39]. Furthermore, Kv1.3 channels
regulate T cell cytotoxicity. Hu and colleagues (2013) showed that Kv1.3 channels regulate
granzyme B (GrB) release early upon activation [29]. However, at later time points, KCa3.1
blockade also suppressed GrB levels [29]. Studies of Kv1.3 channels in CD8+ TILs of head
and neck cancer patients showed that Kv1.3 expression correlated with GrB levels and
marked functionally competent T cells [32]. The inhibitory effect of K+ channel blockade on
cytokine production/release and cytotoxicity is a consequence of their regulatory function
on SOCE.

Ion channels also play a major role in the homing and migration of effector T cells.
Effective leukocyte migration is fundamental to combatting infections, as shown in primary
immunodeficiency caused by defects in leukocyte motility and trafficking, and cancer [42].
In cancer, the close proximity between effector cytotoxic CD8+ T cells and cancer cells
allows physical contact between the two cells and facilitates the direct killing of tumor
cells. K+ and TRP channels have emerged as crucial components as they are involved in the
control of cell motility regulators such as membrane potential and cellular volume [21,43].

In migrating human T cells, KCa3.1, together with TRPM7 channels, compartmentalize
at the uropod, and their interplay controls the forward motion of these cells, possibly
through the concerted regulation of membrane potential, Ca2+ influx, and actomyosin
contractility (Figure 2) [21]. Oscillations in intracellular Ca2+ levels were reported to occur
exclusively at the uropod, revealing an intracellular Ca2+ gradient that may be necessary to
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support opposing cellular events occurring at the two poles of a migrating cell. In contrast to
KCa3.1 and TRPM7, Kv1.3 and ORAI1 are confined to the leading-edge, and their blockade
does not influence T cell migration [21]. However, the position of Kv1.3 and CRAC channels
at the leading-edge may facilitate the interaction with the antigen-presenting cells and
the activation process itself [21]. Others have reported in an in vivo mouse model that
CRAC channels oversee activated human T lymphocytes homing to lymph nodes [44].
The abolishment of CRAC activity suppressed CCL12—a chemokine responsible for T cell
homing—activation of integrins required for trans-endothelial migration and lymph node
entry of T lymphocytes [44]. However, in naïve CD4+ T cells, genetic inactivation of STIM1
(or STIM1/STIM2) did not impair homing of T cells to secondary lymphoid organs in an
in vivo model [45]. CRAC-mediated Ca2+ influxes also controlled the timing of the “stop
and go” behavior of T cells during the search for the cognate antigen, and the decrease in
velocity upon cognate antigen stimulation, an advantageous feature for effective contact
with the antigen presenting cell (APC) [45,46]. Indeed, a dominant-negative ORAI1 mutant
and CRAC blockade caused an increase in cell velocity, an inefficient strategy during the
search for the cognate antigen that could affect antigen recognition at the tumor site [21,46].
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Figure 2. Ion channel regulation of human T cell motility. Ion channels acquire a distinct polarization
in migrating human T cells: KCa3.1 and TRPM7 localize at the uropod, while Kv1.3 and CRAC
(ORAI1) are at the leading-edge. Intracellular Ca2+ levels ([Ca2+]i) are higher at the uropod than
other cell compartments, which may serve to support the Ca2+ requirements for cell motility. The
blue line indicates intracellular Ca2+ oscillations; the red arrow indicates directionality of movement.

While KCa3.1 channels play an important role in integrin- and chemokine-driven
migration, they do not seem to regulate trans-endothelial migration [21,33,40,47]. Indeed,
Sim and colleagues (2017) showed that a KCa3.1 inhibitor reduced the migration of human
CD8+ TEM cells that express high levels of interleukin (IL)-7 receptor alpha (IL-7Rα) chain on
intercellular adhesion molecule 1 (ICAM1) surfaces, but not trans-endothelial migration [40].
There is also evidence that Kv1.3 plays a role in the motility of rat T cells [48]. Using a
rat model of skin delayed-type hypersensitivity, the authors showed that, while the Kv1.3
blockade did not prevent the accumulation of activated antigen-specific CD4+ TEM cells
at the site of inflammation, once in the inflamed area it caused the TEM cells to have
unproductive contact with antigen-bearing APCs, insufficient re-activation, and inefficient
Ca2+-dependent activation of ß1 integrin, thus decreasing motility and velocity [48].

Overall, K+ channels are regulators of key T cell functions that are necessary for an
effective antitumor response. These include the ability of the cells to chemotax and infiltrate
the tumor, make contact with cancer cells, as well as deliver the “lethal hit” and produce
antitumor cytokines. However, T cells fail to perform these functions in cancer as they
encounter a hostile TME.

4. Tumor Microenvironment and Ion Channels

Multiple elements of the TME affect T cell antitumor capabilities through alterations
of K+ homeostasis (Figure 3).
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(1) Hypoxia inhibits Kv1.3 channels via a dual mechanism. Short-term exposure to hypoxia di-
rectly inhibits Kv1.3 activity by changing the channel’s phosphorylation state. Prolonged exposure to
low O2 tension reduces the forward trafficking of newly synthesized channel’s pore-forming subunits
from the trans-Golgi to the plasma membrane. (2) Necrosis or cell death leads to ionic imbalances
and increased K+ ions in the extracellular space. The consequent increase in intracellular K+ inhibits
TCR activation via blockade of TCR signaling. (3) Adenosine (Ado) accumulates in the extracellular
space via consecutive degradation of ATP and AMP by the nucleotidase CD39 and CD73 present
on the membrane of cancer, stroma and Treg cells. Adenosine binds to its receptor on T cells and
triggers KCa3.1 inhibition via cAMP and PKA1 (4) PD-L1 presented by cancer cells binds to the
PD-1 receptor on the T cells and triggers KCa3.1 inhibition through PI3K signaling and calmodulin.
Inhibition of Kv1.3 and KCa3.1 channels by hypoxia, adenosine and PD-L1 (1,3,4) decreases overall T
cell effector functions. Accumulation of K+ in the cells and its deleterious effects on T cell function can
be exacerbated by the concomitant presence of hypoxia, adenosine and PD-L1 in the TME. Conversely,
overexpression and/or activation of Kv1.3 and KCa3.1 channels can simultaneously counteract all
these immunosuppressive elements of the TME.

4.1. Hypoxia

Proliferating tumor cells require and consume more oxygen (O2) than that provided
by pre-existing blood vessels, decreasing the O2 availability for other cell types. While
the tumor may stimulate increased vascularization, this adaptation is typically dysfunc-
tional to sustain adequate O2 concentrations with newly formed blood vessels that are
leaky, with blind ends and temporary occlusions [49]. The resulting hypoxia affects both
cancer and immune cell function. Levels of O2 tension as low as ≤2.5 mmHg have been
measured in tumors [50]. The effects of hypoxia occur both transcriptionally (through the
stabilization of the well-described transcription factor HIF1α, hypoxia-inducible factor
1α) and post-transcriptionally. The induction of HIF1α causes cancer cells to undergo
metabolic reprogramming, which leads to an increased glucose uptake with the production
of lactate, even in the presence of O2 and functional mitochondria (termed the “Warburg
effect”) [51,52]. These metabolic changes support cancer cell growth in hypoxic regions
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and drive tumor advantage for migration, invasion, metastases, and resistance to treat-
ments [49,53]. Hypoxic effects have also been shown to occur through alterations in the
function of voltage-dependent K+ channels in cancer cells such as PC12 pheochromocytoma
cells, and other cells of tissues that respond quickly to change in O2 availability such as
carotid body cells and pulmonary artery smooth muscle cells [54].

Likewise, hypoxia alters the immune system. Hypoxia decreases T cell activation,
cytotoxicity, and cytokine release [55]. Hypoxia delays cytotoxic T cell development
in vitro and decreases T cell activation in vivo [55,56]. In CD4+ T cells, hypoxia induces
the differentiation of CD4+ T cells into regulatory T (Treg) or T helper 17 cells [52]. While
hypoxia has these effects on immune cells, it additionally alters the TME by promoting the
up-regulation of immune checkpoint inhibitors, such as T-lymphocyte–associated antigen
4 (CTLA-4) and PD-L1 [52] and inducing acidosis and the production of adenosine [4].

Overall, the presence of hypoxia in tumors has been associated with poor prognosis
and response to therapies. The overall detrimental effects of hypoxia in cancer are ex-
emplified by the results of a study on the effects of hyperoxia in mice [57]. In this study,
the authors showed that a reduction in intratumoral hypoxia via the delivery of O2 to
tumor-bearing mice converted an immunosuppressive TME into an immunopermissive
one [57]. Increasing O2 availability in the tumor reduced extracellular adenosine, increased
T cell infiltration and release of immune stimulating cytokines and chemokines, and de-
creased tumor growth factor β (TGFβ). These effects were entirely dependent on T and
NK cells. It also reduced Treg accumulation in the tumor and CTLA-4 expression in these
cells. Ultimately, it improved the regression of tumors, prevented spontaneous metastasis,
and enhanced long-term survival. Furthermore, it improved the efficacy of adoptively
transferred tumor-reactive CD8+ T cells [57].

Kv1.3 channels play an important role as transducers of O2 deprivation in T cells.
Indeed, hypoxia inhibits Kv1.3 channels in T cells in both the acute (minutes) and chronic
(days) setting [58,59]. These inhibitions occurred post-transcriptionally, with no changes
in Kv1.3 mRNA. Acute hypoxia inhibited Kv1.3 currents in human T cells and Jurkat T
cells [58] caused membrane depolarization and, consequently, the suppression of TCR-
mediated Ca2+ influx (Figure 3) [59]. These effects of hypoxia on Ca2+ fluxes were mainly
attributable to Kv1.3, because there was no change in CRAC and Ca2+-activated K+ channel
function [59]. The src protein tyrosine kinase p56Lck was required for Kv1.3 response to
hypoxia [60]. Supporting this conclusion, p56Lck-deficient cell lines and human T lympho-
cytes pre-treated with a src protein tyrosine kinase inhibitor lost Kv1.3-mediated response
to hypoxia [60]. Chronic hypoxia instead induced a decrease in the pore-forming Kv1.3α
subunit protein expression in Jurkat T cells and, consequently, a decrease in functional
Kv1.3 channels [58]. Notably, in sustained O2 depletion, Kv1.3 current inhibition was
also associated with reduced T cell proliferation induced by TCR cross-linking agents [58].
Experiments focused on the underlying mechanisms that led to this decrease in Kv1.3
channel expression during chronic exposure to hypoxia in T cells [61] and revealed that
chronic hypoxia decreased Kv1.3 surface expression by inhibiting the forward trafficking
of Kv1.3 from the trans-Golgi to the plasma membrane, which physiologically involved
clathrin-coated vesicle formation initiated via the AP1 adaptor protein (Figure 3). Under
hypoxic conditions, gene and protein expression of the γ subunit of AP1 is decreased
with the consequent inhibition of clathrin-coated vesicle formation and impaired forward
trafficking of newly synthesized Kv1.3 to the plasma membrane [61]. Together, these results
provide evidence of a role of Kv1.3 channels in the T cell response to changes in O2 tension,
thus explaining the linkage between hypoxia, T cell immunosuppression, and the ion
channel apparatus.

4.2. Necrosis and Ionic Imbalance

Despite hypoxic conditions and the inadequate provision of nutrients, cancer cells
continue to rapidly divide, thus creating conditions for irregular areas of necrosis within the
tumor mass. Eil and colleagues (2016) demonstrated that these regions of tumor necrosis
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lead to extracellular ionic imbalance as the dying cells release their intracellular contents
and, thus, high levels of K+ ions [62]. The intracellular [K+] is 154 mM, much higher than the
extracellular [K+] (5.4 mM). This increase in extracellular [K+] in the necrotic tumor areas
ultimately leads to increased intracellular [K+] in the TILs through pump or leak channels,
due to the attenuation of K+ chemical gradient (Figure 3) [62]. No alteration in membrane
potential was reported. However, this ionic imbalance inhibited the serine/threonine
kinases Akt and mTOR (mammalian target of rapamycin) in the TCR-signaling pathway,
ultimately suppressing T cell transcriptional programs required for cytokine production
(Figure 3) [62]. This finding is in line with the fact that necrotic areas represent a marker
of poor prognosis in a variety of solid malignant tumors [63,64]. Interestingly, Kv1.3
overexpression corrected the immunosuppressive K+ accumulation in tumor necrotic areas,
increased IL-2 and IFN-γ production, reduced tumor burden and prolonged survival of
melanoma bearing mice [62]. KCa3.1 activation via specific pharmacological activators
also rescued T cell function in high extracellular [K+] in vitro [62]. The effect of KCa3.1
activation in vivo has yet to be determined. Recently, Ong and colleagues (2019) showed
that human peripheral blood T cells were negatively influenced by high extracellular
[K+] [65]. Indeed, high extracellular [K+] and the consequent high intracellular [K+] led
to impaired T cell proliferation in TCM and TEM, but not in T memory stem (TSCM) cells.
Moreover, high extracellular [K+] suppressed T cell cytokine production and tumor cell
killing ability and enhanced programmed cell death protein-1 (PD-1) expression [65]. This
suppression of T cell function in high extracellular [K+] was accelerated by the blockade of
KCa3.1 and Kv1.3, while the activation of KCa3.1 restored T cell function [65].

Therefore, it may be a fair assumption to predict that the immunosuppressive effects
of K+ accumulation in necrotic areas could be exacerbated by the concomitant presence of
hypoxia, adenosine and PD-L1 (see below) in the TME that suppress K+ channels.

Overall, these data show the importance of K+ channels in correcting the immunosup-
pressive effects induced by necrosis. However, we should also take into account that in a
later study, Vodnala and colleagues (2019) showed that the increase in extracellular [K+]
within the tumor has an additional impact on T cell stemness [66]. They demonstrated that
extracellular [K+] leads to T cell starvation and metabolic and epigenetic reprogramming
that, while limiting T cell effector functions, promote stem cell-like programs [66].

4.3. Adenosine

Adenosine, a catabolic product of adenosine triphosphate (ATP), is an anti-inflammatory
nucleoside that represents one of the predominant negative immune regulators of the
TME. Tumors accumulate extracellular ATP through passive loss from dead cells and
inflammatory- or hypoxia-induced release from stressed cells [67,68]. This accumulation
of ATP leads to increased levels of adenosine as the ecto-nucleotidases CD39 and CD73
metabolize ATP to adenosine monophosphate (AMP) and AMP to adenosine, respectively
(Figure 3) [67,68]. These enzymes are present on the surface of adenosine-producing cells
such as stromal cells, tumor cells, or Treg that, in addition, can also directly secrete adeno-
sine through bidirectional nucleoside transporters [68]. Extracellular levels of adenosine
in solid tumors can be as high as 10 µM; >300 times higher than those found in healthy
tissues (30 nM) [69,70]. Adenosine can then bind to its receptors on the surface of T cells
and exert its anti-inflammatory functions, which include the inhibition of effector cells and
the promotion of suppressive Treg [68,71]. Extracellular adenosine is decreased through
degradation via adenosine deaminase or transport into cells by the cell membrane nucleo-
side transporters. However, in the TME, salvage pathways can be inhibited, thereby adding
to the extracellular adenosine concentration [68,69]. Hypoxia facilitates the accumulation
of adenosine in the TME by increasing the expression of adenosine-producing enzymes
and reducing the expression of adenosine-degrading enzymes via HIF1α [4,69].

There is strong evidence that the immunosuppressive effects of adenosine on effector
T cells are partly mediated through the inhibition of KCa3.1 channels. In activated human
T cells, adenosine binds to A2A receptor (A2AR), increases cAMP production, and, conse-
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quently, induces protein kinase A1 (PKAI) activation. These changes serve to inhibit KCa3.1
and cause decreased T cell integrin-dependent motility, chemotaxis, and cytokine release
(Figure 3) [33,47]. Additionally, KCa3.1 channels mediate the sensitivity to adenosine of
circulating T cells from head and neck squamous cell carcinoma (HNSCC) patients [33]. It
is well established that the immunosuppressive effects of adenosine are more pronounced
in T cells from cancer patients than healthy donors [33,71]. More specifically and relevant
to KCa3.1, chemotaxis was significantly more inhibited by adenosine in HNSCC CD8+

T cells than in CD8+ T cells from healthy controls [33]. This effect of adenosine in HN-
SCC CD8+ T cells was neither mediated by an increase in A2AR expression nor proximal
cAMP-PKAI signaling. Rather, a reduction in KCa3.1 functionality (and not expression)
in HNSCC CD8+ T cells as compared to healthy CD8+ T cells accounted for the increased
sensitivity to adenosine and translated into reduced infiltration into the adenosine-rich HN-
SCC tumors [33]. Indeed, patients whose circulating CD8+ chemotaxis was most severely
inhibited by adenosine were also those who had the lowest infiltration of CD8+ T cells
into the tumor [33]. Important from a therapeutic perspective, positive modulators of
KCa3.1 restored the chemotaxis of HNSCC CD8+ T cells in the presence of adenosine [33].
More recently, follow-up studies showed that the reduction in KCa3.1 functionality in
HNSCC CD8+ T cells was secondary to a defect in plasma-membrane localized calmodulin,
a signaling molecule tethered to the channels’ C-terminal domain and responsible for
its Ca2+-sensitivity [72]. Binding of Ca2+ to calmodulin translates into a conformational
change in KCa3.1 and its opening [73]. Knockdown of calmodulin in healthy CD8+ T cells
reproduced HNSCC T cell dysfunction, namely reducing KCa3.1 activity and chemotactic
capabilities in the presence of adenosine [33,72]. In contrast, pre-incubation of calmodulin
knocked-down healthy CD8+ T cells with a specific KCa3.1 activator (1-EBIO) rescued the
cells’ capability to chemotax in the presence of adenosine [72]. Therefore, KCa3.1 activators
could be used to overcome the immunosuppressive action of adenosine and improve the
antitumor functions of T cells.

The blockade of the adenosine pathway and the subsequent increase in antitumor
immune functions may be also achieved by targeting different points along the adenosine
pathway [68]. These include inhibiting adenosine synthesis [74,75], increasing adenosine
degradation through increased adenosine deaminase activity [71], or preventing the interac-
tion with specific receptors on the surface of target cells [76]. We have shown that targeted
silencing of A2AR in memory CD45RO+CD8+ T cell of HNSCC patients via lipid nanopar-
ticles abrogated the inhibitory effect of adenosine on the chemotaxis of these cells [77].
In vivo studies provide conclusive evidence of the importance of adenosine in cancer [76,78].
A phase I clinical trial of treatment-refractory renal cell cancer patients demonstrated anti-
tumor activity of an A2AR antagonist alone and in combination with checkpoint inhibitors
and established the safety and feasibility of targeting this pathway [76]. However, the
advantage of KCa3.1 activators over conventional adenosine receptor blockers is that this
treatment approach may overcome the actions of prostaglandin E2 (PGE2), another im-
munosuppressive molecule that accumulates in the TME and inhibits KCa3.1. It has been
reported that PGE2 inhibits KCa3.1 in mast cells [79].

Overall, the development of immunotherapies targeting KCa3.1 on the adenosine
pathway may serve as promising therapeutics [76,80].

4.4. Programmed Death Ligand 1

Overexpression of PD-L1 is utilized by cancer cells to suppress the antitumor immune
response. The effect of PD-L1 on T lymphocytes is mediated by engagement with its
cognate receptor PD-1 and, consequently, inhibition of TCR-dependent effector functions,
such as Ca2+ fluxing, secretion of cytokines and cytotoxicity [81]. KCa3.1 channels provide
a link between PD-1 stimulation by PD-L1 and reduced Ca2+-related functions [82]. PD-L1
reduces KCa3.1 activity and Ca2+ fluxes in CD8+ T cells; this effect is rescued by treatment
with anti-PD-1 blocking antibodies. KCa3.1 function is controlled by multiple mechanisms,
including the regulation of the channel Ca2+ sensitivity by calmodulin (described before)
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and histidine phosphorylation [83,84]. Histidine phosphorylation of KCa3.1 has been
shown to be triggered by the phosphoinositide 3-kinase (PI3K): the phosphatidylinositol-3
phosphatase (PI3P) signaling pathway [84,85]. In T cells, ligation of PD-1 by PD-L1 results
in a decrease in TCR proximal signaling through inhibition of PI3K activity [86]. A decrease
in PI3K suppresses the production of PI3P from phosphatidylinositol (PI). PI3P is known
to activate the nucleoside diphosphate kinase B (NDPK-B), which, ultimately, increases
KCa3.1 activity via histidine phosphorylation [84,85]. Thus, the reduction in PI3K triggered
by PD-1 stimulation suppresses KCa3.1 (Figure 3). Indeed, we showed that the response of
KCa3.1 channels to PD-1 ligation is mediated by PI3K-PI3P signaling after short exposure
to PD-L1. Longer exposures to PD-L1 show a role for calmodulin. Five-day exposure to
PD-L1 reduced calmodulin expression in T cells by 40% while the contribution of PI3K
was reduced compared to early time points [82]. The involvement of KCa3.1 in mediating
the effect of the PD-L1/PD-1 response is further supported by in vitro studies showing
that PD-1 and PD-L1 blocking antibodies increased KCa3.1 activity [82]. An increase in
Kv1.3 activity was also reported. However, there may be a difference in sensitivity to PD-L1
between these two channels; a higher concentration of anti-PD-L1 blocking antibodies was
necessary to unleash Kv1.3 activity in T cells from cancer patients compared to KCa3.1 [82].
Further studies are necessary to dissect the mechanisms mediating the effect of PD-L1 on
Kv1.3 channels. Ex vivo studies of K+ channel activity in CD8+ T lymphocytes of HNSCC
patients treated with anti-PD-1 blocking antibodies also showed an increase in KCa3.1
and Kv1.3 activities [87]. These studies position K+ channels downstream to immune
checkpoint inhibitors.

Immune checkpoint inhibitors have arisen as new effective treatments in solid malig-
nancies as they have shown remarkable improvements in treatment outcomes including
long-lasting remissions after discontinuation of therapy [88,89]. However, the majority
of patients do not respond or eventually relapse [90]. Activation of K+ channels may be
critical to expanding the efficacy of these revolutionary treatments.

Kv1.3 channels have also been recently implicated as biomarkers of response to
immunotherapy. Goggi and colleagues (2022) developed a new Kv1.3 targeting radiophar-
maceutical ([18F]AlF-NOTA-KCNA3P) and showed that it could be used to differentiate
tumors responding to immune checkpoint inhibitors (anti-PD-1 antibodies alone or in
combination with anti-CTLA-4 antibodies) in a syngeneic colon cancer model [91]. This
radiolabeled ligand of Kv1.3 allowed the quantification of TEM cells infiltrating the tumor,
which were increased in responding tumors, and raised the possibility that a similar strategy
could be used to develop new biomarkers of response to immune checkpoint inhibitors.

5. K+ Channels as a Target for Cancer Therapy

We and others have examined the effects of the TME on the ion channel apparatus of
antitumor immune cells (Table 1) and have explored the potential of restoring impaired
channel function for cancer treatment. As multiple elements of the TME affect K+ channels
in T cells as described above, the anticipated repercussion of this would be reduced K+

channel activity and Ca2+ fluxes in TILs. Indeed, the Ca2+ response of TILs is severely
dampened compared to circulating T cells [32,92]. In HNSCC patients, TILs exhibit sup-
pressed Kv1.3 and KCa3.1 function compared to circulating T cells. Additionally, we
showed that the number of Kv1.3 channels per membrane unit surface (described as Kv1.3
current density) was lower in HNSCC TILs compared to HNSCC PBT. Hence, TILs had a
significantly lower number of channels. [32,87]. Moreover, TILs were not only “function-
ally” but also “spatially” impaired. The expression of Kv1.3 was shown to be higher in
stromal than epithelial CD8+ TILs, and highly proliferating-cytotoxic TILs were physically
excluded from the tumor and trapped in the stroma [32]. In this scenario, ion channels
represent a fascinating target to counteract the immunosuppressive effects of the TME
on immune cells and to restore antitumor immunity. Proof of the benefits of targeting
Kv1.3 in cancer in vivo have already been provided, while the benefits of KCa3.1 are still
indirect, as they are supported only by in vitro evidence [33,62]. On the other side, ion
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channels are currently investigated as therapeutic strategies in autoimmune diseases, the
opposite situation compared to cancer, whereas the immune system is hyperactive rather
than suppressed. As a consequence, the immune system’s hyperactivity in autoimmune
disorders may be prevented by the inhibition of ion fluxes, which are responsible for the
functionality of disease-provoking immune cells [93,94]. In proof of this, our group has
showed that silencing RNA against Kv1.3 in memory T cells improved survival in a mouse
model of SLE [35]. Thus, upregulating K+ channel function in T cells, and particularly
Kv1.3 in the context of cancer, while very promising, has to take into consideration the
potential development of immune-related adverse events that are already reported for the
immune checkpoint inhibitors currently in use [95].

Table 1. Effects of the tumor microenvironment (TME) characteristics on K+ channel network of T
cells. Abbreviations: TILs, tumor-infiltrating lymphocytes; PD-L1, programmed cell death ligand 1;
PD-1, programmed cell death protein-1.

TME Feature Effect on Ion Channels References

Hypoxia

Acute • Inhibition of Kv1.3 currents [58,59]

Chronic • Decrease in Kv1.3 expression [58,61]

Tumor necrosis and increase
in intra-tumoral K+

concentration

• Responsible for the increase in intracellular
[K+] in TILs that leads to inhibition of T cell
transcriptional programs required for
cytokine production. Kv1.3 overexpression
(in vivo) and
overexpression/pharmacological activation
of KCa3.1 (in vitro) rescue T cell function

[62]

Adenosine • Adenosine binds to A2A receptor on T cells
triggering KCa3.1 inhibition [33,47,72]

PD-L1 • PD-L1 binds to PD-1 receptor on T cells
triggering KCa3.1 inhibition [82]

Recently, we have investigated the effects of the immune checkpoint inhibitor pem-
brolizumab (a monoclonal antibody against PD-1) on the ion channel functionality in T
cells of HNSCC patients [87]. These studies revealed that patients who responded to neoad-
juvant pembrolizumab (where the response was defined according to the % of viable tumor
at resection, namely less than 80%) had a specific ion channel signature in circulating T cells.
In more detail, while in TILs pembrolizumab induced an increase in Kv1.3 activity and Ca2+

fluxes regardless of the response, a characteristic response was identified in circulating
T cells [87]. Interestingly, all patients (responders and non-responders) experienced an
immediate increase in KCa3.1 activity in circulating CD8+ T cells after pembrolizumab
administration. However, circulating CD8+ T cells of patients who responded to pem-
brolizumab also had a marked increase in Kv1.3 activity compared with non-responders.
This was accompanied by an increase in Ca2+ fluxes and chemotactic ability in the presence
of the immunosuppressive adenosine [87]. Hence, K+ channels are significantly implicated
in the response to pembrolizumab in HNSCC patients, where responders are characterized
by a typical ion channel signature (Kv1.3high KCa3.1high Ca2+high) in circulating cytotoxic T
cells that may also elucidate strategies to overcome resistance.

However, the network of ion channels that contribute to Ca2+ fluxes in T cells is
complex. As discussed above, ion channels are differentially expressed in resting and acti-
vated T cells, and their expression depends on the T cell subset. Moreover, many different
settings (e.g., tumors, autoimmune and infectious diseases) and models (e.g., rat, mouse,
and human) were used to study ion channel properties and, therefore, the translatability
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between fields may not be completely compatible and, thus, may add to the heterogeneity
of results. This is true particularly for studies on Kv1.3 channels that utilize mouse T cells,
as the expression and functional role of Kv1.3 channels is different in mice compared to
human T cells [96]. Additionally, the ion channel network is a very sensitive and highly
regulated system. For example, T cells operate efficiently towards cancer elimination in a
defined and relatively small range of extracellular [Ca2+]: between 23 and 625 µM, which
allows the release of an elevated number of cytotoxic granules per cell [97].

Nevertheless, K+ channels contribute to the reduction in the antitumor function of T
cells and targeting these channels has shown promising therapeutic value. As K+ channels
are downstream to multiple immunosuppressive elements of the TME, targeting these
channels would ultimately allow to simultaneously counteract the multidirectional attacks
employed by the tumor to suppress antitumor immunity.

6. Conclusions

Ion channels play an integral role in Ca2+ signaling and downstream T cell effec-
tor functions, and, therefore, are, when fully functional, critically important for the im-
mune system role in detecting and eliminating cancer cells. Although this ion channel
network is complex, it is clear that many factors within the TME converge to impair
ion channel function (Figure 3). Further understanding the effect of the TME on ion
channels could help to develop effective treatments, especially for patients resistant to
conventional immunotherapies.
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