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Introduction
Cancer cells have anomalous development and proliferation 
due to disturbances in their control systems. To increase the 
knowledge about these phenomena, some quantitative mod-
els and experimental studies have been proposed either in an 
abstract theoretical perspective1,2 or in some particular case 
studies.3,4 The cell control systems are constituted by the inte-
gration of a gene system and signaling pathways that regulate 
gene expression and metabolic pathways. The signaling path-
ways are composed of a biochemical network that has a hierar-
chical modular structure, that is, many complex networks are 
decomposed in simpler ones, the modules or motifs.5

A very informative data for studying such complex phe-
nomena would be dynamical data evaluated through time 
series of omics measurements taken from a single cell or from 
a set of synchronized cells. Unfortunately, this kind of data is 
not largely available. This fact motivates the main issue of this 
article: how to use static omics data and available biological 
knowledge to get new information about the elements of the 
control dynamics of cancer cells.

Two important measures to access the state of the cell 
control system are the gene expression profile and the signal-
ing pathways (ie, control signals built primarily from protein–
protein interaction [PPI]). Tumor biopsies data from large 
cohorts of patients are abundant (eg, the one from The Can-
cer Genome Atlas) and allow the assessment of gene expres-
sions, which are important to evaluate the impact of genetic 
heterogeneity in the control systems. This information may 
be relevant, for example, to distinguish the control systems’ 
behavior in different types of cancer or in different stages of a 
given cancer type. Another available data that has some struc-
tural information about the cell control system dynamics is 
the human PPI network.

This article uses a combination of two static omics data: 
the human PPI network6 and the transcript expression mea-
surements taken from breast cancer tissues7 to model the 
states of a cancer cell. The integration of biological networks 
and gene expression data is not new. Several reports have 
addressed the combined use of both types of data using dif-
ferent approaches.8–14 For each type of cancer, this integrated 
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approach results in a subgraph of the human PPI graph, 
labeled with relative (with respect to the normal tissue) tran-
script expression values associated to each protein. This labeled 
PPI graph connects the problem of extracting information 
about cancer cell dynamics from static omics data and com-
plementary biological knowledge to the formal approach of 
probabilistic graph models, such as gene expression network15 
and motif network analysis.16 This network analysis models 
the phenomena of different kinds by the same abstract model, 
a graph. It takes abstract graph structure measures, which 
depend on nodes and arcs, and interprets them in the context 
of the phenomena studied. The labeled subgraphs under this 
study will be called as motifs.

To exemplify the application of some aspects of the 
developed conceptual framework, we will verify the hypoth-
esis that different subtypes of breast cancer have different 
representation of motifs. This article proposes an analytical 
method, which integrates PPI networks and differential tis-
sue transcript expression data to identify motifs (ie, small 
subgraphs) of disturbed signaling pathways and measure the 
distribution of the observed state of these motifs in breast 
cancer subtypes. Motifs showing a differential representa-
tion in the subtypes are then analyzed, and new cancer genes 
are proposed.

Following this section, the “Materials and methods” sec-
tion presents the methods used to extract, analyze, and model 
the data. The description of the data includes their source, 
semantics, and preparation. The “Model of analysis” section 
presents the mathematical description of the operators used 
to identify the motifs, estimate the motif distributions, and 
recognize the characteristic motifs of each cancer subtype. In 
the following “Results” section, the analysis outputs are given, 
including identification of motifs, characteristics of motif rec-
ognition, data enrichment of the motifs recognized, analysis 
of motifs internal connections for annotation of new cancer 
proteins, and corresponding enrichment. The article is ended 
with the discussion of potential applications of the tech-
nique presented here and other similar techniques for learn-
ing about the structure of the cellular control system and the  
disturbed subsystems.

Materials and Methods
Data source. In this subsection, we describe the TGA 

expression data, the PPI data and the enrichment technique.
TCGA data. The TCGA expression data were retrieved 

from the cBio portal. A z-score threshold was used to clas-
sify the genes as upregulated (z-score .3) or downregulated 
(z-score ,−3). Moreover, to improve the number of available 
data, both RNA-Seq and microarray experiments were com-
bined. For samples with both types of data, only microarray 
data were used. This data were acquired using the CGDS-R 
function, available at cBio.17 Datasets were all from the same 
release (January 2015). TCGA clinical data were downloaded 
from the TCGA public site (http://tcgs-data.nci.nih.gov/tcga/

tcgaDownload.jsp). The breast cancer samples were stratified 
using the molecular signatures described in Refs. 18 and 19.

PPI data. The human PPI network was obtained from 
the STRING database, which includes both known and pre-
dicted PPIs.20 For each association, a confidence score is cal-
culated based on the evidence collected from different data 
types. Here, we selected interactions with score 700 or 900 
from experimental or in silico evidences, respectively.

Enrichment data. The protein datasets derived from the 
analyzed motifs were submitted to clusterProfiler package,  
a enrichment tool provided by the R platform.21 All enrich-
ments were carried out against the Kyoto Encyclopedia of 
Genes and Genomes (KEGG) database,22 with an adjusted 
(using the BH method) P-value cutoff equal to 0.05.

Model of analysis. In this subsection, we describe the 
computational methods developed in this article. First, we 
introduce some concepts and definitions. Second, we describe 
the adopted strategy for the motif identification. Finally, 
we present our methodology to assess the frequencies of the 
motifs that were obtained in the identification step.

Definitions. A graph is an ordered pair of sets ( , ). The 
elements of  are called vertices, while  is a set of pairwise 
elements of ; the elements of  are called edges. We can now 
define a PPI network as a graph.

Definition 2.1. A PPI network graph U is a graph ( , )  
where each vertex is identified by one protein, and each edge 
represents a potential interaction between proteins.

A subgraph is a graph G = ( ′, ′) such that ′ ⊆  , ′ ⊆   
and H = ( , ) are also a graph; in this case, we say G is a sub-
graph of H. We assume that there is a bijection between the 
expressed gene set and the protein set. Hence, we can make 
the following definition.

Definition 2.2. Given a subgraph G of U, Genes(G) is an 
ordered list of genes associated to the vertices of G.

In this work, gene expression information is gathered 
from cancer tissue subtypes. For each subtype, several samples 
were collected. For each subtype and each sample, the expres-
sion levels of a given gene are given by its z-score, which is a 
real number.

Linear Star Kite

Square Diag K4

Figure 1. Connected graphs with four vertices.
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Definition 2.3. Given a gene g, z(g,l,i) is the z-score of g 
for the ith sample of subtype l.

Let the elements of the set {−1,0,1} be denoted as labels. 
The labels −1, 0, and 1 are also known as suppressed, normal, 
and overexpressed, respectively. We define f: → { , , }−1 0 1  as a 
function that takes values from z-scores to labels.

Now, let G be a graph with at least two vertices. We say 
that G is connected if for every pair 〈u,v〉 of vertices of G there is 
a set of edges 1 1≤ < +{ }{ }i n i iu u,∪  such that v1 = u and vn = v. 
In this work, we are interested in sets of graphs that are con-
nected and have the same number of vertices. In Figure 1, we 
give examples of connected graphs with four vertices.

Let G and H be two graphs. We say that G is isomorph to 
H if there is a bijection b between the vertices sets of G and H 
such that two vertices u and v of G are adjacent (ie, both are 
present in the same edge of G) if and only if the vertices b(u) 
and b(v) of H are adjacent.

With the definitions presented so far, we can now intro-
duce the concept of motif used in this article.

Definition 2.4. A motif 〈G,L〉 is composed by a connected 
graph G and an ordered list of labels L such that there is a 
bijection between vertices in G and labels in L.

In Figure 2, we present an example of motif. Finally, let 
1 = 〈G1,L1〉 and 2 = 〈G2,L2〉 be two motifs. We say that 

1 is symmetric to 2 if there is a bijection b between the ver-
tice sets of G1 and G2 such that: (i) two vertices u and v of G1 

are adjacent if and only if the vertices b(u) and b(v) of G2 are 
adjacent (ie, G1 is isomorph to G2) and (ii) for each vertex v of 
G1, its label in L1 is equal to the label of b(v) in L2.

Based on these definitions, we developed algorithms for 
motif identification that will be explained in the next section.

Motif identification. In this section, we present two 
algorithms for motif identification, which is, for a given set 
of motifs, the search and counting of their occurrences in 
the PPI network graph, cancer tissue subtypes, and their 
respective samples. The first algorithm is a basic search 
and count algorithm, which is described in a higher level, 
that is, we show only the general steps to perform the motif 
identification. The second algorithm is a modification of the 
basic search and count algorithm for connected graphs with 
four vertices, which we further explored in this work with 
computational experiments.

The basic search and count algorithm. The basic search and 
count algorithm receives as input a set of cancer tissue subtypes 
and their respective set of samples, an integer k $ 2 and a PPI 
network graph U. It returns a table Count, which stores, for 
each subtype and each sample, the number of observations of 
the motif 〈Gk,L〉, where Gk is a connected graph with k vertices 
and L is an ordered set of labels associated to the vertices of Gk. 
The pseudocode of this algorithm is presented in Figure 3.

In this basic search and count algorithm, we assume that 
the counting issues that might arise due to symmetries between 
motifs are solved through an appropriate implementation of 
the for loops in the lines 2–10, 3–9, and 5–7. In the following, 
we show an implementation of this algorithm for connected 
graphs with four vertices; this implementation includes a way 
to circumvent these counting issues.

An algorithm for connected graphs with four vertices. The 
general strategy of this algorithm is, for each vertex in the PPI 
network graph U, to explore its adjacent vertices (and also 
some vertices adjacent to adjacent vertices) and store all con-
nected subgraphs with four vertices found during that proce-
dure. For each search initiated in a vertex v, the exploration is 
constrained to vertices smaller than v. Hence, we assume that 
there is a strict total order relation in the set of vertices of U, 
as in the graph depicted in Figure 4.

a(1)

b(0) c(1)

d(−1)

Figure 2. Example of a motif 〈G,L〉 with vertices {a,b,c,d} and 
L = 〈+1,0,+1,−1〉.

Figure 3. Pseudocode of the basic search and count algorithm.
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We start the description of this algorithm by a recursive 
function to identify the connected subgraphs of four vertices 
in a PPI network graph U. To this end, we first introduce an 
additional concept: let G be a graph and X be a subset of vertices 
of G. G[X] is a subgraph of G induced by X if G[X] is a sub-
graph of G such that for every pair of vertices u and v of G[X], 
{u,v} is an edge of G[X] if and only if {u,v} is an edge of G.

The IDENTIFY-SUBGRAPHS function receives a PPI 
network graph U and a vertex v of U, and includes into a 
given set G all connected subgraphs of four vertices in U that 
can be found in an exploration starting in v. In an initial call 
of this function, X is set as {v}, and k = 3. The pseudocode of 
this function is shown in Figure 5.

In Table  1, we show a simulation of the IDENTIFY-
SUBGRAPHS function for an exploration of the PPI network 
graph depicted in Figure 4 that starts in vertex 7. The main 
algorithm receives as input a set of cancer tissue subtypes and 
their respective set of samples and a PPI network graph U.  
It returns a table Count which stores, for each subtype and 
each sample, the number of observations of the motif 〈G ′,L′〉, 
where G ′ is a connected graph with four vertices and L′ is an 
ordered set of labels associated with the vertices of G ′. The 
pseudocode of this algorithm is presented in Figure 6.

In the pseudocode shown in Figure  6, the function 
EXTRACT-TOPOLOGY called in line 11 avoids two motifs 

that are symmetric to each other of being counted separately. 
Once for connected graphs with four vertices, there are a few 
possible configurations when the graph isomorphism is taken 
into account. Figure 1 shows the six equivalent classes defined 
by all isomorphisms; we treated each case directly through a 
table that maps different pairs 〈G1,L1〉, …, 〈Gn,Ln〉 into a unique 
motif 〈G ′,L′〉. For instance, each of the two motifs shown in 
Figure 7A and B is mapped to the motif depicted in Figure 7C.

Motif frequency analysis. In this section, we describe the 
methodology of the analysis of the motif statistics produced 
using the algorithms presented in the previous section (ie, 
the data stored in the Count table). The adopted strategy 
involves the use of the Shannon entropy to assess motifs 
whose number of occurrences was concentrated in one or 
more subtypes.

Let  be the space of motifs,  be the collection of sub-
types, and nl be the number of samples of the subtype l. For 
each motif  in , the entropy of  among the subtypes in 

 is described by the following equation:

	   
H P l P l

l
( ) ( ) log ( ),M M M

L

= −
∈
∑ 	 (1)

where P (⋅) is the probability distribution function for the 
motif  among the subtypes in ; this function is defined 
as follows:
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for all l in .

Results
The PPI graph used for this work has 7335 nodes, with degrees 
(ie, number of connections) varying from 1 to 3090 (for the 
protein UBC), with an average degree of 8. It is important 
to emphasize that present-day human PPI networks are still 
incomplete with a high rate of false negatives. We deal with 

1: function IDENTIFY-SUBGRAPHS(PU , G, X, v, k)
2: for all set S of vertices adjacent to v, smaller than v and taken k at a time do
3: if X ∪ S has four vertices then
4: Include PU [X ∪ S] into G � The subgraph of PU induced by X ∪ S
5: else
6: for each vertex s in S and not in X do
7: IDENTIFY-SUBGRAPHS(PU , G, X ∪ S, s, 4 − | X ∪S |)
8: end for
9: end if

10: end for
11: if k − 1 > 0 then
12: IDENTIFY-SUBGRAPHS(PU , G, X, v, k − 1)
13: end if
14: end function

Figure 5. Pseudocode of a recursive function to identify the subgraphs from a PPI network graph.

3 4

5

6

7

2

1

Figure 4. Example of PPI network graph U.
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6 × 34 = 486, since there are six topologies (Fig. 1) and three 
possible labels for each vertex.

As expected, the vast majority of motifs have labels 
L = 〈0,0,0,0〉, indicating that all proteins have no differential 
expression compared to a normal cell in that respective sample. 
Their count is over 95 times the number of occurrences of any 
other labeled motif in a given subtype. In order to reduce the 
search space, we removed these motifs from further analysis.

In the following, for the sake of simplicity, we use the 
letters s, n, and o to indicate the expression levels −1 (sup-
pressed), 0 (normal), and 1 (overexpressed), respectively.

Differential motifs. The counting algorithm of the 
“Motif identification” section and Expression (2) provide 
an estimate of motif distribution among breast cancer sub-
types. Using Shannon’s entropy (Expression (1)), we iden-
tified the motifs that are more represented in each breast  
cancer subtype.

With four subtypes, the maximum entropy is −4 × 0.25  
log2 0.25 = 2, representing an uniform distribution. Table 3 
shows all the motifs with entropy lesser than one, indicating 
a concentration of occurrences in one or two subtypes. We 
are interested in those that are strongly represented in one 
subtype and have a small relative number of occurrences  
in others.

For instance, the first motif in Table 3, K4-osss (topology 
K4 and expression levels 〈+1,−1,−1,−1〉) is clearly much more 
represented in the subtype luminal A. The same applies to 
Diag-soss and K4-ooss. Square-ooss is more represented in 
the subtype triple negative.

Enrichment of differential motifs with specific ontol-
ogies in breast cancer subtypes. The differential motifs 
identified in Table  3 were further analyzed in terms of the 
composition of proteins in the PPI subgraph constructed for 
each breast tumor subtype. From the samples of each breast 
cancer subtype, we took the union of all instances of a motif, 
obtaining a set of proteins. These nonredundant lists (one for 
each subtype) were then evaluated regarding the enrichment 

Figure 6. Pseudocode of a search and count algorithm for connected graphs with four vertices.

Table 1. Simulation of the IDENTIFY-SUBGRAPHS function.

#call G (only the vertex sets of  
the graphs are shown)

X v k

1 Ø {7} 7 3

2 {{7, 6, 5, 4}} {7} 7 2

3 {{7, 6, 5, 4}} {7, 6, 5} 6 1

4 {{7, 6, 5, 4}} {7, 6, 5} 5 1

5 {{7, 6, 5, 4}} {7, 6, 4} 6 1

6 {{7, 6, 5, 4}} {7, 6, 4} 4 1

7 {{7, 6, 5, 4}, {7, 6, 4, 3}} {7, 5, 4} 5 1

8 {{7, 6, 5, 4}, {7, 6, 4, 3}} {7, 5, 4} 4 1

9 {{7, 6, 5, 4}, {7, 6, 4, 3}, {7, 5, 4, 3}} {7} 7 1

10 {{7, 6, 5, 4}, {7, 6, 4, 3}, {7, 5, 4, 3}} {7, 6} 6 2

11 {{7, 6, 5, 4}, {7, 6, 4, 3}, {7, 5, 4, 3}} {7, 6} 6 1

12 {{7, 6, 5, 4}, {7, 6, 4, 3}, {7, 5, 4, 3}} {7, 6, 5} 5 1

13 {{7, 6, 5, 4}, {7, 6, 4, 3}, {7, 5, 4, 3}} {7, 6, 4} 4 1

14 {{7, 6, 5, 4}, {7, 6, 4, 3}, {7, 5, 4, 3}} {7, 5} 5 2

15 {{7, 6, 5, 4}, {7, 6, 4, 3}, {7, 5, 4, 3}} {7, 5} 5 1

16 {{7, 6, 5, 4}, {7, 6, 4, 3}, {7, 5, 4, 3}} {7, 5, 4} 4 1

17 {{7, 6, 5, 4}, {7, 6, 4, 3}, {7, 5, 4, 3}} {7, 4} 4 2

18 {{7, 6, 5, 4}, {7, 6, 4, 3}, {7, 5, 4, 3}} {7, 4} 4 1

19 {{7, 6, 5, 4}, {7, 6, 4, 3}, {7, 5, 4, 3}} {7, 4, 3} 3 1

** {{7, 6, 5, 4}, {7, 6, 4, 3}, {7, 5, 4, 3},  
{7, 4, 3, 2}, {7, 4, 3, 1}}

– – –

Notes: Each row contains the input values of a call of the function; the first 
row is the initial call, while the remaining rows are the recursive calls in the 
sequential order they are executed. For all calls of the function, the PPI 
network graph U is the one depicted in Figure 4.  
**After the execution of the 19th and last recursive call.

this problem by using mass concentration analysis of relevant 
motifs. The breast cancer subtypes considered are presented 
in Table 2.

Motif identification. In the following, a motif is just a 
subgraph where a vertex is associated with any protein with a 
given label. Consequently, the number of different motifs is 
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Table 3. Entropy of motifs and distribution among subtypes.

Motif Entropy Triple Neg Luminal A Luminal B Her2E

K4-osss 0.3667 0.0392 0.9436 0.0166 0.0006

Diag-soss 0.4474 0.0840 0.9130 0.0018 0.0011

K4-ooss 0.5592 0.1184 0.8780 0.0001 0.0035

Square-ooss 0.5614 0.8711 0.1282 0.0003 0.0003

Diag-osss 0.5661 0.0912 0.8919 0.0162 0.0007

Star-ooos 0.6463 0.8699 0.1121 0.0038 0.0141

Linear-oooo 0.6516 0.8549 0.1369 0.0044 0.0039

Square-osso 0.7082 0.8116 0.1874 0.0005 0.0005

Square-oooo 0.7268 0.8252 0.1642 0.0001 0.0106

Kite-soss 0.7296 0.1611 0.8273 0.0107 0.0009

Kite-oooo 0.7428 0.8236 0.1652 0.0044 0.0068

Diag-oooo 0.7969 0.8123 0.1704 0.0102 0.0071

Square-ooos 0.7990 0.7718 0.2252 0.0002 0.0028

Square-ooso 0.8021 0.8236 0.1487 0.0224 0.0053

Kite-osoo 0.8198 0.8137 0.1601 0.0044 0.0219

Linear-osoo 0.8541 0.7807 0.2040 0.0072 0.0081

Square-osss 0.8756 0.7134 0.2855 0.0005 0.0005

K4-ssss 0.8865 0.1755 0.7880 0.0365 0.0000

Kite-ssos 0.8937 0.2093 0.7675 0.0230 0.0003

K4-noss 0.8968 0.1034 0.8107 0.0845 0.0011

Star-ssso 0.9696 0.3358 0.6584 0.0057 0.0001

Star-ssss 0.9991 0.5525 0.4469 0.0003 0.0003

Table 2. Number of samples in each breast cancer subtype.

Subtype Samples

Triple negative 100

Luminal A 393

Luminal B 100

Her 2 enhanced 30
 

of ontologies from the KEGG.22 A total of 27 and 12 KEGG 
categories were exclusively present in TNBC and luminal A, 
respectively (Fig. 8). For luminal A, Kite-ssos was the most 
enriched motif in the KEGG categories as shown in Figure 8, 
while for TNBC, Linear-osoo was the most enriched motif.

Interestingly, most of the KEGG categories found exclu-
sively in TNBC are involved with tumorigenesis, including 
transcription misregulation in cancer, renal cell carcinoma, PI3K-
AKT signaling pathway, pathways in cancer, mismatch repair, base 
excision repair, and microRNAs in cancer. This strongly suggests 
that our method is capable to identify motifs whose nodes are 
related to tumorigenesis. Furthermore, this also shows that the 
motifs identified by our methods belong to pathways related 
to cancer.

Use of motifs to complement the annotation of cancer 
pathways. One of the most complete annotations of cancer-related 
pathways is provided by the KEGG database. Its pathways in 
cancer entry have been widely used as a comprehensive landmark 
for a systemic view of cancer genes and proteins.

a(1) b(0)

c(−1)

d(1)

e(1) f(0)

g(1)

h(−1)

1(1) 2(0)

3(−1)

4(1)

A B C

Figure 7. A procedure to avoid two motifs that are symmetric to each other of being counted separately. At each figure, vertices names and their 
associated labels are, respectively, outside parentheses and between parentheses. The motifs of (A) and (B) are symmetric to each other, and the 
EXTRACT-TOPOLOGY function maps them to the same unique motif (C).
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As mentioned earlier, the data in Figure  8  strongly 
support the view that the motifs identified by our method 
belong to cancer-related pathways. It is, thus, reasonable to 
speculate that the set of proteins belonging to our motifs might 
harbor new putative cancer genes. To evaluate this possibil-
ity, we first selected all instances of the motifs that contained 
at least one node from KEGG’s pathways in cancer entry. 

Among these instances, half (51%) contained only one node 
from that respective KEGG entry. Instances with two, three, 
and four nodes from the KEGG entry corresponded roughly 
to 33%, 14%, and 2% of all instances, respectively. There was 
no difference between the breast cancer subtypes regarding the 
above distribution. Next, we select all other proteins belonging 
to the same motifs but not belonging to the KEGG’s pathways 

Figure 8. KEGG enrichment analysis. The dotchart shows the enrichment analysis performed by using clusterProfiler. All motifs selected by Shannon 
entropy method are represented at the X-axis, while in the Y-axis, all the enriched KEGG pathways with P-value # 0.05 are listed. The adjusted P-values 
are sorted from less (blue) to more (red) significant. Furthermore, the dot size is based on gene ratio, which is the observed number of genes in the 
experimental set within the respective KEGG pathway.
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Table 4. The ranked proteins associated with pathway in cancer.

protein Suppressed (S) Over-expressed (O)

TNBC LMNA LMNB HER2 TNBC LMNA LMNB HER2

HSF1 0 0 0 0 0.74 0.89 0.72 0.77

RANGRF 0.51 0.46 00.87 0.78 0 0 0 0

ORAOV1 0 0 0 0 0.44 0.89 0.73 0.5

ERBB2IP 0.72 0.36 0.09 0.19 0 0.01 0.01 0

NDUFB9 0 0 0 0 0.92 0.92 0.83 0.86

IFNAR1 0.25 0.1 0 0 0.38 0.21 0 0.89

FBP1 0.83 0.34 0 0.45 0 0 0 0

SRSF12 0 0 0 0 0.85 0.15 0 0

UQCRB 0 0 0 0 0 0.37 0.86 0 0.58 0.67

TOPORS 0.26 0.58 0.36 0.51 0.08 0.02 0.04 0.21

ZNF706 0 0.05 0 0 0.69 0.85 0.74 0.69

RPL19 0.12 0.13 0 0 0 0.13 0.85 0.9

GOLGA1 0.64 0.32 0 0.79 0 0 0.42 0

FLII 0 0.58 0.43 0.35 0 0 0.22 0.35

MRPL53 0.72 0 0 0.66 0 0.27 0 0

NADK2 0 0.13 0 0.83 0 0.25 0.5 0

TCAP 0 0 0 0 0 0.34 0.97 0.96

NUP50 0.13 0.59 0 0 0.13 0 0.42 0.32

NMT1 0 0.34 0.62 0.89 0.26 0.4 0.12 0

MGMT 0.35 0.59 0.82 0.7 0 0 0 0

USP32 0.17 0 0 0.32 0 0.73 0.89 0.32

GATA3 0.87 0.38 0 0.67 0 0 0 0

PTRH2 0 0.05 0 0 0.34 0.75 0.9 0.83

ORMDL3 0 0 0 0 0 0.42 0.95 0.99

PHB 0 0 0 0 0 0.63 0.86 0.89

KAT7 0 0.01 0 0 0.01 0.49 0.9 0.59

FOXA1 0.81 0.47 0 0.42 0 0.02 0.05 0

GRB7 0 0 0 0 0.01 0.37 0.92 0.94

ATMIN 0.33 0.54 0.83 0 0.22 0.05 0 0

ELP3 0.88 0.55 0.86 0.86 0 0.15 0 0

TBCE 0 0 0 0 0.9 0.92 0.88 0.96

VPS72 0 0 0 0 0.83 0.67 0.5 0.86

MRPL27 0.37 0.05 0 0 0 0.59 0.81 0.89

MSL1 0 0 0 0 0 0.12 0.84 0.96

PABPC1 0 0 0 0 0.84 0.67 0.77 0.9

ATP5L 0.39 0.51 0.75 0.84 0 0 0 0

NHP2L1 0.3 0.7 0 0.29 0.1 0 0 0.29

MED7 0.78 0.44 0.05 0 0 0 0 0

MED4 0.36 0.47 0.82 0.6 0.12 0 0 0

YEATS2 0 0 0 0 0.86 0.25 0 0.43

KANSL1 0.2 0.1 0.61 0.82 0 0 0 0

FAM175A 0 0.14 0 0.8 0 0 0 0

RAD21 0 0 0 0 0.83 0.9 0.83 0.93

MRPL10 0.52 0.07 0.38 0.89 0 0.57 0.49 0

MRPL13 0 0 0 0.11 0.77 0.91 0.94 0.85

(Continued)
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Table 4. (Continued)

protein Suppressed (S) Over-expressed (O)

TNBC LMNA LMNB HER2 TNBC LMNA LMNB HER2

MED30 0 0 0 0 0.85 0.61 0.06 0.32

POLR2K 0 0 0 0 0.79 0.85 0.82 0.75

TUBGCP3 0 0.09 0.76 0.31 0.8 0.26 0 0.31

DNAJC3 0 0 0.76 0.37 0.07 0.21 0.01 0.02

UBE2Z 0.26 0.26 0 0.13 0 0.46 0.92 0.67

ANKRA2 0.77 0.44 0.37 0.44 0 0 0 0

01/08/02 0 0 0 0 0.86 0.63 0.52 0.83

MCPH1 0.25 0.71 0.61 0.47 0.15 0.01 0.01 0

TNFRSF10B 0.18 0.65 0.22 0 0.18 0 0 0

KRT4 0 0 0 0 0.54 0 0 0.95

CDC6 0 0 0 0 0 0.15 0.88 0.89

VPS45 0 0 0 0 0.38 0.53 0.91 0.43

INTS10 0.09 0.71 0.64 0.37 0.46 0.03 0 0

FBX025 0.49 0.68 0.74 0.82 0.18 0.04 0 0

DDX19A 0 0.63 0 0 0.16 0 0 0

KLHL12 0.15 0 0 0 0 0.6 0.89 0.75

RPS25 0.24 0.57 0.89 0.46 0 0.06 0 0

RABIF 0 0 0 0 0.8 0.85 0.93 0.89

FAM96B 0.4 1 0.75 0.33 0 0 0 0.33

VPS4A 0.13 0.57 0.85 0.22 0 0 0 0.22

MAEA 0.35 0.23 0.77 0.34 0.21 0 0 0

EZH1 0.16 0.13 0.29 0.83 0 0.13 0 0

RI0K1 0 0 0 0 0.84 0.26 0.22 0.36

LRRFIP1 0.83 0.17 0 0 0 0.08 0 0

SKIV2L2 0.73 0.36 0.29 0 0.07 0.18 0 0

MED1 0.09 0.24 0.07 0.08 0.3 0.31 0.89 0.87

PSMB4 0 0 0 0 0.91 0.51 0.62 0.35

FYCOl 0.85 0.33 0 0.82 0 0 0 0

DCAF13 0 0 0 0 0.81 0.87 0.83 0.73

CAMLG 0.76 0.12 0 0.7 0 0.16 0 0

PEX14 0.2 0 0.75 0 0 0 0 0

YWHAZ 0 0 0 0 0.76 0.87 0.74 0.77

NSMCE4A 0 0 0 0.78 0.29 0.39 0 0

ELAC2 0 0.59 0.54 0 0 0 0 0

CDK12 0 0 0 0 0 0.17 0.88 0.96

TLX1 0 0 0 0 0.78 0.25 0.34 0.88

TGOLN2 0.41 0 0 0.79 0 0 0.75 0

CNOT7 0.42 0.74 0.74 0.62 0.21 0.04 0 0

ATP5G2 0.82 0.2 0 0.62 0 0 0 0

COPA 0 0 0 0 0.69 0.78 0.91 0.51

CLASP2 0 0 0 0.79 0 0.2 0.2 0

CLASP1 0.29 0.1 0.51 0.82 0 0.1 0 0

HEATR1 0.04 0.12 0 0 0.86 0.59 0.77 0.67

INTS9 0.55 0.62 0.71 0.62 0 0 0.09 0

SNF8 0.22 0.11 0 0 0 0.54 0.94 0.84

(Continued)
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Table 4. (Continued)

protein Suppressed (S) Over-expressed (O)

TNBC LMNA LMNB HER2 TNBC LMNA LMNB HER2

KRIT1 0.18 0.31 0.77 0 0.18 0.31 0 0

DEDD 0 0 0 0 0.88 0.7 0.75 0.8

DUSP12 0 0 0 0 0.55 0.69 1 0.38

LACTB2 0 0 0 0.33 0.7 0.85 0.44 0.33

EX0C4 0.23 0 0.87 0 0 0.24 0 0

HSPA14 0 0.04 0 0 0.83 0.51 0.26 0.58

TINF2 0.72 0.14 0 0.66 0 0 0 0

RPA1 0 0.4 0.77 0.51 0.14 0 0 0

BBS4 0.74 0.25 0 0 0 0.12 0 0

SCRIB 0 0 0 0 0.5 0.9 0.42 0.54

DYNC1I1 0 0 0 0 0.83 0.3 0 0

ACTL6A 0 0 0 0 0.83 0.47 0.49 0.83

ATP6V1C1 0 0 0 0 0.34 0.86 0.74 0.4

Notes: The normalized values were calculated based on absolute frequency of each type expression label in each subtype. For a given protein, the sum of the 
counts N, O, and S was used to normalize S and 0. 
Abbreviations: TNBC, triple negative; LMNA, luminal A; LMNB, luminal B; HER2, Her2 enriched.

in cancer. Proteins classified as overexpressed or underex-
pressed were separately ranked based on their frequency in  
the motifs.

The top candidates are listed in Table 4. Using the S-score 
method, recently developed by some of us,23 we estimated that 
52% of the genes listed in Table 4 (54 out of 103 genes) are cancer 
genes for breast tumor. One interesting protein that our method 
classifies as potentially oncogenic for triple negative is PSMB4,  
a subunit of the 26S proteasome that has been classified as a 
driver oncogene for several types of tumors.24 Another interest-
ing protein found by our method is YEATS2, a component of a 
histone acetyltransferase complex. YEATS2 has been found to 
be recurrently altered in chondrosarcoma tumors.25

In the list of underexpressed proteins, the transcription 
factor GATA3 was identified by our method as important in 
triple negative, and several reports have linked alterations in 
GATA3 with different aspect of breast tumor biology.26 The 
data presented in Table 4 strongly suggest that our method is 
able to identify known and new cancer genes.

Discussion
The method presented in this study identifies the recurrent four-
node motifs in the human PPI network superimposed with 
expression data from breast cancer patients from the TCGA 
project. The PPI graph permits to assess regions of the four-
dimensional gene expression space and, based on gene vector 
distribution, recognize the differential gene vectors. The S-score 
method corroborated that most of the genes found are oncogenes 
for breast cancer tumor. Furthermore, up to a reasonable noise 
level in the PPI network, our method is quite robust, since we 
have considerable amount of data for the estimation of this kind 
of distribution (ie, the ones with very high mass concentration). 

Although breast cancer data were used here, the method can be 
used for any type of tumor, assuming that there are the corre-
sponding gene expression data. Besides generating a representa-
tion map of such motifs in a cohort of breast cancer patients, 
the method allowed us to gain significant biological insights 
and identify potential new cancer proteins. Both pieces of infor-
mation extracted by the method are relevant to increase our 
understanding of the structure and dynamics of the cancer cell 
control system. The identification of new cancer proteins tends 
to progressively complete the architecture of the signal network 
of cancer cells. Changes in the cancer cell architecture are usu-
ally associated with dynamics alterations. The distribution of 
motifs may allow the investigation of cell control system archi-
tecture transformations, which imply in increasing or decreasing 
the control disturbances in different generations of cancer cells. 
The effect of such alterations on the cell control systems should 
be associated with several phenotypes, including cancer malig-
nancy. Thus, under this point of view, methodologies of the kind 
presented in this article may contribute to the discovery of rel-
evant new knowledge about cancer cell control systems.
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