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Abstract
Introduction: Obesity is treatment-resistant, and is linked with a number of serious, chronic diseases. Adult obe-
sity rates in the United States have tripled since the early 1960s. Recent reviews show that an increased ratio of
omega-6 to omega-3 fatty acids contributes to obesity rates by increasing levels of the endocannabinoid signals
AEA and 2-AG, overstimulating CB1R and leading to increased caloric intake, reduced metabolic rates, and weight
gain. Cannabis, or THC, also stimulates CB1R and increases caloric intake during acute exposures.
Goals: To establish the relationship between Cannabis use and body mass index, and to provide a theoretical
explanation for this relationship.
Results: The present meta-analysis reveals significantly reduced body mass index and rates of obesity in Cannabis

users, in conjunction with increased caloric intake.
Theoretical explanation: We provide for the first time a causative explanation for this paradox, in which rapid
and long-lasting downregulation of CB1R following acute Cannabis consumption reduces energy storage and
increases metabolic rates, thus reversing the impact on body mass index of elevated dietary omega-6/omega-
3 ratios.
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Introduction
The current review and meta-analysis establishes the
impact of Cannabis use on body mass index (BMI)
and obesity rates, and provides a well-supported phys-
iological, causative explanation for this impact. Canna-
bis use appears to reverse the impact of the modern
American diet on health by reducing the effects of an
elevated ratio of omega-6/omega-3 fatty acids on endo-
cannabinoid (eCB) tone. It is therefore necessary to un-
derstand how diet impacts health to understand the
health impact of Cannabis use.

Diet is the main cause of premature death and dis-
ability in the United States. The modern western diet is
proinflammatory and obesogenic.1,2 Diseases associated
with inflammation and obesity include cancer, cardiovas-
cular disease, diabetes mellitus (DM), Alzheimer’s dis-

ease, mood disorders, autoimmune disorders, liver and
kidney disease, and musculoskeletal disabilities.1–12

A significant dietary factor contributing to these health
problems is an increased ratio of omega-6 (linoleic
acid, LA) to omega-3 (a-linolenic acid, ALA) fatty
acids,2,10,13–21 especially in the context of a high glyce-
mic load and reduced physical activity.

Recent reviews show that dysregulation of the eCB
system plays a major role in development of obesity
and metabolic disorders, and strongly implicate the
elevated omega-6/omega-3 ratio as a primary cause of
this dysregulation.15,18,19,22–29 Omega-6 fatty acids are
precursors of the eCBs N-arachidonoylethanolamide
(AEA, or anandamide) and 2-arachidonoylglycerol (2-
AG). These eCB signals act via receptors, including
CB1R and CB2R, and CB1R plays a primary role in energy
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homeostasis. An elevated dietary omega-6/omega-3 ratio
therefore leads to elevated levels of AEA and 2-AG, over-
stimulation of CB1R, and dysregulation of energy homeo-
stasis leading to weight gain.21–23,25,29–32

Metabolic consequences of the modern western diet
Among the defining features of the modern western
diet are a superabundance of calories from sugars and re-
fined starches leading to increased glycemic load, and a
strongly elevated ratio of omega-6 to omega-3 polyun-
saturated fatty acids. The dietary omega-6/omega-3
ratio in hunter-gatherers is estimated to be around 1:1
to 3:1, whereas the ratio in the modern western diet is
as high as 20:1 or more.2,13,16,18,19 This shift in dietary
fatty acids increased sharply as more vegetable oils (espe-
cially soybean oil) and grains were incorporated into the
diet. Corresponding with these changes in diet, rates of
obesity and metabolic syndrome are increasing rapidly.14

Obesity is a major health concern, strongly associ-
ated with systemic inflammation and metabolic syn-
drome, with increased risk of DM, a variety of
cancer types, cardiovascular disease, autoimmune dis-
orders, anxiety, depression, Alzheimer’s disease, and
other serious medical conditions.3,7,8,11,18,33–36 Dietary
dysregulation of the eCB system is emerging as a pri-
mary cause of these conditions, suggesting that thera-
peutic interventions targeting this system should be
investigated as a primary way to reduce or eliminate
many of the most serious chronic diseases characteristic
of modern western societies.

Overview of the eCB system
The eCB system is a signaling system with a prominent
role in homeostasis, and is reviewed extensively else-
where.15,22,23,25,26,28,37 This signaling system occurs
within the central nervous system (CNS) and in multi-
ple peripheral organs.

The eCB system involves signals and receptors. The
main signals are AEA and 2-AG. A major biosynthetic
pathway for each begins with the omega-6 fatty acid
(FA), LA, and proceeds through arachidonic acid.
From arachidonic acid, multiple pathways and en-
zymes lead to AEA and 2-AG. AEA and 2-AG act
through multiple receptors. Best-known are CB1R
and CB2R, G protein-coupled receptors that are located
in the CNS, as well as peripherally on a variety of or-
gans and tissues, including the gut, liver, bones, skeletal
muscle, and adipose tissues. The eCB signals AEA and
2-AG are degraded by enzymes, primarily fatty acid
amine hydrolase for AEA and other fatty acid ethano-

lamides, and monoacylglycerol lipase for 2-AG and
other monoacylglycerols.15,22,23,25,26,37–40

Impact of the dietary omega-6/omega-3 ratio
on the eCB system
Recent reviews suggest that disruption of the eCB sys-
tem by an elevated omega-6/omega-3 ratio contributes
strongly to the metabolic dysregulation associated with
the modern western diet.15,18,19,22–30,41,42 Elevated pro-
duction of the eCBs AEA and 2-AG is central to the
health problems associated with the elevated omega-6/
omega-3 ratio. Omega-6 FAs are converted to the
eCB signals AEA and 2-AG. Therefore, the elevated
omega-6/omega-3 ratio results in increased synthesis
of AEA and 2-AG, resulting in overstimulation of
CB1R (Fig. 1). Elevated CB1R activity in turn directly
causes excess intake, storage, and conservation of en-
ergy leading to disruption of body mass and adipose
tissue homeostasis.10,18,19,22,23,25,28–32,41–46

Omega-3 fatty acids are receiving considerable at-
tention as dietary supplements due to their apparent
ability to reduce obesity, inflammation, and associated
chronic diseases. Their actions, at least in part, stem
from their competition with omega-6 fatty acids for
shared enzymes (elongases and D desaturases,
which are limiting), leading to reduced AEA and
2-AG levels and CB1R activity. Because of this com-
petition, it is the ratio between the two groups of
fatty acids rather than the absolute amount that is
key for energy homeostasis.4,10,12,15,17–22,47–50

Role of eCB and CB1R in obesity
and metabolic disorders
CB1R is a primary mediator of energy uptake, storage,
and conservation. It acts to maximize energy uptake
and conservation through multiple mechanisms. Stim-
ulation of CB1R modulates taste and smell pathways to
increase the palatability of food. It stimulates the ap-
petite centers of the brain, leading to hyperphagia
and favoring fat accumulation in adipose tissue. At the
same time, peripheral eCBs play a major role in regulat-
ing appetite, are influenced by the western diet, and AEA
reduces energy expenditures, including energy expendi-
tures during sleep.10,18,22,23,25,28,29,31,32,39,43–46,51–53.

These actions contribute to homeostasis in the con-
text of a hunter-gatherer diet of plants, plant-feeding
animals, and fish. However, the modern industrial
western diet, characterized by an elevated omega-6/
omega-3 ratio,16 leads to chronic overstimulation of
CB1R.19,22,23 When combined with the elevated
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glycemic load of the modern western diet, this contrib-
utes strongly to increased rates of obesity, unfavorable
lipid profiles, insulin resistance, exacerbation of inflam-
mation in the liver and kidneys, and increased cardio-
metabolic risk.10,29,42,54,55

The critical role of CB1R in accumulation of en-
ergy reserves and BMI homeostasis is revealed in stud-
ies using CB1R antagonists, including rimonabant, as
well as the peripherally restricted CB1R antagonists
URB447 and AM6545. In laboratory and clinical trials,
rimonabant was successful at reducing weight, but severe
psychiatric side effects, including dizziness, anxiety, de-
pression, and nausea, caused discontinuation of clinical
trials.55,56

A therapeutic approach that acts both peripherally
and centrally on the eCB system but does not cause se-

vere psychiatric side effects is of great interest. Periph-
erally restricted CB1R antagonists such as URB447 and
AM6545 are showing promise, as peripheral eCB sig-
naling via CB1R plays a key role in stimulation of hy-
perphagia and dietary fat intake in the context of the
western diet.45,46 These trials highlight the importance
of the eCB system as a target of interest in weight con-
trol strategies.43–46,51,55,56

The present study summarizes the data on Cannabis
use, caloric intake, and BMI, establishing conclusively
that Cannabis use is associated with reduced BMI and
obesity rates, despite increased caloric intake. It then
provides a theoretical, causative explanation for this par-
adox. This theory encompasses the causative role in obe-
sity of dietary disruption of the eCB system by an
elevated omega-6/omega-3 fatty acid ratio. Cannabis

FIG. 1. The impact of the modern western diet on the endocannabinoid system. (A) In the presence
of a natural omega-6/omega-3 ratio, production of the endocannabinoid signals AEA and 2-AG and resulting
stimulation of CB1R are compatible with a healthy BMI. (B) The modern western diet, with its elevated
omega-6/omega-3 ratio, leads to excess production of AEA and 2-AG. This overstimulates CB1R, leading
to weight gain and metabolic dysregulation. Modified from Freitas et al. (22). AEA, anandamide;
N-arachidonoylethanolamide; 2-AG, 2-arachidonoylglycerol; BMI, body mass index.
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(or THC) results in downregulation of CB1R, leading to
reduced sensitivity to AEA and 2-AG, leading to signif-
icant health benefits in the context of this diet.

Methods
Data on the BMI of Cannabis users and nonusers, or
studies reporting adjusted odds ratios (AORs) for Can-
nabis users being obese or overweight, were obtained
from the literature. Studies addressing the health im-
pact of Cannabis use were identified using database
searches and citation lists. Studies addressing the impact
of therapeutic Cannabis use by cancer or AIDS patients
or other patients, as a means to increase appetite and ca-
loric intake, were eliminated. Studies in which Cannabis
was provided to nonusers over a several day period were
rejected because short-term weight gain can be caused
by water retention from increased sodium intake rather
than accumulation of tissue mass. One study57 focused
on imaging of CB1R was rejected due to low sample
size (N = 10 users and N = 10 nonusers).

The remaining data were compiled into a spread-
sheet. Paired t-tests were used to compare BMI of

users and nonusers and were followed by determina-
tion of effect size (Hedges g with bias correction).58

For rates of obesity, the mean and 95% confidence in-
tervals of AOR data, v2 test for heterogeneity, and ef-
fect size determination using Hedges g were used to
compare nonusers with users. When different usage
rates were reported, data from the highest dosage
group were used in the analysis. The mean across all
usage groups, relative to nonusers, is also reported.
Caloric intake data from short-term experimental stud-
ies were eliminated to ensure that subjects had reached
a steady state.

Results
BMI data
Nine studies were included that reported BMI of users
and nonusers and met selection criteria (Table 1), and
an additional two studies were identified that reported
lower BMI in Cannabis users, but did not provide nu-
merical data. Of these studies, all reported lower values
of BMI in Cannabis users, and only one of these did not
reach statistical significance. A second study did not

Table 1. Published Values of Body Mass Index for Cannabis Users and Nonusers

Reference Nonuser Usage pattern Current user
Current user,

highest dosage p-Value or 95% CI

72a 28.6 (335) 26.8 26.8 (451) <0.001
110 24.4 (23,705) (women) 23 23 (6504) <0.05

25.4 (14,324) (men) 24.3 24.3 (7474) <0.05
59 28.22 (265) <0.05 (joint years)<0.009

(dependence)< 5 years 26.8 (552)
5–10 years 27.1 (42)
10–15 years 26.6 (44)
15+ years 25.5 (37) 25.5 (37)

60 28 (6667)
1–4 · /month 24.8 (557) <0.001
> 5 · /month 24.1 (326) 24.1 (326) <0.001

86 29.1 (2103) 27.2 (579) 27.2 (579) <0.0001
70 28.9 (2252) Not significantly different

< 180 days 28.5 (610)
180–1799 days 28.7 (601)
> 1800 days 28.0 (154) 28 (154)

71b 26.6 (9771)
1–4 · /month 25 (541)
5–10 · /month 26.1 (135)
11 · + /month 24.7 (176) 24.7 (176) <0.0001

78 27 (28) 24 (30) 24 (30) <0.05
87 29.1 (2861) 26.9 (831) 26.9 (831) <0.0001
62 Numerical data not provided; user BMI < nonuser Not provided
61 Numerical data not provided; lower BMI groups contain more Cannabis users, R250.96 <0.02
Mean 27.5 (N560,059) 26.0 25.5 (N518,272) <0.0005

Statistically significant differences between Cannabis users and nonusers are indicated with bold font.
aAdjusted for age (continuous), gender, small communities (yes/no), more than or equal to secondary school (yes/no), income level (<$20,000,

>$20,000, do not know/refuse to answer), marital status (single, married/common law, separated/divorced/widowed), 3.5 h/week of leisure physical
activity (yes/no), smoking status (never/former/current smoker with 1–14 cig./day, 15–24 cig./day, 25 cig./day), ever drink alcohol (yes/no/do not know
or refuse to answer), total energy intake (kcal/day).

bEffect remained after adjustment for age, gender, education, cigarette smoking, and caloric intake ( p = 0.003).
BMI, body mass index.
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report statistical analysis of the BMI data. Of those
studies reporting significant negative correlations, two
reported that longer duration of Cannabis use was as-
sociated with reduced BMI.59,60

Across all studies reporting BMI, the overall mean
BMI of nonusers was 27.5 kg/m2, while that of users
(including data for all usage groups) was 26.0 kg/m2

(Table 1). Limiting the analysis to the data from the
highest dosage or duration of use reported in each
study resulted in a mean BMI of users of 25.5 kg/m2,
a difference of 2 kg/m2 that is significantly lower
than the BMI of nonusers ( p < 0.001, paired t-test,
T = 6.00, Fig. 2 and Table 2). The effect size of Canna-
bis use on BMI is large (Hedges g with bias
correction =�1.16)58 and the magnitude of the dif-
ference in BMI of users and nonusers is of clinical sig-
nificance. Thus, on average, nonusers in these studies
are overweight, whereas Cannabis users are signifi-
cantly leaner and are near the healthy BMI range
(18.5–25 kg/m2).

Further support for reduced BMI in Cannabis users
comes from the study by Warren et al.61 Although
Warren et al.61 did not report BMI values, they grouped
obese patients by BMI. The percent of each group that
consumed Cannabis was negatively and linearly related

to the BMI of the group (R2 = 0.96). Danielsson et al.62

also reported decreased rates of being overweight
(BMI >24.9) in Cannabis users, but did not provide
numerical data for BMI of the two groups. Thus, of
11 studies reporting data on the relationship between
Cannabis use and BMI, 9 showed a significant nega-
tive relationship between Cannabis use and BMI
while the remaining 2 either reported lower BMI val-
ues in Cannabis users than nonusers that did not

FIG. 2. A comparison of BMI (kg/m2) of
Cannabis users and nonusers. Data from current
user, highest dosage presented in Table 1.
Available data show that nonusers are
overweight on average, whereas the mean BMI
of users is not different from the upper limit of
the healthy weight range. Data are expressed as
mean – SEM (N = 12 data points from 11 studies,
p < 0.001; Hedges g statistic =�1.16).

Table 2. Published Values for Adjusted Odds Ratios
for Cannabis Users Being Obese and/or Overweight

Reference Usage category OR users 95% CI p

111a

NESARC,
N = 41,633

1 + · /year, <1 · /month 0.70 0.63–1.05 <0.001

1 · /month–2 · /week 0.84 0.62–1.01
Daily 0.61 0.46–0.82

NCS-R,
N = 9103

1 + · /year, <1 · /month 0.7 0.44–1.11 <0.001

1 · /month–2 · /week 0.84 0.54–1.31
Daily 0.73 0.43–1.23

72b Past year 0.56 0.37–0.84 <0.05
63c 1 · in last month 0.8 0.5–1.2
N = 2566 Every few days 0.5 0.3–0.8 <0.01

Daily 0.2 0.1–0.4 <0.001
88d 0.42 0.13–1.36
65e High vs. low use 0.2 <0.01
N = 5141 Sporadic vs. low use 0.1 <0.01

Increasing vs low 1.6 <0.05
112f Male, past year
N = 40,364 Overweight 0.88 0.67–1.16

Obese 0.84 0.6–1.16
Female, past year
Overweight 0.88 0.53–1.45
Obese 0.81 0.48–1.38

Mean and
summary CI

0.68 0.53–0.84 <0.05

Statistically significant differences between Cannabis users and non-
users are indicated with bold font. Only one data point shows AOR >1.
Hedges g statistic =�1.07.

aData from two databases, NESARC, National Epidemiologic Survey on
Alcohol and Related Conditions (2001–2002); NCS-R, National Comorbid-
ity Survey–Replication (2001–2003). Adjusted for sex, age, race/ethnicity,
educational level, marital status, region, and tobacco smoking status.
Prevalence of obesity significantly lower in Cannabis users in both data
sets ( p < 0.001).

bAge-standardized.
cOdds ratio for BMI ‡25. Adjusted for participant’s gender and age,

mother’s age and education, participant’s cigarette smoking, alcohol
consumption, anxiety/depression and aggression/delinquency, partici-
pants BMI at 14 years.

dRegular user, OR for abdominal obesity. Adjusted for age, gender, ed-
ucation, participation in at least moderate physical activity, weekly alco-
hol use, income to poverty ratio, having health insurance, marital status,
other illicit drug use and having had rehabilitation.

eControlled for adolescent obesity status, gender, ethnicity, and aver-
age family income.

fControlled for age, level of education, race/ethnicity, income, marital
status, region of country, urban vs. rural residence, and lifetime and past
year DSM-IV diagnoses of any mood disorder, any anxiety disorder, any
personality disorder, any alcohol use disorder, and nicotine dependence.

AOR, adjusted odds ratio; DSM-IV, Diagnostic and Statistical Manual of
Mental Disorders, 4th Edition.
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reach statistical significance, or failed to provide sta-
tistical analyses (Table 1).

Of course, decreased BMI in Cannabis users could
result from activities correlated with Cannabis use,
rather than Cannabis use itself. Two of the BMI stud-
ies adjusted for potential confounders, and significant
differences remained following adjustment (Table 1).
Six studies were identified that reported AORs of
Cannabis users being obese or overweight (Table 2).

Hayatbakhsh et al.63 followed a cohort of patients
from birth until age 21 and found that subjects who
used Cannabis showed a strongly reduced incidence
of being overweight or obese relative to nonusers. A
fully adjusted model that included BMI at age 14
yielded an AOR of 0.2 for daily users being overweight
(95% CI = 0.1–0.4). BMI was inversely correlated with
the frequency of Cannabis use, lending support for cau-
sation.63

Waterreus et al.64 found that a significantly lower
percentage of users than nonusers were obese (53.7%
of nonusers, 36.7% of occasional users, and 28.7% of
frequent users were obese; p < 0.001).

Huang et al.65 studied three categories of adolescent
Cannabis users; high users, sporadic users, and increas-
ing users. Sporadic and high usage groups showed far
lower obesity rates than low users (AOR for sporadic
use = 0.2 and for high use = 0.1). In contrast, the sub-
jects on the increasing usage trajectory showed in-
creased obesity rates relative to low users
(AOR = 1.6). This was the only report identified in
the literature of an AOR for obesity >1.

The mean AOR across data points from these studies
was 0.68. The effect size was large (Hedges’ g with
bias correction =�1.074, Ncannabis = 18, and Ncontrol = 6),58

and the mean odds ratio of users across all studies
and usage groups (mean OR = 0.68) suggests obesity
rates are reduced enough in users to provide significant
health benefits. Several tests were used to evaluate het-
erogeneity of the AOR data. The 95% confidence in-
terval of the AOR data of users did not include 1
(95% CI = 0.53–0.84). The Wilcoxon rank-sum test
using data from the highest usage rates within each
study or group resulted in a significant impact of Can-
nabis use on AOR (0.0025 < p < 0.005; N1 = N2 = 9,
U = 9, 72). The v2 test using data from all user groups
failed to reject the null hypothesis, however
(v2 = 3.78, 0.1 < p < 0.05).

A recent review cited Mittleman66 as reporting in-
creased obesity rates in Cannabis users,34 but this ap-
pears to be a misinterpretation of the data presented

in that study. Mittleman et al.66 showed that, of pa-
tients who had suffered a myocardial infarction (MI),
those who used Cannabis were more likely to be
obese. This is quite different from finding that Canna-
bis users were more likely to be obese. These data could
be interpreted instead as evidence for protection of
nonobese Cannabis users from MI. These data were
therefore not included in the analysis.

Overall, 17 studies have presented data from 19 data
sets on the relationship between Cannabis use and body
mass or rates of obesity. These studies provided a total of
36 individual data points for BMI or AOR, and 35 of
these show BMI or obesity values for Cannabis users
that are less than values for nonusers. Both the BMI
data and the AOR data show lower BMI or rates of over-
weight or obesity in Cannabis users (BMI: paired t-test
p < 0.001; AOR 95% CI = 0.53–0.84) (Tables 1 and 2).
Both data sets show strong effect sizes (Hedges g:
BMI =�1.16 and obesity AOR =�1.07).58

Further evidence comes from the recent observation
that legalization of medical Cannabis at the state level is
associated with a rapid decrease in statewide obesity
rates,67 and that obese rats exposed to Cannabis ex-
tract show reduced rates of weight gain.68 Indeed,
the inverse relationship between obesity and Canna-
bis use in humans led Le Foll et al.69 to propose Can-
nabis as a possible therapeutic option for weight loss,
and evidence accumulated since then has only
strengthened the association.

Caloric intake data
Interestingly, frequent Cannabis users appear to have
increased caloric intake relative to nonusers, despite
lower BMI.

Rodondi et al.70 found that users who had consumed
Cannabis for more than 1800 days over 15 years con-
sumed on average 619 more calories/day than nonus-
ers, yet showed no difference in BMI (Table 1).

Smit and Crespo71 reported lower BMI in users
(24.7 – 0.3) than nonusers (26.6 – 0.1), despite users
consuming 564 additional calories relative to nonusers
( p < 0.0001).

Ngueta et al.72 also observed higher values for caloric
intake in Cannabis users relative to nonusers; although
this was not statistically significant (2375 kcal/day vs.
2210 kcal/day; p = 0.07). Despite this, the users had
lower BMI ( p < 0.001).

Foltin et al.73 found Cannabis users to have a sub-
stantial increase (1095 kcal/day) in daily caloric intake,
although this was a short-term experimental study
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rather than a comparison between free-range Canna-
bis users and nonusers.

Across these studies, on average, Cannabis users
consumed an additional 834 kcal/day relative to nonus-
ers. As BMI of Cannabis users is lower than nonusers,
this suggests that Cannabis users must have increased
metabolic rates.

Previous explanations proposed for lower
BMI in Cannabis users
Any theory explaining mechanistically how Cannabis
use causes reduced BMI must consider the paradoxical
increase in caloric intake of users. To date, such a the-
ory is lacking and the interactions between Cannabis
use and obesity are not well understood.34

Proposed explanations for reduced BMI in Cannabis
users include substitution of Cannabis for food in brain
reward pathways.61 Pagotto et al.74 suggested that the
sedative effects of high doses of Cannabis could reduce
food consumption, but Rajavashisth et al.60 observed
detectable effects on BMI at usage rates of four times
or less per month (25% of nonusers were obese,
whereas 16% of people who used Cannabis one to

four times/month were obese, p < 0.001). Sabia et al.67

suggested that reduced alcohol use by younger users,
and increased physical activity of older users upon ini-
tiating medical marijuana use, may be responsible for
the observed decrease in BMI.

While all of these factors may contribute, reduced
BMI in conjunction with increased caloric intake
strongly suggests that the mechanisms causing the ob-
served decreases in BMI or obesity rates of Cannabis
users must include differences in metabolism, not
changes in caloric intake or activity-related energy ex-
penditures alone. These explanations obviously do not
account for increased caloric intake in Cannabis users.
Le Foll et al.69 suggested that D9-tetrahydrocannabinol
(THC) may act as a functional antagonist in high eCB
tone, as occurs in obesity, reducing BMI in Cannabis
users.69 This is essentially what we are proposing, but
does not address the mechanism involved.

Theoretical explanation for the decreased
BMI of Cannabis users
There are currently no proposed mechanisms for re-
duced BMI in Cannabis users that account for their

FIG. 3. The impact of Cannabis use on the endocannabinoid system of people consuming a diet
characterized by an elevated omega-6/omega-3 ratio. Acute effects of Cannabis and/or THC consumption
include hypothermia and hyperphagia, leading to increased energy intake and storage. However, Cannabis
use also causes long-term downregulation of CB1R, leading to decreased CB1R activity, as shown in the insert
on the lower right, in which each spike follows acute Cannabis ingestion, while the overall activity level
remains depressed. Decreased CB1R activity results in a decrease in energy assimilation and an increase in
metabolic rates, resulting in a decline in body mass despite stimulation of CB1R during acute exposure.
THC, D9-tetrahydrocannabinol.
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increased caloric intake. The central role of CB1R in
appetite, energy intake, energy conservation, and diet-
induced obesity, and the hyperphagia and hypothermia
resulting from acute stimulation of CB1R by THC,
makes CB1R a prime suspect for a causative role in the
effects of Cannabis use on BMI.22–24,27–32,41–46,74,75

A novel theory for the impact of Cannabis use on
BMI involving changes in CB1R expression is proposed
here (Fig. 3). This multipart theory includes the follow-
ing components:

1. A diet characterized by an elevated ratio of
omega-6/omega-3 fatty acids, typical of processed
foods high in grains and soybean oil, and animals
reared on these foods, results in elevated levels of
the eCB signals AEA and 2-AG.
The evidence is well established.19,22,23,25,28,49

2. Elevated AEA and 2-AG act to overstimulate the
eCB receptor CB1R, resulting in increased appe-
tite and palatability of food, increased rates of en-
ergy uptake and storage, and decreased resting
metabolic rates. These result in dysregulation of
glucose and lipid metabolism, metabolic syn-
drome, and obesity.
The evidence is well established and is summa-
rized in multiple recent reviews, for example,
see Refs.19,22,23,27–29

3. Decreased CB1R activity reduces obesity and
metabolic disruption. Strong evidence in sup-
port of this statement is provided in laboratory
experiments and clinical trials using CB1R an-
tagonists, including rimonabant, AM6545, and
URB447.

Rimonabant caused weight loss, improved
lipid profiles, improved glucose sensitivity, and
reduced atherosclerosis in animals and human
subjects.55,56,76 Unfortunately, it also caused se-
vere psychiatric side effects in clinical trials, in-
cluding depressive disorders, dizziness, nausea,
and anxiety, and trials were therefore terminat-
ed.55,56,76 The peripherally restricted CB1R antag-
onists, AM6545 and URB447, decreased sham
feeding of fatty foods and hyperphagia in rats, re-
ducing caloric intake.45,46

4. Cannabis use causes downregulation of CB1R,
reducing the impact of enhanced AEA and 2-AG
production arising from an elevated dietary omega-
6/omega-3 ratio.
Multiple studies show that CB1R is downregu-
lated during Cannabis tolerance, and the receptor

remains downregulated for about 3–4 weeks after
cessation of use.57,77–80

Observations supporting this theory
There is abundant evidence that rates of obesity and
metabolic syndrome are increasing with changes in
diet.1–4,6,13,14,16,33,81

There is abundant evidence that these dietary changes
include a shift to a high omega-6/omega-3 ratio.13–19,22,23

There is abundant evidence that an elevated omega-
6/omega-3 ratio increases eCB tone by increasing AEA
and 2-AG levels, overstimulating CB1R.15,18,19,22–30,55,82

There is abundant evidence that overstimu-
lation of CB1R increases adiposity and leads to
metabolic syndrome, contributing to chronic dis-
eases.10,18,19,22,23,25,27–32,41–46,54,55,82

There is abundant evidence that reduced CB1R
activity results in weight loss. eCBs are strongly
involved in energy expenditures, increasing caloric
intake, and reducing whole-body energy metabo-
lism.24,28,31,32,41–46,48,50,52,55 The CB1R antagonist
rimonabant increases O2 consumption and resting en-
ergy expenditures in both rats and in humans. In rats, it
increases O2 consumption by 18% at a dosage of 3 mg/
kg and 49% at 10 mg/kg after 3 h of exposure. In hu-
mans, it increases resting energy expenditures of over-
weight or obese subjects and leads to weight loss.55,56

Similarly, the peripherally restricted CB1R antagonists
URB447 and AM6545 reduce energy intake. URB447
reduced rates of fat ingestion in sham-feeding rats,
while AM6545 attenuated diet-induced hyperphagia.43,44

There is abundant evidence that exposure to
Cannabis and/or THC results in downregulation
of CB1R. Regular Cannabis use is associated with de-
sensitization and downregulation of CB1R, and CB1R
levels remain depressed for 3–4 weeks following cessa-
tion of use.57,77–80 Because CB1R plays a major role
in assimilation, storage, and conservation of energy,
this downregulation results in decreased eCB tone.
According to the theory put forth in this article,
acute exposure results in the ‘‘munchies,’’ stimulating
appetite and energy consumption and causes hypo-
thermia as metabolic rates decrease. However, rapid
downregulation of CB1R following consumption
leads to long-term effects that more than offset the
short-term increase in energy stores that follow acute
exposures.

The current meta-analysis provides strong evidence
that Cannabis use, and/or exposure to THC, results
in reduced BMI (Tables 1 and 2 and Fig. 2).
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Predictions arising from theory
Prediction 1: Cannabis users lose additional weight dur-
ing abstinence. BMI is reduced in Cannabis users,
and should decrease even more when users stop
using Cannabis, because CB1R remains downregu-
lated for several weeks following chronic Cannabis
consumption.57,77–80 Recently abstinent users would
show reduced appetite and increased metabolic rates
during this time. However, they will no longer experi-
ence short-term stimulation of appetite, energy intake
and storage, and reduced metabolic rates during each
episode of acute Cannabis consumption. Therefore,
weight loss will increase as energy intake and storage
remain depressed, and metabolism stimulated, until
CB1R returns to pre-Cannabis use levels.

This prediction is supported, as weight loss during
withdrawal from Cannabis is one of the seven symp-
toms of Cannabis withdrawal listed in DSM-V.83,84

Prediction 2: moderate Cannabis use reduces the inci-
dence of disorders associated with obesity and meta-
bolic syndrome. Because Cannabis use is associated
with reduced rates of obesity, it should also reduce
rates of obesity-related diseases in users. There is some
evidence for this, but results are inconsistent.

Multiple studies, including several using the National
Health and Nutrition Examination Survey (NHANES)
database, have reported in Cannabis users reduced
rates of DM, insulin insensitivity, or metabolic syndrome
in fully adjusted models, including age.60,64,72,85–87 Yankey
et al.88 also reported decreased DM rates (AOR 0.42)
that did not reach statistical significance (95% CI = 0.13–
1.36). In contrast, analysis of data from the CARDIA
data set failed to detect this relationship.89 Danielsson
et al.62 found decreased rates of DM in Cannabis users
in a dataset of Swedish conscripts (OR 0.74), but unlike
the studies from the NHANES data set, this effect was no
longer significant after adjustment for age (AOR 0.74 be-
fore adjustment, 0.94 after adjustment).

Cannabinoids have potent anticancer proper-
ties,15,90 and a recent review concluded that Cannabis
users may have lower rates of cancer than nonusers.91

Multiple laboratory studies have shown that THC
slows or reverses the progression of Alzheimer’s dis-
ease, although clinical trials are lacking.92–96 In con-
trast, evidence available to date does not support
reduced rates of cardiovascular disease in Cannabis
users,97 although more studies are clearly warranted
on this topic.

Prediction 3: the occurrence and magnitude of meta-
bolic benefits from Cannabis use depend on the dietary
omega-6/omega-3 ratio. The impact of diet on the
eCB system is predicted to differ among populations be-
cause different populations have different diets, consum-
ing different proportions of green vegetables, industrially
produced animals, oceanic fishes, and processed foods.

According to the theory established in the current
article, populations with diets characterized by a high
omega-6/omega-3 ratio will see significantly larger
health improvements from Cannabis use than those
eating diets with more moderate ratios of omega-6/
omega-3 FAs. This may explain some of the inconsis-
tencies in the data on the metabolic impact of Cannabis
use; for example, Cannabis use by Swedish popula-
tions62,98 may not have the same health impacts as
Cannabis use by Americans due to the different dietary
backgrounds and obesity rates of these populations.

Cannabis use in the United States appears to provide
significant public health benefits due to partial or com-
plete reversal of the metabolic dysregulation caused by
the strongly elevated omega-6/omega-3 ratio of the
American diet.

Prediction 4: Cannabis use and omega-3 supplements
have similar impacts on health. Both omega-3 FAs
and Cannabis reduce eCB tone, through distinct
mechanisms. Omega-3 FAs compete with omega-6
FAs for the enzymes synthesizing AEA and 2-AG
from omega-6 FAs, and omega-3 supplements thereby
reduce the synthesis of AEA and 2-AG and reduce
stimulation of CB1R.13,21,22,25,49

Cannabis use causes downregulation of CB1R,57,77–80

reducing the sensitivity to elevated AEA and 2-AG.
Thus, the theory predicts that omega-3 FA supplements
and Cannabis use should have similar positive health
impacts in the context of metabolic dysregulation from
a diet with an elevated omega-6/omega-3 ratio. How-
ever, it is likely that the overlap is not complete as the
precursor of AEA and 2-AG, arachidonic acid,22 also
gives rise to proinflammatory leukotrienes and pros-
taglandins,99 an effect that might not be impacted
by decreased CB1R tone.

Prediction 5: the combination of omega-3 sup-
plements and Cannabis or cannabinoids could be a
particularly potent treatment for obesity, metabolic
syndrome, cancer, and so on. Reducing AEA and
2-AG synthesis with omega-3 supplements, and at
the same time reducing CB1R density with Cannabis
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use, should reduce BMI and cardiometabolic risk factors
more than either option alone (Fig. 4). Note that, be-
cause CB1R remains downregulated for some time fol-
lowing use, weekly Cannabis use may be sufficient to
observe significant weight loss and metabolic benefits.

Conclusions/Summary
Obesity and elevated BMI are strongly associated with
disease states, and there are significant financial and
public health incentives to develop effective interven-
tions to help people achieve a healthy body mass. Phar-
macological weight loss therapy is recommended when
BMI is ‡27 in the presence of obesity-related risk fac-
tors and >30 in the absence of such risk factors.53

The development of pharmacological weight loss
methods has been problematic, Rimonabant, a CB1R
antagonist, showed promise in laboratory studies, but
clinical trials were discontinued due to serious psychi-
atric side effects,53,54 although ongoing studies suggest
that peripherally restricted CB1R antagonists may
provide therapeutic benefits in obesity without such
psychiatric side effects.43–46

Surgical methods such as the lap band or bariatric
surgeries are frequently used when dietary or pharma-
ceutical interventions do not work, and any surgical pro-
cedure entails risk and recovery. Surgical procedures are
also expensive. Therefore, relatively safe and inexpensive
methods to reduce obesity and prevent or reduce some
of the most deadly and costly chronic diseases character-
izing western societies merit serious consideration.

For many patients, Cannabis may be a better option
for weight loss than surgery or pharmaceuticals. How-
ever, patients with preexisting cardiovascular condi-
tions or prior MIs should avoid cannabinoids or use
them with caution.66,91,100

A number of states and the federal government have
legalized Cannabis products containing cannabidiol,
but continue to ban legal access to products containing
THC. Evidence available at this time suggests that it is
ingestion of THC that is responsible for downregula-
tion of CB1R, and therefore, for reduced obesity rates
of Cannabis users. Our theory suggests that the psycho-
active effects of CB1R stimulation with THC may be a
necessary accompaniment to Cannabis-induced weight
loss, because downregulation of CB1R is required for
reduced BMI, and it is not yet clear whether microdos-
ing will cause downregulation. However, weekly or bi-
weekly Cannabis use may be sufficient as significant
decreases in BMI are observed at weekly usage rates.60

Medical marijuana use is increasing, leading to de-
creased use of multiple classes of pharmaceuticals.
Patients cite improved symptom management, fewer
adverse side effects, and milder withdrawal symptoms
as reasons for switching from pharmaceuticals to
medical Cannabis.101–108 Once patients become aware
that the side effects of medical Cannabis may include
weight loss and reduced risk of obesity-associated med-
ical conditions, this shift toward medical Cannabis is
likely to accelerate. Available data suggest that this
will save many lives, not only from reduced rates of

FIG. 4. Proposed weight loss therapy based on theory. Daily omega-3 fatty acid supplements (especially
with decreased dietary omega-6 fatty acids) will reduce levels of AEA and 2-AG, reducing stimulation of CB1R,
while weekly Cannabis use will cause downregulation of CB1R. Thus, this approach will act to both reduce
levels of the endocannabinoid signals and reduce the sensitivity of target cells to those signals. The net
effect is predicted to be a more potent weight loss strategy than diet alone.
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obesity-related chronic illnesses but also from reduced
deaths from pharmaceutical overdose.91,105,109

This study provides a theoretical platform to inform
future studies on the correlations between Cannabis
use and cardiometabolic risk factors. This theory may
explain inconsistencies among studies on the impact
of Cannabis use on metabolic dysregulation, as differ-
ent populations have different diets. For example, epi-
demiological studies of the impact of Cannabis use by
cohorts of Swedish conscripts may reveal different re-
sults than epidemiological studies in the United States,
due to different levels of obesity in the two countries.
Cerdá et al.98 found that early, heavy Cannabis use
among Swedish conscripts is associated with increased
mortality later in life. In contrast, Clark91 concluded
that Cannabis use is associated with a substantial de-
crease in the premature death rate in the United States,
as it is associated with reduced rates of cancer, DM,
pharmaceutical use, deaths from brain trauma, and
may slow the progression of Alzheimer’s and other
neurodegenerative diseases.

The strong evidence for interactions between the di-
etary omega-6/omega-3 ratio, obesity, and Cannabis
use suggests that the balance between positive and neg-
ative health impacts of Cannabis use will differ in
Swedish and United States populations. Evidence sug-
gests that, in the United States, many people may actu-
ally achieve net health benefits from moderate
Cannabis use, due to reduced risk of obesity and asso-
ciated diseases.
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Abbreviations Used
2-AG¼ 2-arachidonoylglycerol
AEA¼ anandamide; N-arachidonoylethanolamide
ALA¼ a-linolenic acid
AOR¼ adjusted odds ratio
BMI¼ body mass index

CB1R¼Cannabinoid receptor 1
CB2R¼Cannabinoid receptor 2
CNS¼ central nervous system
DM¼ diabetes mellitus

DSM-V ¼ Diagnostic and Statistical Manual of Mental
Disorders, 5th Edition

DSM-IV ¼Diagnostic and Statistical Manual of Mental
Disorders, 4th Edition

eCB¼ endocannabinoid
FA ¼ fatty acid
LA¼ linoleic acid
MI¼myocardial infarction

THC¼D9-tetrahydrocannabinol
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