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Abstract: In the past several years, nanopore sequencing
technology from Oxford Nanopore Technologies (ONT)
and single-molecule real-time (SMRT) sequencing tech-
nology from Pacific BioSciences (PacBio) have become
available to researchers and are currently being tested for
cancer research. These methods offer many advantages
over most widely used high-throughput short-read
sequencing approaches and allow the comprehensive
analysis of transcriptomes by identifying full-length
splice isoforms and several other posttranscriptional
events. In addition, these platforms enable structural
variation characterization at a previously unparalleled
resolution and direct detection of epigenetic marks in
native DNA and RNA. Here, we present a comprehensive
summary of important applications of these technologies
in cancer research, including the identification of com-
plex structure variants, alternatively spliced isoforms,
fusion transcript events, and exogenous RNA. Further-
more, we discuss the impact of the newly developed
nanopore direct RNA sequencing (RNA-Seq) approach in
advancing epitranscriptome research in cancer. Although
the unique challenges still present for these new single-
molecule long-read methods, they will unravel many as-
pects of cancer genome complexity in unprecedented
ways and present an encouraging outlook for continued

application in an increasing number of different cancer
research settings.

Keywords: alternative splicing; application; cancer
genome; epigenome; third-generation sequencing.

Introduction

Genome sequencing has become increasingly available over
the past few decades. The second generation of sequencing
technologies, known as next-generation sequencing (NGS),
“massive-parallel,”or “high-throughput” sequencing,made
DNA sequencing dramatically simpler and faster by
employing microscopic, spatially separated DNA templates
to massively parallelize the capture of data [1]. The
sequencing process uses various platforms, such as DNA
sequencing, RNA sequencing (RNA-Seq), single-cell RNA
and DNA sequencing. DNA sequencing, such as whole-
exome sequencing initially allows the detection of single
nucleotide variants (SNVs) and copy number variations
(CNVs) [2]. Similarly, RNA-Seq data analysis can produce
information about gene expression levels, alternative
splicing (AS), allelic silencing or differential allelic expres-
sion, gene fusions, and RNA editing [3, 4]. Single cell
sequencing is emerging as a powerful tool for profiling cell-
to-cell variability on a genomic scale [5]. Intratumor het-
erogeneity is a confirmed major cause of treatment failure
and drug resistance in cancer. Single-cell sequencing of
tumor cells addresses this issue by identifying sub-
populations of cancer cells and immune cells within a single
patient. Furthermore, spatial transcriptomics research is
expected to generate highly detailed maps of single-cell
gene expression at any tissue coordinate in cancer [6]. To
date, NGS has become a standard tool formany applications
in basic biology as well as for clinical and agronomical
research. However, the read length fromNGS data remains a
bottleneck for biological studies.

With the development of sequencing technology,
DNA sequencing has inched the era of single-molecule
sequencing (SMS) or third-generation sequencing (TGS) [7].
When DNA sequencing, PCR amplification is not needed to
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obtain the individual sequence of each DNA molecule and
produces long-read in a real-time sequencing process [8].
The two major available TGS technologies are Pacific Bio-
sciences (PacBio) single molecule real-time (SMRT)
sequencing and the Oxford Nanopore Technologies (ONT)
sequencing platform [9–11]. These long-read technologies
permit sequencing/assembly through repetitive and com-
plex elements, direct variant phasing, and even direct
detection of epigenetic modifications that provide prefer-
ence for certain applications [12–14]. The methodologies for
these technologies (Figure 1) and comparison of the perfor-
mance of NGS short-read and TGS long-read methods in
terms of read accuracy, throughput and cost were compre-
hensively described in recent reviews [8, 15]; herein, we will
focus on their potential use in advancing our understanding
of cancer genomics, and applications in cancer research. In
this review, we first provide a brief description of NGS in
cancer research and outline the limitations of NGS and then
describe the developments in TGS technologies. Next, we
look at the bioinformatics for TGS data and describe the
challenges in the development of bioinformatics tools. We
also provide examples of how TGS has been adapted to
investigate key aspects of cancer genomics for applications
including the analysis of complicated cancer genomes, AS,
fusion genes, exogenous RNA, and epigenetic marks. We
highlight the unique challenges still present for TGS

technologies in cancer research and provide some sugges-
tions to overcome these challenges. We finish by briefly
discussing the comparison of advantages between TGS and
NGS and provide certain applications suited for each
platform.

A brief description of NGS in
oncology

NGShas beenwidely used in newmutation screening, gene
expression profiling, molecular classification, neoantigen
prediction, and liquid biopsy in cancers [16–18]. These
capabilities could impact therapy selection by offering
insights regarding therapeutic sensitivity or resistance, or
factors affecting diagnosis or prognosis [19]. For example,
SNVs, insertion/deletion (indels) mutations, structural
alterations (CNVs, translocations, inversions), loss of het-
erozygosity and aneuploidy can all be detected in a whole-
genome data set comparing tumor DNA and normal
DNA [20, 21]. In addition to genome characterization, NGS
has also been deployed to characterize the cancer tran-
scriptome using RNA-seq. RNA-seq can be able to provide
information on RNA expression, as well as to detect alter-
native splicing and fusions [22]. Furthermore, single-cell

Figure 1: Overview of NGS short-read and TGS long-read methods.
(A). In NGS by Illumina technology, DNA is fragmented into manageable sizes, and these fragments are ligated to adapters. After library
preparation, individual DNA molecules are sequencing for short reads. Following a sequencing run, raw sequence reads were aligned to a
reference genome. (B). In PacBio SMRT sequencing, DNA fragment is ligated to hairpin adapters to form a topologically circular molecule,
known as SMRTbell. It is loaded onto a SMRT Cell and bound by a DNA polymerase for sequencing. In ONT sequencing, DNA is tagged with
sequencing adapters preloaded with a motor protein on one or both ends. The DNA is combined with tethering proteins and loaded onto the
flow cell for sequencing. Following a sequencing run, raw sequence reads were aligned to a reference genome. NGS, next generation
sequencing; TGS, third generation sequencing.
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sequencing through NGS has the advantages of assessing
of tumor heterogeneity and separate cell types, such as
immune cells [23]. The Cancer Genome Atlas (TCGA), fun-
ded jointly by the National Cancer Institute and National
HumanGenomeResearch Institute of theNational Institutes
of Health and the International Cancer Genome Consortium
(ICGC), contains data for a series of large-scale studies in
different countries across the world that were funded by
the governments of each country and have helped establish
the importance of cancer genomics and transformed our
understanding of cancer [24]. Comprehensive analyses of
these cancer genomic data provide unique opportunities for
understanding cell-of-origin patterns, oncogenic processes,
and signaling pathways [25, 26].

Although the availability of whole-genome (WGS),
-exome (WES), or -transcriptome sequencing (RNA-seq)
has been increasing, targeted gene sequencing is the
method of choice for cancer diagnosis in clinical labora-
tories [27, 28]. With increasing numbers of cancer driver
mutations genes now known, NGS panels are commonly
used in hospitals for a wide range of cancers to ensure
optimal sequencing quality (read depth and coverage,
variant characterization, reporting), cost-effectiveness,
and turnaround time [29]. In addition to NGS panels,
identified biomarkers are also being used for cancer diag-
nosis, prognosis, and therapeutic applications in clinical
laboratories [30–32]. In our Precision Cancer Medical
Center in Fudan University Shanghai Cancer Center
(FUSCC), large custom-designed NGS panels have been
developed for breast cancer and other solid tumors for the
detection of SNVs, indels, and CNVs [33]. The FUSCC-BC
panel is used to detect somatic and germline mutations in
breast cancer-specific genes in clinical settings, and iden-
tified themutation characteristics, and potential molecular
targets for breast cancer in China.

Another application of NGS in oncology is the identi-
fication and enrollment of patients for appropriate clinical
treatments, such as liquid biopsy [34]. Blood contains
many types of biological materials like circulating cells,
extracellular vesicles (EVs), non-coding RNAs (ncRNAs),
and cell-free DNA (cfDNA). The minimally invasive pro-
cedure for sample acquisition for this type of DNA or RNA
assessment has been coined a “liquid biopsy”. Tumor cells
in the body can release cfDNA through apoptosis, necrosis,
or activate release [35]. Furthermore, cancers infrequently
shed cells into the circulation, known as circulating tumor
cells (CTCs) [36]. Therefore, DNA can be obtained from
cancer patient blood samples or other bodily fluids (cere-
bral spinal fluid, cervical mucus, and urine). In addition,
EVs are found in various body fluids and serve for inter-
cellular communication by delivering their cargo

molecules to other cells [37]. The emergence of EVs
analytics in combination with liquid biopsy sampling
opened a plethora of new possibilities for the detection of
tumors [38]. RNA-seq, which can provide accurate and
comprehensive gene expression profiling of liquid biopsies
including genomic components of extracellular vesicles
(EVs) and ncRNAs from blood, dramatically enhancer the
probability of ncRNAs as biomarkers [39]. Therefore, the
detection of ncRNAs using RNA-seq is a noninvasive,
innovative approach for diagnosis [40]. The tumor-specific
signatures in these samples can act as a new type of cancer
biomarker and help to identify cancer patients from a
group of healthy individuals [18]. Facilitated by the rapid
development of NGS technologies, liquid biopsy can ach-
ieve much higher sensitivity than tissue biopsy and can be
designed for different purposes [41]. However, there are
several challenges due to its low concentration of DNA and
high fragmentation (ranging from 100 to 10,000 bp frag-
ments) in these samples [42], as well as the hard to build
accurate classification model, using liquid biopsy for
cancer screening and early detection remained to be
solved.

Drawbacks of NGS methods

NGS is advantageous in many aspects, such as low cost,
high speed and high yield. However, NGS methods also
have some limitations. One of the most obvious limitations
of NGS is the short-read length. This limits the precision of
many biological studies, especially large genome assembly
studies and precise specific isoforms analysis [43–45]. The
read length of 100–200 bases is too short in the context of a
vast genome, which makes it extremely difficult to accu-
rately assemble the genome sequences from billions of
short-reads [1, 46]. In addition, larger structural variations
(SVs) aremore challenging to detect and characterize using
short-reads. Despite advances in sequencing technologies
and bioinformatics, de novo assembly of large genomes
remains challenging [3].

NGS platforms rely on clonal amplification to create
multiplemolecules, and donot have the sensitivity to detect
nucleotides at a single molecule level. Transcriptomes
based on the NGS platforms and RNA samples are typically
subject to RNA fragmentation to a certain size range. Then,
the cDNA fragments are sequenced in a high-throughput
manner to obtain millions of short sequences. During sam-
ple preparation section, reverse transcription, PCR and size
selection add base incorporation errors in individual mole-
cules within a cluster [47]. The amplification process also
creates an underrepresentation of bases in areas of high or
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low GC contents [48]. Therefore, during both the sequence
processes and computational analysis phases, imperfec-
tions and biases may be introduced. This process greatly
reduces the accuracy in the analysis of AS, gene fusion, and
paralogous regions. Although generating high-read output
and developing new computational approaches would be
particularly beneficial for the quantitative analysis of tran-
script isoforms, other biases and limitations will result from
the myriad of computational methods [3, 15].

NGS is also limited by its inability to directly sequence
RNA. Short-read platforms rely on converting mRNA to
cDNA before sequencing; as such, they are typically blind
to nucleotide modifications. Consequently, by using NGS,
indirect methods are required to identify transcriptome-
wide RNA modifications. However, these methods cannot
provide quantitative estimates of the modification at a
given site and are often unable to identify the underlying
RNA molecule that is modified [49].

TGS/long-read sequencing

PacBio and ONT technologies provide alternative long-
read technologies that enable SMS of complete individual
RNA molecules after conversion to cDNA. These two plat-
forms both permit sequencing of non-amplified DNA of
exceptionally long linear read lengths, high throughput
and fast sequencing times (Table 1). PacBio utilizes a
sequencing-by-synthesis approach by which polymerases
incorporate distinguishable fluorescently labeled nucleo-
tides to single DNA molecules and the fluorescent signals
are recorded in real time in the zero-mode waveguides
(ZMWs) [50]. Nanopore sequencing uses theminor changes
in ionic current when nucleotide bases of single-stranded
DNA/RNA molecules pass through protein nanopores to
identify different nucleotides [51, 52]. The development and
general features of PacBio andONT sequencers are listed in
Table 1 and Figure 2A.

Long-read are an advantage of TGS technology. This
technology overcomes some of the issues associated with
short-read approaches and greatly improves the quality of
genome assembly [8]. The high rate of false-positive splice

junction detection by NGS is reduced with TGS, and the
computational methods for de novo transcriptome analysis
are also simplified, which leads to a more complete capture
of isoform diversity, alternative polyadenylation (APA),
fusion transcripts, structural variations, and paralogous
regions [53]. Furthermore, another advantage presented by
these platforms is that they have the ability to detect base
modifications in native DNA. For instance, PacBio
SMRT sequencing can directly detect and differentiate be-
tween base modifications such as 5-methylcytosine (5mC)
and 5-hydroxymethylcytosine (5hmC) [54]. TheONTmethod
determines the sequence of nucleic acids in a molecule
directly without the need for amplification, sequencing by
synthesis, or modification. This approach, termed dRNA-
Seq, removes the biases generated by these processes, and
permits the identification of RNA modifications and deter-
mination of poly-A tail length [55, 56]. Consequently, ONT
technology can be used not only to sequence DNA but also
to sequence RNA, including miRNA directly [50, 57].

However, PacBio and ONT share a common disadvan-
tage of a high error rate of ∼5–20% randomly distributed
errors before correction [12, 58]. Thus, it is necessary to
reduce the error rate before subsequent utilization. The
technology behind these systems is considerably different.
For higher accuracy, these two platforms developed their
own methods to achieve the accurate sequence. ONT
developed a method to sequence both strands of a double-
stranded DNA molecule, which was called “two-direc-
tional” (2D) sequencing. For PacBio SMRT sequencing, the
library preparation on this platform creates a circular input
molecule. Themolecular can be sequencedmany times, and
the random errors can be mitigated by increasing the read
depth using circular consensus sequence (CCS) for high-
fidelity (HiFi) sequence reads. Furthermore, self-correction
software, such as long-read multiple aligner (LoRMA),
which needs high coverage to obtain accurate correction,
can be used for error correction [59]. Alternatively, the
hybrid error correction strategy uses short-reads from
NGS to correct long-read [60]. As such, a hybrid sequencing
strategy combining second- and third-generation sequencing
technologies could reduce the error rate and quantify tran-
script isoforms or fusion genes [61, 62].

Table : Throughput of different third-generation sequencing platforms.

Platform Sequel Sequel II Flongle MinION GridION PromethION

Company PacBio PacBio ONT ONT ONT ONT
Throughput  Gba

 Gba
. Gb  Gb  Gbb

.–. Tbc

Run time Up to  h Up to  h Up to  h Up to  h Up to  h Up to  h

Numbers are based on company website documentation (https://nanoporetech.com and https://www.pacb.com, both accessed April ,
). aOne SMRT cell. bFive flow cells. cTwenty-four or forty-eight flow cells.

Chen and He: Application of third-generation sequencing in cancer 153

https://nanoporetech.com
https://www.pacb.com


Figure 2: Overview of cancer applications by PacBio and ONT.
(A) The development platforms of third generation sequencing (TGS); (B) Sequencing a region with two nearly identical repeats (blue)
separated by a unique sequence (green) will generate reads corresponding to the upstream region (yellow) in short-read sequencing.
Assembly programs for NGS will assemble these reads into a single contig; (C) Haplotype phasing. SNPs (single nucleotide: A or C) between
maternal and paternal alleles; (D) Illustration of the use of direct mapping of long-read to a reference genome to resolve complex structural
variations, including insertions, deletions, duplications, and complex variation; (E) Detecting of fusion genes; (F) Long-read single cell
sequencing; (G) Basemodification in a DNA and RNAmolecule (represented by a red cycle) give rise to specific signals in TGS data that can be
identified using computational methods; (H) Detecting of ncRNAs, including lncRNA, miRNA, and circRNA; (I) A multitude of mRNA transcript
isoforms can be generated from a single gene through alternative intron splicing and alternative polyadenylation. Long-read sequencing
covers the entire transcript and detects the whole alternative splicing events; (J) TGS-based DNA/RNA analysis for liquid biopsy; (K) Detecting
of exogenous RNAs, including viral RNA and bacterial RNA. NGS: next generation sequencing; PacBio: Pacific Bioscience; Oxford Nanopore
Technologies (ONT).
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Bioinformatics for TGS data
analysis

As mentioned above, TGS offers a number of advantages
over short-read sequencing. However, the data from these
platforms is qualitatively different from NGS, thus neces-
sitating tailored analysis tools. In addition, raw reads
from PacBio SMRT sequencing and Oxford nanopore
sequencing have high error rates with most errors occur-
ring due to false insertions or deletions [50,63–65]. The
errormode in SMRT sequencing is remarkably stochastic in
nature [50]. For nanopore sequencing on the other hand,
the error profile has been reported to be biased. For
example, A-to-T and T-to-A errorswere estimated to be very
low [66, 67]. Therefore, they require new bioinformatics
approaches to overcome their complex errors and modal-
ities. The development of bioinformatics approaches that
could take full advantage of long-read sequencing has
become one of themost important issues in bioinformatics.
We nowhave various tools for base calling, error correction
and polishing, de novo genome assembly, mapping, and
phasing using long-read data. Herewe present an overview
of the analysis pipelines for PacBio and ONT data and
highlight popular tools in cancer research (Table 2). There
are also many existing tools that detect variants, gene
isoform resolution and epigeneticmodifications from long-
read. Recent reviews focusing on long-read bioinformatics
tools can be found in the literature [68–70]. For example,
Amarasinghe et al. [70] presented an overview of the
analysis pipelines and popular tools for TGS data. They
also introduced a complementary open-source catalogue
of long-read analysis tools: long-read-tools.org, which
allows users to search and filter tools based on various
parameters.

The challenges in the development
of bioinformatics tools

Basecalling

The first step in any long-read analysis is basecalling, the
computational process of translating raw data to nucleo-
tide sequences. This step is more standardized and usually
performed using proprietary software. SMRT sequences
detect fluorescence events that correspond to the addition
of one specific nucleotide by a polymerase. The template of
SMRT sequencing is circular, and the polymerase go
over the DNA fragment multiple times. During basecalling

process, a continuous long-read is converted from the
pulses, then split into subreads. These subreads are
aligned together, and derive a circular consensus sequence
usingworkflowCCS [71]. ONT sequencersmeasure the ionic
current fluctuations when single-stranded nucleotide
passes through the nanopores. Basecalling for ONT ismore
complicated than PacBio basecalling, and more options
are available. Wick et al. [72] examined the performance of
different basecalling tools, and Guppy basecaller performs
well overall, with good accuracy and fast performance.

Table : Typical long-read analysis pipelines for PacBio and ONT
data.

Application PacBio ONT

Basecalling Generate CCS [] Guppy []
Quality control Isoseq [] NanoQCa, NanoStata

Read error
correction
Non-hybrid
methods

LoRMA [] Canu [], LoRMA

Hybrid methods LORDEC [],
proovread [],
LSC [], FMLRC
[]

Nanocorr [], FMLRC

Polishing Arrow [], Raconb Nanopolish [], Racon
Alignment Pbmm [],

BLASR [],
minimapc

Pbmm

Structural varia-
tion analysis

CORGi [],
PBHoney [],
pbsv [],
Sniffles [],
SMRT- SV [],
SVIM-asm []

NanoSV [], Picky [],
Sniffles, SVIM-asm

Isoform detection IsoSeq, Cup-
caked, IsoCon []

FLAIR [], Pinfish []

Isoform
quantification

Salmon [], FLAIR, featureCounts [], Wub []

Differential anal-
ysis of isoform

DEseq [], limma [], edgeR []

APA events
detection

TAPIS [], PRIPI
[]

Fusion transcript
detection

IDP-fusion []

Base modifica-
tions detection

SMRT LINK, Tombo
[]

NanoMod [], Tombo,
Nanopolish, signalAlign
[], D-Nascent [],
DeepSignal [], mCaller
[], DeepMod []

circRNA transcripts
detection

PRAPI isoCirc [], CIRI-long
[]

aNanopack, https://github.com/wdecoster/nanopack, accessed June
, . bhttps://github.com/isovic/racon, accessed June , .
chttps://github.com/lh/minimap, accessed June , . dhttps://
github.com/Magdoll/cDNA_Cupcake, accessed June , .
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Error correction

Despite increasing accuracy of both TGS platforms, error
correction remains an important step in long-read analysis
pipelines. In the case of SMRT sequencing, the CCS quality
is heavily dependent on the number of times the fragment
is read. As mentioned above, the random errors can be
mitigated by increasing the read depth using CCS. Long
HiFi reads with an average length of 13.5 kb generated
using the CCS mode on the PacBio Sequel Systems, can
provide base-level resolution with >99.8% single-molecule
read accuracy [73, 74]. CCS reads enable structural variant
detection and de novo assembly at similar contiguity.
However, CCS reads retain a major residual error and
exhibit a bias for indels in homopolymers [74]. Further-
more, the current tools, such GATK, which was designed
for short-reads, does not properly model the CCS error
profile. For ONT on the other hand, indels and sub-
stitutions are frequent in nanopore data. The error profile
has been reported to be biased, which tend to occur in
homopolymer regions [66]. These error characteristics pose
a challenge for long-read data analyses, and error correc-
tion algorithms are needed to be developed for fixing
sequencing error.

Two groups of methods to error correct long-reads can
be employed:methods that only use long-reads (non-hybrid
methods) and methods that leverage the accuracy of addi-
tional short-read data (hybrid methods). A few studies have
showcased comparisons among rapidly evolving error
correction algorithms to evaluate the quality and compu-
tational resource requirements of these tools [75–77]. Non-
hybrid methods perform self-correction with long-reads
alone. All reads are first aligned to each other and generate
consensus sequences using overlap information. This
consensus sequences are used to correct individual reads,
which can be taken forward for assembly or other applica-
tions. However, the performance of non-hybrid methods
deteriorated significantly when sequencing depth was
decreased. Effective error correction requires high
sequencing coverage, which needs both cost and time
consumed during sequencing and analysis. Hybrid error
correction strategy, which uses short-reads is still out-
performing long-read-only correction. The same biological
sample must be sequenced using both technologies in
certain applications require high base-level accuracy.
Hybrid error correction methods can be further divided into
two categories according to how short-reads are used, short-
read-alignment-based methods and short-read-assembly-
basedmethods, respectively. In short-read-alignment-based

methods, the short-reads are directly aligned to the long-
read using a variety of aligners, to generate corrected long-
read. In short-read-assembly-based methods, the short-
reads are first used to generate contigs using an existent
assembler, or only build the deBruijn graph (DBG). Then the
long-read are corrected by aligning to the assembly or by
traversing the DBG.

Compared with non-hybrid methods, hybrid methods
aided by short accurate reads can achieve better correction
quality, especially when handling low coverage-depth
long-read. The relative cost per base pair using TGS is still
several folds higher when compared to the NGS. Users are
recommended to choose hybrid methods in certain appli-
cations. Despite continuous improvements in the accuracy
of long-read, error correction remains indispensable in
many applications. Complexities resulting from GC-rich
regions, tandem repeats and highly variable gene com-
plexes cannot be accurately sequenced using short-reads
sequencing [78]. Therefore, repeats, or complex regions
may not be correctly handled using hybrid methods. For
future work, removing the need for short-reads, better and
more efficient self-correction algorithms are expected to
reduce the cost and complexity of genomic projects.

Structural variation analysis

Long-read help to increase the detection of SVs as they
considerably ease de novo genome assembly andmapping.
Two recent reviews described the algorithms of structural
variant calling from long-read data in detail [79, 80].
For instance, algorithms detect SVs from SMRT data
by leveraging intra-read and inter-read signatures.
CORGi [81], PBHoney [82], PBSV, Sniffles [83], SMRT-
SV [84] and SVIM-asm [85] detect SVs through combina-
tions of these two signatures. Due to higher operational
costs and a large input DNA requirement, long-read have
been mostly applied to single-genome assemblies. In the
case of ONT, the signatures to detect SVs are similar to
those used in PacBio data. Callers that detect SVs from
nanopore data include NanoSV [86], Picky [87], Sniffles
and SVIM-asm. Compared with PacBio sequencing, ONT
provides improved read lengths, lower adaptation costs
and higher throughput. It is more effective to detect many
SVs. However, indels are frequent in nanopore data, which
make it less suitable for smaller SVs. Furthermore, evalu-
ating the performance of long-read SV callers is compli-
cated by the fact that benchmark data sets may be missing
SVs in their annotation.
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Long-read transcriptome analysis

The goal of long-read transcriptome analysis mainly con-
sists of the following three parts, which are isoform detec-
tion, quantification, and differential analysis. PacBio
supplies the IsoSeq3 analysis pipeline for the analysis of
their cDNA CCS reads, allowing the assembly of full-length
transcripts. Cupcake provides scripts for collapsing redun-
dant isoforms and merging Iso-Seq runs from different
batches. Iso-Con [88] and SQANTI [89] pipelines attempt to
mitigate the erroneous merging of similar transcripts of the
Iso-Seq pipeline. For assaying the sequences of highly-
similar gene families, IsoCon detects isoforms from genes
with significant alternate splicing and minor shifts in the
splice junctions. In the case of ONT, both Pinfish and FLAIR
are intended for nanopore data. However, full-length alter-
native isoform analysis of RNA (FLAIR) needs to use short-
read reads to improve junction annotation [90]. In addition,
their accuracy has not yet been extensively verified. Several
methods, such as Salmon [91],Wub [92], featureCounts [93],
FLAIR [90], etc., can be used to quantify the abundance of
transcripts. However, thesemethods rely on a complete and
accurate isoform annotation. Therefore, quantifying and
performing differential expression analysis of transcript
levels on the isoform instead of the gene level remains sig-
nificant challenges. It is hard to decide at which point a
known and a newly identified isoform, and systematically
differentiate allele-specific isoform expression.

AS events, APA and alternative transcription initiation
(ATI) are major processes that contribute to transcriptome
diversity. ONT directed RNA sequencing was used to mea-
sure the length of poly(A) and identify a range of novel
transcript isoforms including those with AS, ATI, and
APA [94–96]. For the analysis of post-transcriptional regu-
lation based on long-read sequencing, transcriptome anal-
ysis pipeline for isoform sequencing (TAPIS) pipeline [97]
and Post-transcriptional Regulation Analysis Pipeline for
Iso-Seq (PRAPI) [98] are two main bioinformatics tools that
use PacBio reads to identify AS and APA. For instance, the
survey of APA events using TAPIS is becoming a landmark
for annotation in sorghum (Sorghumbicolor L.Moench) [97],
moso bamboo (Phyllostachys edulis) [99], wild apple (Malus
sieversii) [100], Chinese cabbage (Brassica rapa L. ssp.
pekinensis) [101], cotton (Gossypium spp.) [102], Ricinus
communis [103], silkworm (Bombyx mori) [104], Lateolabrax
maculatus [105], red clover (Trifolium pratense L.) [106],
Gnetum luofuense [107], and perennial ryegrass (Lolium
perenne) [108]. In addition, PRAPI can also identify several
other events, such as production of circular RNAs (circR-
NAs). However, at present, quantification analysis of AS or

APA still depends on NGS due to the low coverage of PacBio
and ONT sequencing. In the future, it is expected that both
TGS can be used for quantification analysis once the
throughput increases.

Base modifications detection

In SMRT sequencing, base modifications in DNA are
inferred from the interpulse duration (IPD) between fluo-
rescence pulses [54]. mA, mC and hmC in a DNA template
alter the kinetic characteristics, such as the IPD between
two successive base incorporations [54]. These changes of
kinetic signatures can be analyzed directly via the SMRT
Portal for base modification detection. However, reliable
calling of these base modifications requires high sequence
coverage per strand. For instance, reliable calling of 4 mA
and 6 mC requires 25× coverage per strand, whereas 250×
coverage is required for 5 mC and 5 mhC [109]. Such high
coverage is not realistic for large genomes and does not
allow singlemolecule epigenetic analysis. ONT sequencing
detect base modifications owing to the signal shifts caused
by the modified RNA or DNA bases as they pass through
the nanopore [49, 110]. Several computational tools
have been developed to detect base modifications on the
basis of these characteristic disruptions: NanoMod [111],
Tombo [112], Nanopolish [110], signalAlign [113],
D-NAscent [114], DeepSignal [115], mCaller [116], and
DeepMod [117]. However, these methods may suffer from a
high false discovery rate, since no experimental exist sys-
tematically validate the detection of the large variety of
modifications present in RNA. In addition, many modifi-
cations do not influence the TGS’s dynamics sufficiently to
be detected at a useful sensitivity. Therefore, continued
efforts in developing and benchmarking tools are required
to obtain accurate, and complete (including base modifi-
cations) genomes and transcriptomes.

Applications of TGS technologies in
cancer

Detecting complicated cancer genomes

Human genome is considered to be one of the most com-
plete mammalian reference assemblies. However, it con-
tains many regions of high and low complexity that have
relevance to human’s disease, such as low-complexity tan-
dem repeats, pseudogenes, high GC content, and extremely
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copy number variable regions [118]. Sequencing those DNA
elements is difficult with short-read sequencing, and TGS is
a great tool to resolve these gaps. Cancer studies using long-
read information to decipher allele-resolution mutation
statuses and the complete structures of complicated cancer
genomes have been rapidly increasing and continuously
progressing. With the application of long-read sequencing
alone or in combination with more accurate conventional
short-read sequencing, it is possible to detect cancer
mutations occurring at a low frequency. For example, Pac-
Bio has been applied to screen for the emergence of
actionable mutations in the tumor suppressor TP53 [119]. In
acute myeloid leukemia (AML) and myelodysplastic syn-
drome (MDS), many patients harbor multiple TP53 muta-
tions in their tumors, and these TP53 variants are located in
different alleles. Further, long-read are also utilized in the
detection of genomic mutations at single-allele resolution.
For instance, Suzuki et al. [120] applied long-read MinION
and found that 72% of the reads harbored two epidermal
growth factor receptor (EGFR) mutations (T790M and
L858R), and 22% of the reads harbored neither mutation in
H1975 cells (lung adenocarcinoma cell line). Then, they
also detected aberrantly spliced RNAs in neurofibromatosis
type 1 (NF1) and gene fusion transcripts, such as coiled-coil
domain containing 6-rearranged during transfection
(CCDC6-RET) and echinoderm microtubule-associated pro-
tein-like 4-anaplastic lymphoma kinase (EML4-ALK).
Finally, they successfully applied this developed approach
to characterize the mutation genotypes of eight clinical
samples.

Particularly for cancer applications, cancer-
associated SVs, such as large insertions, deletions, in-
versions, duplications, and translocations of variable
genomic sequences, could be detected by long-read
sequencing approaches [121–123]. Considering the limita-
tions of NGS, long-read sequencing can improve the vali-
dation, resolution, and classification of germline SVs [124].
For example, in chromophobe renal cell carcinoma,
structural alterations in the telomerase reverse transcrip-
tase (TERT) promoter region identified byWGSanalysis can
be validated by PacBio sequencing [125]. Although short-
reads can also be assessed SVs, large and complex SVs and
repetitive regions cannot be detected this way [43, 46].
Norris et al. [122] applied nanopore sequencing to detect a
series of well-characterized SVs and successfully identified
cancer-related SVs in the cyclin dependent kinase inhibitor
2A (CDKN2A) and Mothers against decapentaplegic
homolog 4 (SMAD4) genes at a low level in pancreatic
cancer. Interestingly, they demonstrated that nanopore
sequencing can detect these SVs at dilutions as low as
1:100, with as few as 500 reads per sample, which indicates

that this technology could become an ideal tool for the
low-level detection of cancer-associated SVs. In addition,
Williams et al. [126] applied targeted nanopore
sequencing and identified ABCB1 structural variants in
THP-1 AML cells and high-grade serous ovarian cancer
cells. In the context of non-small-cell lung cancer, Saka-
moto et al. [127] found that long-read sequencing (Prom-
ethION) was particularly useful for precisely identifying
and characterizing structural aberrations and identified
several medium-sized structural aberrations, consisting
of complex combinations of local duplications, in-
versions, andmicrodeletions, in lung cancer cell lines and
clinical samples. In the context of breast cancers, a pio-
neering study by Schatz’s group involved the sequencing
of the SK-BR-3 breast cancer cell line genome using Pac-
Bio SMRT long-read sequencing and demonstrated that
amplification of the Erb-B2 receptor tyrosine kinase 2
(ERBB2) oncogene (also known as HER2) appeared within
complex rearrangements, which can only be precisely
identified by long-read sequencing [123]. Further, they
sequenced SK-BR-3 cells and patient-derived organoids
representing tumor and matched normal cells from two
breast cancer patients via ONT, PacBio, and Illumina/10×
Genomics for the comprehensive analysis of SVs. Inter-
estingly, they found that long-read sequencing allowed
for substantiallymore accurate and sensitive SV detection
and that hundreds of variants within known cancer-
related genes were detectable only through long-read
sequencing [128]. Recently, Lin et al. [129] identified five
genomic regions on 17q as potential hotspots of chromo-
thripsis in breast cancer. Nanopore sequencing further
detected translocations between chromosomes 17q23
and 20q13 and confirmed complex rearrangements between
them that harbor a dense estrogen receptor α (Erα) hub and
their corresponding target loci, respectively. These findings
highlight the need for long-read sequencing to enable an
in-depth analysis of how SVs disrupt the genome, and they
also shed new light on the complexmechanisms involved in
cancer genome evolution.

Characterization of AS

AS in particular is known to affect more than half of all
human genes [130]. However, assessment of the differ-
ences in mRNA isoform expression between tissues and
determination of which mRNA splice isoforms are
potentially deleterious can be challenging [131]. TGS of
long-read has the potential to identify and quantify iso-
forms simply by sequencing cDNA or mRNA molecules
end-to-end from 3′ polyA tail to 5′ cap. For example, de
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Jong et al. [132] performed MinION nanopore sequencing
of long-range PCR amplicons to identify 20 novel breast
cancer gene 1 (BRCA1) isoforms, 18 of which contained
multiple individual splicing events, and found that these
events can co-occur within single transcripts. In addi-
tion, nanopore sequencing can be used in single-cell
analysis [133–137]. Singh et al. [133] described a rapid
high-throughput method to sequence full-length tran-
scripts using targeted capture and Oxford nanopore
sequencing of T-cell receptor and B-cell receptor mRNA
transcripts and linked this with short-read transcriptome
profiling. They revealed the clonal and transcriptional
landscape of lymphocytes at single-cell resolution. This
novel method, termed Repertoire and Gene Expression by
Sequencing (RAGE-Seq), offers a new genomic toolkit for
advanced single-cell analysis.

Particular splicing events are associated with many
cellular processes, such as cellular growth, differentiation,
tissue development, and oncogenesis [131]. Aberrant
splicing events frequently occur in cancer and are associ-
ated with the hallmarks of cancer [138]. The importance of
studying connections between AS and cancer is under-
scored by the possibility that some specific splice isoforms
drive the oncogenic process and could represent attractive
therapeutic targets. Nanopore sequencing has been used to
characterize the global transcriptome signatures of mito-
chondrial and ribosomal gene expression in human cancer
stem-like cell populations, which might provide a basis for
the application of additional pathway-directed therapies
such as those targeting mitochondria and ribosomes [139].
Moreover, unique splice variants or sets of splice variants
are strongly associatedwith particular types of cancers and
have diagnostic and prognostic value [138]. For example,
RNA immunoprecipitation with a LINE 1-specific antibody
followed by nanopore sequencing detected LINE1 tran-
scripts of 90 individual elements in VM-Cub-1 UC cells.
Further study showed that the expression of the individual
variant long interspersed element 1 (LINE1s) is highly
heterogeneous among cancer types [140].

Mutations in the splicing factor spliceosome factor 3b
(SF3B1) have been associated with characteristic alterations
in splicing. In a recent study, nanopore technology was
applied to resequence a subset of tumor samples and normal
samples from chronic lymphocytic leukemia (CLL) patient
withwild-typeSF3B1 or theK700Emutationand to sequence
normalB-cell samples [90]. Theydemonstrateddifferential 3′
splice site changes associatedwith SF3B1mutation,which is
consistent with the known effects of SF3B1 mutation. They
also observed a strong downregulation of intron retention
events associated with SF3B1 mutation. This study of pri-
mary CLL samples by nanopore sequencing demonstrates

the ability of the nanopore approach to identify and quantify
cancer-specific transcript variants.

Long-read can completely cover full-length transcript
sequences, so long-read sequencing is a superior
approach over short-read RNA-Seq in detecting AS tran-
scripts or transcript isoforms. Kohli et al. [141] applied
modified RNA-Seq and found frequent coexpression of
androgen receptor variant (AR-V) 9 and AR-V7 in prostate
cancer. They further performed SMRT isoform sequencing
(Iso-Seq)with a PacBio RSII to determine the full sequence
of each AR mRNA transcript. In this study, they identified
a common shared 3′ terminal exon as the molecular basis
for frequent AR-V7 and AR-V9 coexpression in castration-
resistant prostate cancer (CRPC). AR-V7 has been studied
as a potential biomarker for drug resistance in prostate
cancer. Thus, AR-V9 may also be a predictive biomarker
for resistance. They further performed long-read RNA-Seq
to analyze the effects on the expression of AR and trun-
cated AR variants and found that AR gene rearrangements
correlated with AR overexpression. Tumor-specific over-
expression of AR-Vs indicated resistance to endocrine
therapies, indicating that AR gene rearrangements are an
importantmechanism of resistance to endocrine therapies
in CRPC [142]. Long-read SMRT sequencing also revealed
that alternative isoforms and tumor-specific isoforms
that arise from aberrant splicing are common during
liver tumorigenesis. More excitingly, unannotated vari-
ants of ARHGEF2 (v1 and v3) were found to have biolog-
ical significance in underscoring two major cancer
hallmarks [143].

The splicing pattern of specific isoforms of numerous
genes is altered as cells move through the oncogenic pro-
cess. For instance, BRCA1 associated RING domain 1
(BARD1) interacts with BRCA1 and may act as a potent tu-
mor suppressor. However, BARD1 splice isoforms show
effects that are antagonistic to those of BARD1-full-length
and have been associated with disease progression and a
poor prognosis in multiple cancer types. Walker et al. [144]
presented a comprehensive BARD1 mRNA splicing land-
scape by performing nanopore sequencing and splicing
assays for 12 tissue types (normal and cancer tissue).
Similarly, a recent study used a combination of nanopore
sequencing, RNA-Seq, and RT-qPCR analyses to identify
the details of BARD1 AS in melanoma [145]. These studies
include the most comprehensive assessments of BARD1
mRNA splicing to date and provide information for the
convenient assessment of the roles of these isoforms in
human biology.

Indeed, in a pioneering study by Oka et al. [146], they
performed MinION full-length DNA sequencing to charac-
terize the alternatively spliced isoforms of lung cancer cell
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lines and then biologically validated the alternatively
spliced isoforms. These aberrant transcripts were then
found in non-small-cell lung cancer specimens. Interest-
ingly, the authors applied liquid chromatography with
tandemmass spectrometry (LC/MS/MS) and demonstrated
that at least some alternatively spliced isoforms were truly
translated into peptides and could play a role in producing
neoantigens in cancer. Most importantly, these peptides
derived from splicing isoforms and frameshift mutations
could activate the T cell response through interaction with
human leukocyte antigens (HLAs). These results clearly
show that long-read sequencing can be used to identify
novel isoforms and neoantigens that may be overlooked
with the current short-read sequencing approaches. To
improve the diversity of captured full-length isoforms, Hu
et al. [147] developed a normalized single-molecule
RNA-Seq method, and identified new cancer-specific
transcriptome signatures in human gastric signet-ring
cell carcinoma. This method can capture 3.2–6.0-fold
more full-length high-quality isoform species for different
human samples than the non-normalized capture proced-
ure and provides a new option for specific projects. Taken
together, these papers clearly highlight the potential of
TGS to identify new isoforms and isoform features, which is
essential for the precise identification of aberrant transcript
structures in cancer cells.

Identification of fusion genes

Fusion transcripts are the result of a trans-splicing event
that joins two separately encoded pre-RNAs into one
transcript [148] and are known to be major driver events
for carcinogenesis in several types of cancers. Many
fusion genes are strong driver mutations in neoplasia and
have provided fundamental insights into the disease
mechanisms that are involved in tumorigenesis [149].
Many fusion genes are extremely likely to produce unique
tumor neoantigens that are recognizable by immune cells;
thus, they are an ideal marker for the selection of immune
checkpoint inhibitors [150]. Compared with the existing
tools, the integration of TGS long-read and NGS short-
reads (named Isoform Detection and Prediction [IDP]
fusion) to detect fusion genes provides a higher precision
and a very low false positive rate [151]. These approaches
can also be readily applied to the analysis of cancer-
associated fusion transcripts. For instance, using long-
read MinION, Suzuki et al. identified cancerous mutations
in lung cancer cells and clinical samples and detected
the major driver genes, which have diverse patterns,
including point mutations and fusions [120]. A recent

study identified TTYH1-C19MC fusions leading to the
overexpression of microRNAs in embryonal tumor with
multilayered rosettes. This effect in turn drives the
expression of a brain-specific DNMT3B isoform and pro-
motes tumourigenesis [152]. In another report, the authors
applied MinION RNA-Seq to sequence full-length tran-
scripts in lung cancer cell lines and detected a cancer
driver fusion transcript of the CCDC6-RET gene from
the LC2/ad cell line [153]. In prostate cancer, one study
identified a novel fusion transcript comprising the
RLN1 and RLN2 genes. The fusion transcript encodes a
putative Relaxin 2 (RLN2) with a deleted secretory signal
peptide, indicating a potentially biologically important
alteration [154].

Transcripts with aberrant structures are extremely
likely to produce chimeric proteins and serve as specific
targets for treatment [149]. For example, chronic mye-
logenous leukemia (CML) is a blood cancer that is caused
by a translocation between chromosomes 9 and 22, giving
rise to BCR-ABL1. Imatinib, a potent inhibitor of the
oncogenic tyrosine kinase BCR-ABL, has shown remark-
able clinical activity in patients with CML [155]. Several
studies have reported that PacBio sequencing and ONT
sequencing can be applied to detect BCR-ABL1 fusion
events and related tyrosine kinase inhibitor (TKI) resis-
tance mutations in samples from CML patients both at
diagnosis and during follow-up [156–158]. These tech-
nologies are also important for identifying other compo-
nents involved in CML pathogenesis to can be exploited to
overcome tyrosine kinase inhibitors (TKI) resistance. In
addition, Jeck et al. [159] developed a nanopore-based
sequencing assay that can decrease the turnaround time
for the detection of BCR-ABL1 fusion transcripts, which
may be a valid approach for laboratories with low spec-
imen volumes and for cases in which rapid results are
needed.

In the context of AML, FMS-like tyrosine kinase 3
(FLT3) mutation is the most common genetic alteration in
patients, and most of these mutations are constitutively
activating internal tandem duplication (ITD) mutations.
Shah and colleagues applied SMRT sequencing and first
confirmed the presence of activating mutations in FLT3
(FLT3-ITD), which are associated with a poor prognosis in
AML. Secondary kinase domain (KD) mutations in FLT3-
ITD can cause preclinical and acquired clinical resistance
to the highly potent type II FLT3 inhibitor quizartinib [160].
Further Shah et al. [161] described the cocrystal structure of
FLT3 with the TKI quizartinib and identified a novel FLT3
inhibitor, PLX3397, that retains activity against the F691L
mutant. Further, FUsion Detection from Gene Enrichment
(FUDGE) was developed to accurately identify fusion genes
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from low-coverage nanopore sequencing within 2 days. In
this assay, Cas9-targeted enrichment of fusion genes is
performed, and then the unknown fusion partner and
precise breakpoint are identified by nanopore sequencing.
FUDGE enables multiplexed enrichment for the simulta-
neous analysis of several genes in multiple samples in one
sequencing run. The application of this assay in the clinic
could allow for rapid gene fusion detection [162]. Hence,
TGS can now be applied for gene fusion detection as a
diagnostic and prognostic tool for therapy initiation and
minimal residual disease monitoring following treatment.

Characterization of exogenous RNA

Although cancer is generally considered to be a disease of
host genetics and environmental factors, microorganisms
are implicated in ∼20% of human malignancies [163].
Microbes and microbiota can contribute to cancer devel-
opment and progression and the responsiveness to cancer
therapeutics [164]. It has been demonstrated that TGS has
tremendous potential utility forWGS. TheMinION platform
was used with a 6-h sequencing run time, and sufficient
data were generated to identify bacterial and viral samples
down to the species level, which suggests that TGS can
accurately identify and differentiate both viral and bacte-
rial species present within biological samples via amplicon
sequencing [165]. Hepatitis B virus (HBV) infection is
the main cause of hepatocellular carcinoma (HCC) world-
wide [166]. HBV can integrate into human DNA and pro-
mote carcinogenesis by insertional mutagenesis or by
promoting genomic instability [167]. Recently, integrative
analysis of HBV genomes based on NGS and TGS of tumor
and nontumor liver tissues from HCC patients provided a
comprehensive view of the integration process in liver
tissues. Interestingly, replicating HBV DNA was more
frequently detected in nontumor tissues than in tumor
tissues and was associated with a higher number of non-
clonal integrations. More importantly, integration of viral
enhancers near a cancer driver gene may lead to strong
overexpression of oncogenes. HBV integration can drive
carcinogenesis by altering cancer driver genes (TERT,
TP53, MYC) at a distance, and the number of HBV inte-
gration events is an independent prognostic factor in
HBV-related HCC [168]. Similarly, Tatkiewicz et al. [169]
assessed relative provirus expression in HERV-K (HML-2)
via both short- and long-read sequencing in three mantle
cell lymphoma cell lines (JVM2, Granta519 and REC1) and
observed a strong tissue-specific pattern of provirus
expression. Therefore, the development of TGS has
enabled more precise characterization of the role of viral

and bacterial genetic material in cancer diagnosis and
prognosis.

Increasing numbers of studies have highlighted the
key role of gut microbiota in mediating tumor responses
to chemotherapeutic agents and immunotherapies targeting
programmed death-ligand 1 (PD-L1) or cytotoxic T
lymphocyte-associated protein 4 (CTLA-4) [170–172]. Nasal
microbiota results at the genus level were compared using
Illumina vs. nanopore 16S rRNA gene sequencing, and
long-read sequencing had a higher efficiency than short-
read sequencing in terms of the taxonomic classification of
gut microbiota at the species level [173]. Therefore, this
technology can be further adopted for gut microbial com-
munity research. The gastric pathogen Helicobacter pylori
is the main causative agent for gastric cancer and gastric
and duodenal ulcers [174]. In a study byDevi et al. [175], the
authors demonstrated that low Bifidobacterium abun-
dance among the lower gut microbiota is associated with
H. pylori-related gastric ulcers and gastric cancer, indi-
cating that long-read sequencing may serve as a noninva-
sive assessment method. In another study, Tetz et al. [176]
used a combination of short-read and MinION long-read
sequencing technologies to draft a complete genome
sequence of Kluyvera intestine sp. nov. isolated from the
stomach of a patient with gastric cancer. The identification
of antibiotic resistance genes would enable us to under-
stand the possible pathogenicity of these bacteria and their
role in cancer. Interestingly, Gaiser et al. [177] performed
real-time full-length 16S rRNA gene sequencing (PacBio
single-molecule sequencing) on paired cyst fluid and
plasma from patients with suspected pancreatic cystic
neoplasms to assess the microbial composition and
diversity in the cyst fluid. They showed that the intracystic
bacterial DNA and interleukin-1β concentrations were
significantly elevated and positively correlated with intra-
ductal papillary mucinous neoplasm incidence and
neoplastic grade. Recent work has also documented that
the gut microbiota is related to the occurrence and devel-
opment of colorectal cancer (CRC) [178]. Thus, classifica-
tion of the gut microbial community in CRC should be
applied in clinical settings to predict CRC development.
MinION platforms for 16S rRNA sequencing have been
applied to detect and classify microbial communities, and
the MinION sequencing platform coupled with the corre-
sponding algorithm could function as a practicable strat-
egy for classifying the bacterial community down to the
species level [179]. The authors further assessed the gut
microbiota in clinical subjects, including healthy partici-
pants and CRC patients, and found significant differences
in gut microbial communities between patients with ade-
nomas and healthy subjects [180]. Taken together, these
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findings indicate that these technologies can be applied
for classifying differential gut microbial communities in
distinct clinical specimens andwill be useful tools for rapid
screening.

Direct identification of epigenetic marks in
DNA and RNA

DNA modifications play an essential role in the regulation
of a variety of biological processes, and deregulation of the
epigenetic machinery has been directly implicated in
tumorigenesis [181]. These epigenetic modifications
can be interrogated directly by instruments from both
PacBio [54, 182] and ONT [113]. For instance, long-read
sequencing, including ONT and PacBio sequencing, can be
used to concurrently assess the CpG methylation of novel
and extant transposable element (TE) insertions in the
hippocampus and heart, as well as in paired tumor and
nontumor liver samples [183]. One study developed trans-
posons from longDNA reads (TLDR) software to interrogate
the methylation patterns of both nonreference and refer-
ence TE insertions and found pronounced demethylation
of young long interspersed element 1 (LINE-1) retro-
transposons in cancer. Finally, the authors recovered the
complete sequences of tumor-specific LINE-1 insertion and
demonstrated their retrotransposition functions. This
approach demonstrated that long-read sequencing can
simultaneously survey the epigenome and detect somatic
TE mobilization.

In addition, McKelvey et al. [184] applied nanopore
Cas9-targeted sequencing (nCATS), to characterize allele-
specific methylation in thyroid cancer cell lines heterozy-
gous for the TERT promoter mutation. They found that the
mutant TERT promoter allele was significantly less meth-
ylated than the wild type allele and that the transcriptional
activators GABPA and MYC bind only to the mutant TERT
allele. Importantly, epigenetic informationmay have direct
clinical value, as demonstrated in the study by Euskirchen
and colleagues [121]. A study was designed to achieve
same-day detection of IDH1, IDH2, H3F3A, TP53 and TERT
promoters CNVs and methylation profiles using the nano-
pore MinION approach. A significant correlation was
observed in the outcomes of nanopore sequencing and
data generated from short-read exome sequencing, Sanger
sequencing, SNP array, and/or genome-wide methylation
microarray. Overall, the ONT method can be applied for
precision medicine development for cancer patients in
setting with limited resources within a short period of time
and in a cost-effective manner. Moreover, Wongsurawat
et al. [185] demonstrated that nCATS can be used to identify

IDH1 and IDH2 mutations and simultaneously evaluate
MGMT methylation levels not only at the promoter region
but also at CpGs across the proximal promoter region
within 2 days of surgical resection in fresh biopsies of
diffuse glioma at high resolution. The nCATS technique
provides a promising tool for enhancing precision cancer
medicine with the potential for simultaneously assessing
multiple molecular targets.

Furthermore, epigenetic modification affects both
DNA and RNA, and these base modifications can have a
functional effect on transcription and translation [186]. A
study showed that direct RNA sequencing could be
applied to detect 6 mA RNA modifications with high
accuracy in terms of systematic errors and decreased
base-calling qualities [49]. Therefore, direct RNA modifi-
cation analysis by nanopore sequencing is rapidly
developing and improving in reliability and has the
potential to provide a complete view of RNAmodifications
such as N6-methyladenosine (6mA), 7-methylguanosine
(7mG), and 5mC. However, extracting RNA modification
information fromONT reads is still an unsolved challenge,
and this technology has still not reached maturity for
routine application in RNA epitranscriptomics.

Identification of non-coding RNAs

Non-coding RNAs (ncRNAs), which include long non-
coding RNAs, microRNAs, and circular RNAs, represent
functional regulatory molecules that control the develop-
ment, promotion, and metastasis of cancers. These types
of ncRNAs can be captured by long-read sequencing.
For instance, nanopore-induced phase-shift sequencing
(NIPSS) was developed to directly sequence microRNA,
which can demonstrate single molecule sequencing of
miRNA, such as the discriminations between different se-
quences, isoforms, and epigenetic modifications among
syntheticmiRNA sequences [57]. SincemiRNAsarepotential
therapeutic targets or biomarkers in many human disease,
such as Parkinson’s disease [187] and cancer [188]. Direct
miRNA sequencing by NIPSS may be directly implemented
in clinical applications. Further, Troskie et al. [189]
sequenced RNA from normalmixed adult and foetal human
tissues on a PacBio platform, and defined a complex tissue-
specific pseudogene transcriptome,which can be utilized as
a resource for transcriptomic analyses and to design func-
tional screens. This study sets up a foundation for the use of
long-read sequencing to comprehensively identify full-
length pseudogene transcripts.

Although, circRNAs can be discovered and quantified
using short-read RNA-seq data via identifying the occurrence
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of back-splice junctions (BSJs), the ability to reconstruct
circRNAs is still limited to determine the full-length se-
quences and internal AS events with circRNAs [190, 191].
Long-readRNA-seq is a powerful tool for resolving full-length
transcript isoforms. By combining circular reverse transcrip-
tion and size selection strategy along with nanopore
sequencing, isoCirc [192] and circRNA identifier using long-
read sequencingdata (CIRI-long) [193] are twomajormethods
to effectively characterize the full-length circRNA isoforms.
However, the application of these approach is limited at the
current sequencing depth, due to the low throughput and
high per-sequence cost for long-read sequencing.

Liquid biopsy

Liquid biopsy is a powerful technique that can be used to
identify cancer patients to improve early diagnosis and
improve intervention. In the area of NGS, it has been
applied to sequence cfDNA. Unfortunately, TGS platforms
are not designed for cfDNA analysis. Nevertheless, Mar-
tignano and colleagues [194] modified nanopore standard
protocols to make them compatible with small cfDNA
fragments. They sequenced cfDNA from cancer patients
and healthy subjects, and successfully obtain a CNVprofile
from plasma cfDNA of cancer patients. By comparing the
performance of nanopore sequencing with a standard NGS
approach, nanopore sequencing has the same perfor-
mance of NGS approaches. In addition, it would be
possible to inspect the CNV profile in less than a working
day while the run is still ongoing, which is unique to
nanopore sequencing. The applications of this approach
exploit the full potential of liquid biopsy for both research
and clinical purposes. In the context of cervical cancer,
human papilloma virus (HPV) is the major cause of the
disease, and HPV16 and HPV18 are the two most preva-
lent high-risk HPV types worldwide [195]. Nanopore
sequencing was used to detect HPV integration in
cervical cancer samples and cervical liquid-based cytology
samples [196, 197]. This approach could potentially be
utilized as a diagnostic tool for cervical cancer.

The challenges of long-read
sequencing in cancer research

As demonstrated by the multitude of applications mentioned
above, TGS has several important advantages to NGS. How-
ever, there still remains significant challenges to be overcome.

As mentioned above, the long-read produced suffer a
high error rate, which might hamper the accuracy of
genome sequencing projects. The expression of short and
long transcripts varies for each sample and each sample
will only include a fraction of all transcripts in the reference
annotation. This length bias is rooted in the way samples
are prepared for sequencing. Thus, median-read length
approaches are further constrained by challenges in sam-
ple preparation and biases in library preparation. The high
accuracy rate for short-reads and the longer length of long-
read can be combined to achieve better accuracy. Second,
in contrast with short-read sequencing which have spent
the last decade creating a large number of tools for data
analysis, the tools for TGS are still in development. These
challenges have necessitated new algorithms for the effi-
cient analysis of longer reads, including isoform identifi-
cation, quantification, and modification detection, etc.

Third, all current TGS approaches suffer from experi-
mental artefacts caused by degraded DNA/RNAmolecules.
The integrity of DNA/RNA going into TGS experiments is
most important. However, it is not always possible to
obtain sufficiently large intact samples of DNA and full-
length RNA from clinical samples. Surgical specimens
and biopsies are commonly preserved as formalin-fixed
paraffin-embedded (FFPE) tissues for histopathological
staining and long-term storage. DNA/RNAs from FFPE
samples are highly fragmented and damaged. The rapid
growth of biobanks has enabled the collection of thou-
sands of fresh frozen tissues. However, it is not yet clear
what represents the best extraction and processingmethod
for DNA/RNA. In our studies, we extract RNA from bio-
banking fresh frozen samples rely on physical disruption
and trizol based protocols, followed by precipitations or
column-based clean-up. The integrity of RNA was
damaged, and the long RNA transcripts were degraded in
some samples (the size of cDNA library was less than 1 kb).
Long-read RNA-seq depend on long RNA molecules being
present as full-length transcripts, so these samples were
excluded for further long-read sequencing. As such, we
need to carefully control the quality of the samples used for
RNA extraction. Forth, TGS is ultimately limited by the
number of reads available for analysis. For example, to
truly explore the complexity of mammalian tran-
scriptomes, hundreds of millions of reads covering full-
length transcriptswill be required per tissue or organ. Up to
now, PacBio and ONT sequencers routinely generate 30
million of reads per $1,000 of human RNA sequencing. The
relatively high costs associated with current single-
molecule sequencing will be driven down as throughput
increases.
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Finally, despite all applications held by long-read
sequencing technologies, they still have several barriers
withholding their application in clinical sequencing set-
tings. Most of the demonstrated applications mentioned
above involved research studies. It takes a very long way to
go for a transition into clinical routine. For instance, the
evolving TGS platforms and associated primary analysis
tools must be validated and confirmed for International
Organization for Standardization (ISO) and associated
administrations. In addition, the clinical adaptation is also
hindered by a knowledge gap between genetic counselors
and bioinformatics experts.

Conclusion and future perspectives

TGS platforms, such as those provided by PacBio and ONT,
are rapidly advancing the field with improved reference
genomes, more comprehensive variant identification and
more complete views of transcriptomes and epigenomes
(Figure 2). The use of TGS to address fundamental prob-
lems in cancer research presents an encouraging outlook
for its continued application in an increasing number of
different clinical and research settings (Table 3). Despite all
advantages held by long-read sequencing technologies,
they still have some limitations, as well. In particular, they
suffer from much lower throughput and much high er-
ror rates than NGS platforms. The limitation of lower
throughput makes them difficult to perform differential
gene expression analysis. The key advantages of the TGS
platforms are the long-read length and the ability to detect
base modifications in native DNA and RNA. However, their
ability to capture more of full-length transcripts are

Table : Applications of TGS in human cancers.

Application Sequencing
technology

Targets Cancer

Detect mutations at a
low frequency

PacBio TP AML and MDS
[]

Detect mutations at
single-allele
resolution

ONT EGFR Lung cancer
[]

Detect Low-level of
cancer-associated
SVs

ONT CDKNA and
SMAD

Pancreatic
cancer []

Detect complex
rearrangements

ONT Chr q
and q

Breast cancer
[]

Detect full-length
transcript sequences

PacBio AR-V and
AR-V

Prostate can-
cer []

Comprehensive
assessment of
isoforms

ONT BARD Melanoma and
others [,
]

Detect neoantigens ONT NDST,
SENP et al.

Lung cancer
[]

Detect fusion genes ONT CCDC-RET Lung cancer
[]

Detect fusion genes PacBio RLN and
RLN

Prostate can-
cer []

Detect fusion genes PacBio/ONT BCR-ABL CML [–]
Virus integrative
analysis

PacBio Cancer
driver genes

HCC []

Axonomic classifica-
tion of gut
microbiota

PacBio/ONT NA Gastric cancer,
CRC [–,
]

Transposable
element epigenomic
profiling

ONT TE HCC []

Same-day detection
of CNVs and
methylation

ONT Cancer
driver genes

Brain cancer
[]

Identification of
miRNA and circRNA

ONT NA NA

Liquid biopsy ONT NA Lung cancer
[]

NA, not available.

Table : Applications most suited for NGS, PacBio, and/or ONT in
cancer research.

Application Optimal
technology

Reason

WES, WGS, and GWAS NGS High throughput at low cost
Gene panels in cancer NGS High throughput at low cost
Cancer-specific bio-
markers, such as MSI,
TMB

NGS High throughput at low cost

Complicated cancer
genomes

PacBio or
ONT

Read lengths can traverse
most repeat structures of the
genome

De novo genome
assembly

PacBio or
ONT

Long-read enable much
higher Ns

Haplotype phasing PacBio or
ONT

Long-read permit direct
phasing

Gene expression NGS RNA-seq with low cost
Identification of
ncRNAs

NGS RNA-seq with low cost

Alternative splicing/
transcripts

PacBio or
ONT

Full-length RNA transcripts
sequencing

Identification of fusion
genes

PacBio or
ONT

Long-read permit character-
izing SVs and full-length RNA
transcripts

Epigenetics PacBio or
ONT

Direct detection of DNA
modifications

RNA modification
detection

ONT Direct detection of RNA
modifications

Microbial genome
sequencing

PacBio or
ONT

Read lengths can span the
majority of the bacterial S
rRNA gene

Single-cell RNA/DNA
sequencing

NGS High throughput at low cost
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additionally dependent on having high-quality RNA
libraries as input. The key advantages of the NGS platforms
are their high accuracy, relative low cost, and high
throughput, which make them the most popular platforms
in both clinical and research settings currently. Therefore,
each platform offers its own advantages that provide
preference for certain applications (Table 4). In the near
future, with developments in sample preparation pro-
tocols, sequencing accuracy, and computational tools,
TGS long-read approaches alone or integrated with NGS
short-read approaches will expand low-cost diagnostic
sequencing to more loci at higher accuracies and pave the
way for novel clinical applications.
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