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Abstract: The present study is to explore the anticancer effect of loonamycin (LM) in vitro and
in vivo, and investigate the underlying mechanism with combined multi-omics. LM exhibited
anticancer activity in human triple negative breast cancer cells by promoting cell apoptosis. LM
administration inhibited the growth of MDA-MB-468 tumors in a murine xenograft model of breast
cancer. Mechanistic studies suggested that LM could inhibit the topoisomerase I in a dose-dependent
manner in vitro experiments. Combined with the transcriptomics and proteomic analysis, LM has
a significant effect on O-glycan, p53-related signal pathway and EGFR/PI3K/AKT/mTOR signal
pathway in enrichment of the KEGG pathway. The GSEA data also suggests that the TNBC cells
treated with LM may be regulated by p53, O-glycan and EGFR/PI3K/AKT/mTOR signaling pathway.
Taken together, our findings predicted that LM may target p53 and EGFR/PI3K/AKT/mTOR
signaling pathway, inhibiting topoisomerase to exhibit its anticancer effect.

Keywords: loonamycin; triple negative breast cancer; p53; PI3K/AKT/mTOR; O-glycan

1. Introduction

Triple negative breast cancer (TNBC) is a special subtype of breast cancer, accounting
for about 12.7% of breast cancer [1], which is characterized by negative estrogen receptor
(ER), progesterone receptor (PR) and human epidermal growth factor receptor-2 (HER2)
with high recurrence rate, strong invasiveness, and poor prognosis characteristics. Due to
the lack of corresponding targets and high heterogeneity, the treatment of TNBC is mainly
limited to chemotherapy [2]. It is valuable to develop novel chemotherapeutics that can
broadly target TNBCs to render this highly deadly disease subtype curable.

Marine natural products provide an important source of lead compounds for new
drug research and development because of their unique structure and diversity biological
activity. At present, more than 35,000 marine natural compounds have been discovered in
the world, most of which possess unique structures and present diverse biological activity.
Loonamycin (LM) is an indole carbazole compound rebeccamycin analog produced from
Nocardiopsis flavescens NA01583 isolated from marine sediment in Yongxing Island, South
China Sea [3] (Figure 1A). To the best of our knowledge, rebeccamycin is a cytotoxicity
compound that binds to topoisomerase I to inhibit the reconnection at the DNA strand
incision [4], leading to the break of DNA single strand and double strand. This compound
showed an impressive cytotoxicity in vitro but could not be further developed because
of poor water solubility. Some rebeccamycin analogues (e.g., becatecarin [5] and edote-
cacin [6]) have entered clinical research. LM has a rare sugar group and hydroxyl group
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compared with rebecamycin [3], which could increase its water solubility, and improve its
pharmaceutical potential.
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Figure 1. LM targets TNBC in vitro and in vivo. (A) The structure of LM; (B) the cell viability
experiment of LM on human TNBC cell line MDA-MB-468. The MDA-MB-468 cells were treated
with 0, 0.0625, 0.125, 0.25, 0.5, 1, 2,4 µM LM for 48 and 72 h, and the cell viability was detected by
the CCK8 assay; (C) effects of LM at 0.8 µM and 1.6 µM on MDA-MB-468 cell cycle arrest after 48 h
of incubation. Cells were stained with Annexin V and analyzed by flow cytometry. The vertical
bars represent the standard deviation of means (SD) (n = 3 experiments); * p < 0.05 and ** p < 0.01,
vs. negative control. The G1, G2 and S represent the phase of the cell cycle. (D) The inhibitory
effect of LM on topoisomerase I activity. The plasmid was treated with 5, 10, 20 µM LM and the
20 µM camptothecin (CPT) was used as positive control. (E) The quantification of electrophoretic
band. The Y axis is SC DNA/total DNA. (F) The images of tumors from each group. Tumor-bearing
mice were administered the vehicle (negative control), 15 mg/kg Paclitaxel (positive control), LM
(10 or 20 mg/kg per day). (G) The average tumor weight in each group. Data are presented as the
mean ± S.D. n = 4, * p < 0.05 and ** p < 0.01, vs. negative control. (H) The average tumor volume in
each group recorded during the treatments. Data are presented as the mean ± S.D., n = 4, * p < 0.05
and ** p < 0.01, vs. negative control. (I) The average body weight in each group. (J) The HE staining
on stripped tumor tissue.
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Our previous studies showed that LM had strong cytotoxic activities against various
tumor cell lines, especially to the human TNBC cell line MDA-MB-468. In this article, we
used RNA-seq and TMT quantitative proteomics technology to uncover the mechanism of
LM in TNBC cells.

2. Results
2.1. LM Targets TNBC In Vitro and In Vivo

First, LM was investigated for its inhibitory effects on several breast cancer cell lines
(Table 1). LM displayed a preferential anticancer activity against the cell lines with IC50
values of 0.517 µM, 0.197 µM and 0.372 µM in the MCF-7 cell line, MDA-MB-231 cell line
and MDA-MB-468 cell line. The IC50 of LM for LO2 was 1.022 µM. The LO2 was used as a
control cell line and the result suggested that LM was less toxic to LO2 than the cancer cell
line. Then, we further investigated the inhibitory effects of LM on TNBC MDA-MB-468 cells.
As exhibited in Figure 1B, LM displayed a good anticancer activity against MDA-MB-468 in
a dose-dependent manner with IC50 values of 0.372 µM and 0.235 µM after 48 h and 72 h.

Table 1. IC50 value of LM on multiple tumor cell lines in 48 h.

Cells IC50 (µM) Cells IC50 (µM)

L-02 1.022 ± 0.084 L-02 1.02 ± 0.084
MDA-MB-468 0.372 ± 0.201 PANC-1 0.591 ± 0.091
MDA-MB-231 0.197 ± 0.043 SMMC-7721 0.623 ± 0.044

A549 0.578 ± 0.096 HeLa 0.609 ± 0.037
SH-SY5Y 0.629 ± 0.028 NCI-H446 0.664 ± 0.062

PC-3 0.689 ± 0.102 U251 0.935 ± 0.205
MCF-7 0.517 ± 0.146 SW1990 1.30 ± 0.022

Second, we examined the effect of LM on cell cycle in MDA-MB-468 cells. In MDA-
MB-468 cells, after 48 h of incubation, LM induced cell cycle arrest in the G2 phase in a
dose-dependent manner (Figure 1C). At 1.6 µM LM, the value of G1-phase declined to
24.46%, while G2-phase increased to 48.90%. The values of the S phase showed a slight
change. Growing lines of evidence indicate that eukaryotic topoisomerase activity is
monitored and regulated throughout the cell cycle [7]. As rebeccamycin is a cytotoxicity
compound which is bound to the topoisomerase I, we detected the inhibitory effect of
LM on topoisomerase I activity (Figure 1D,E). Topoisomerase I (Topo I) relaxes the super
helix structure of DNA by cutting its single strands [8]. The normal plasmid DNA is a
closed double stranded DNA. In the process of electrophoresis, the plasmid may have
three configurations: the superhelical DNA (SC DNA), the open circular DNA (OC DNA)
and the linear DNA (L DNA). The SC DNA is at the front of gel, OC DNA is at the back,
and L DNA is between SC DNA and OC DNA. After the cleavage of topoisomerase I, the
structure of SC DNA will be destroyed. The experiment showed that LM could inhibit
topoisomerase I activity in a dose-dependent manner.

Next, the effects of LM on the growth and formation of subcutaneous xenograft
nodes derived from the inoculated MDA-MB-468 cells in vivo in BALB/c nude mice were
investigated. Both the volumes and weights of the formed MDA-MB-468 cells tumor nodes
were reduced by LM administration every 2 days for a total of 17 days at a concentration
of 10 mg/kg or 20 mg/kg LM by i.v., compared to 15 mg/kg for paclitaxel as a positive
control [9] by i.p. and 2% DMSO as vehicle by i.v. The low-dose group was of no statistical
significance compared with the negative control group. The volumes and weights of
tumors in high-dose group reduced significantly (Figure 1F–I). The frozen section and HE
staining on the stripped tumor tissue was performed, and obvious tumor-like tissues were
observed under the microscope, such as large cell volume, big nucleus and deformity loose
arrangement of tumor cells (Figure 1J). There were no detectable toxic or necrotic effects on
the heart, liver, spleen, lung or kidney tissues after LM treatment and no significant weight
loss. Taken together, these data suggest that LM exhibits good therapeutic activity.
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2.2. Functional Annotation Enrichment of LM-Regulated Genes

To uncover the LM regulatory mechanism in TNBC MDA-MB-468 cells, we performed
RNA-seq analysis to profile the transcriptomes of MDA-MB-468 cells when treated with
1.6 µM LM. Differentially abundant genes (DAGs) were those meeting the qualified data
(fold change ≥ 1.2 and p < 0.05) under comparison of LM vs. the control group. A total
of 1764 DAGs were shown in the volcano map, of which 737 genes were upregulated and
1027 genes were down-regulated (Figure 2A). GO (Gene ontology) is a comprehensive
database that describes gene functions. GO enrichment analysis basing on the DAGs in-
cluding up-regulated genes and down-regulated genes, were mapped the differential genes
to the entries in the three aspects of cell components (CC), molecular functions (MF), and
biological processes (BP) (Figure 2B). Through GO enrichment analysis, we can roughly
understand which biological functions, signal pathways, or cell locations are enriched
of the DAGs. In terms of the CC, the up-regulated genes were mainly enriched in the
extracellular matrix, anchored component of membrane, collagen trimer and MHC protein
complex. The down-regulated genes were mainly enriched in postsynapse, synaptic mem-
brane, receptor complex, ion channel complex. In terms of the MF, the up-regulated genes
were mainly enriched in the receptor ligand activity, receptor regulator activity, cytokine
receptor binding, extracellular matrix structural constituent. The down-regulated genes
were mainly enriched in actin binding, ion gated channel activity, Ras GTPase binding,
passive transmembrane transporter activity. In terms of the BP, the up-regulated genes
were mainly enriched in the regulation of signaling receptor activity, regulation of en-
dothelial cell proliferation, endothelial cell proliferation, positive regulation of locomotion
and wound healing. The down-regulated genes were mainly enriched in trans-synaptic
signaling, chemical synaptic transmission, anterograde trans-synaptic signaling, regulation
of membrane potential and neurotransmitter levels.

KEGG (Kyoto Encyclopedia of Genes and Genomes) is a comprehensive database
integrating genome, chemistry and system function information. It stores information on
gene pathways of different species. KEGG pathway enrichment analysis was conducted
to describe the significant changes in signal pathways of DAGs (Figure 2C). The results
showed that the up-regulated differential genes were mainly centered on the pathways in
cancer, hippo signaling pathway, p53 signaling pathway, etc. The down-regulated proteins
were mainly concentrated on the glucagon signaling pathway, calcium signaling path-
way, phosphatidylinositol signaling system, propanoate metabolism, inositol phosphate
metabolism, pyruvate metabolism, other types of O-glycan biosynthesis and so on.

GSEA enrichment analysis was conducted to explore the changes of gene expression
in the pathway and find the upstream factors leading to these changes(Figure 2D). In our
studies, the curated gene sets as the exploration set showed that p53 and downstream
signal pathway were up-regulated, and O-glycan and PI3K-AKT-mTOR signaling pathway
were down-regulated in LM treatment group.

2.3. Proteomic Expression Profiling of LM-Treated TNBC Cells

To further elucidate cellular mechanism and molecular function, we performed TMT
quantitative proteomics analysis to assess the protein expression profiles in MDA-MB-
468 cells treated with 1.6 µM LM. Differentially abundant proteins (DAPs) were those
meeting the qualified data (fold change ≥ 1.2 and p < 0.05) under comparison of LM
vs. control group. A total of 1314 DAPs were shown in the volcano map, of which
778 proteins were upregulated and 536 proteins were down-regulated (Figure 3A). Wolf
PSORT software was used for localization analysis of differential proteins, which show
that the DAPs were mainly distributed in cytoplasm, nucleus, mitochondria, and plasma
membrane (Figure 3B). In total, 119 GO terms were obtained based on the DAPs including
up-regulated proteins and down-regulated proteins (Figure 3C). GO enrichment analy-
sis showed that in terms of the cell components (CC), the up-regulated proteins were
mainly enriched in the cytosol (GO:0005829), ficolin-1-rich granule lumen (GO:1904813)
and nucleus (GO:0005634). The down-regulated proteins were mainly enriched in the mito-
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chondrial matrix (GO:0005759), integral component of plasma membrane, (GO:0005887)
and nBAF complex (GO:0071565). In terms of biological process (BP), the up-regulated
proteins were mainly enriched in the processes related to gluconeogenesis (GO:0006094),
negative regulation of ryanodine-sensitive calcium-release channel activity (GO:0060315)
and proteasomal ubiquitin-independent protein catabolic process (GO:0010499). The down-
regulated proteins were mainly enriched in the processes related to isoleucine catabolic
process (GO:0006550), O-glycan processing (GO:0016266) and leucine catabolic process
(GO:0006552). In terms of molecular function (MF), the up-regulated proteins were mainly
enriched in S100 protein binding (GO:0044548), RAGE receptor binding (GO:0050786) and
threonine-type endopeptidase activity (GO:0004298). The down-regulated proteins were
mainly enriched in polypeptide N-acetylgalactosaminyl transferase activity (GO:0004653),
biotin binding (GO:0009374) and signaling receptor activity (GO:0038023).

KEGG pathway enrichment analysis was conducted to describe the significant changes
in pathways of DAPs (Figure 3D). The results showed that the DAPs including up-regulated
proteins and down-regulated proteins were classified into 34 terms. The up-regulated differ-
ential proteins were mainly centered on the changes of metabolic pathway, like amino acid
biosynthesis, glucose metabolism, nucleotide metabolism, glutathione metabolism, and p53
pathway, etc. The down-regulated proteins were mainly concentrated on the pathway of
amino acid degradation, mTOR signaling pathway, PI3K-Akt signaling pathway, O-glycan
biosynthesis, etc. Among these DAPs, the expressions of classical tumor related signaling
pathway p53 were up-regulated and the EGFR/mTOR pathway were down-regulated.

GSEA enrichment analysis was conducted to explore the changes of gene expression
in the pathway and find the upstream factors leading to these changes (Figure 3E). In our
studies, the curated gene sets as the exploration set showed that p53 and downstream signal
pathway were up-regulated, and the EGFR and mTOR related pathway, and O-glycan were
down-regulated in LM treatment group.

2.4. Validation of Transcriptomic and Proteomic Results

According to the combined analysis of RNA-seq and TMT-based quantitative pro-
teomic, it is suggested that LM may have a significant effect on O-glycan, p53-related signal
pathway and EGFR/PI3K/AKT/mTOR signal pathway in enrichment of the KEGG path-
way. The GSEA data also suggests that the TNBC cells treated with LM may be regulated
by p53 and EGFR/PI3K/AKT/mTOR signaling pathway.

The Cys124 located in the loop1/sheet3 (L1/S3) pocket of the p53 protein plays a key
role in maintaining p53 stable conformation (Figure 4A). The covalently binding model
between LM and p53 (L1/S3) was investigated by molecular docking. The binding energy
was −26.8 kJ/mol. The main combination modes were the hydrogen bonds, as shown in
Figure 4D. The ether bond of LM formed hydrogen bond with Thr102 of p53. The methoxy
group on the rare sugar group of LM formed hydrogen bond with Phe113 of p53. The
hydroxyl group of LM formed one hydrogen bond with Leu114, His115, Cys124 and His
233 separately. The hydroxyl and ether group of LM formed three hydrogen bonds with
Thr123. The above results suggested that LM can target the pockets of wild-type p53 l1/s3,
improving the stability of p53 and activating p53 related pathways.

To verify the combined analysis of transcriptomic and proteomic results, the western
blot of key proteins was performed. It is determined that expression of p53 was increased
after treated with LM for 48 h on MDA-MB-468 (Figure 4B,C), but there was no statis-
tical significance. The expressions of EGFR, PI3K, mTOR and BCL-2 were significantly
down-regulated (Figure 4B,D). The expression of p-p53 was significantly up-regulated
(Figure 4B,C), and the expression of p-EGFR, p-PI3K and p-mTOR were significantly down-
regulated (Figure 4B,D). It was shown that LM could activate p53 and inhibit the expression
of EGFR, PI3K, mTOR and BCL-2.
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Figure 2. Functional analysis of differential genes. (A) Scatter plots of differentially expressed genes.
There were 737 up-regulated genes and 1027 down-regulated genes in the LM group. Abscissa is
the difference multiple (logarithmic transformation based on 2); (B) The gene ontology annotation
analysis between DAGs and classification of BP, MF, and CC; (C) The KEGG pathway analysis of
related DAGs; (D) The GSEA results of differentially abundant genes.
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Figure 3. Functional analysis of differential proteins. (A) Scatter plots of differentially expressed
proteins. There were 778 up-regulated proteins and 536 down-regulated proteins in the LM group.
Abscissa is the difference multiple (logarithmic transformation based on 2); (B) localization analysis
of differentially expressed proteins; (C) the gene ontology annotation analysis between DAPs and
classification of BP, MF, and CC; (D) the KEGG pathway analysis of related DAPs; (E) the GSEA
results of differentially abundant proteins.
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Figure 4. Validation of key proteins based on combined transcriptomic and proteomic results. (A) The
docking picture of LM and p53 (L1/S3). (B) Western blot of key differentially abundant proteins. The
MDA-MB-468 cells were treated with LM by 0, 0.8 and 1.6 µM. (C,D) Fold change in protein levels
(LM treatment group/control group) from Western blot analysis. Significance: * p < 0.05, ** p < 0.01,
*** p < 0.001 versus the control, p value based on t-test.

3. Discussion

In this study, we evaluated the anticancer activity of LM, an indole carbazole rebec-
camycin analog from Nocardiopsis flavescens NA01583. Our data showed that LM could
inhibit tumor cell growth both in vitro and in vivo. The inhibitory effect of LM in cancer
cells demonstrated that it could inhibit the topoisomerase I in a dose-dependent manner
in vitro experiments like other rebeccamycin analogs [10]. Topo I cut one strand of DNA
to form single-strand breaks, allowing supercoiled DNA to relax, otherwise it can hinder
DNA replication and transcription, and thus block cell growth [11–13]. For rapid cell
division, cancer cells need high Topo I activity to finish the DNA metabolic processes.
Topoisomerase I inhibitors can block the reconnection of DNA strands, lead to the accu-
mulation of Topo I-breaking complexes, inhibit replication and transcription, and cause
DNA damage, thus activating DNA damage checkpoints and inhibiting the progress of
cell cycle [14]. Topoisomerase were recognized as promising targets in cancer, and various
DNA Topos inhibitors have been on the market [15]. Some rebeccamycin analogues like
becatecarin and edotecacin have entered clinical research. Becatecarin intercalates into
DNA and inhibits the catalytic activity of topoisomerases I/II [16]. Edotecarin is a potent
inhibitor of topoisomerase I and also has an effect on protein kinase C [17].
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Next, the RNA-Seq and TMT were conducted to investigate the changes in transcrip-
tomic and proteomic profile of MDA-MB-468 cells treated with LM (LM). The combined
transcriptome and proteome analyses revealed that LM may activate p53 and inhibit the
O-glycans, inhibiting EGFR/PI3K/mTOR signaling pathway to exhibit its cytotoxicity
activity. The tumor suppressor p53 functions mainly as a transcription factor. A mutation
of the TP53 gene that encodes p53 protein is the main way of inactivating p53. p53 is a key
tumor suppressor in the process of preventing tumorigenesis. The dysfunction of p53 often
leads to cancer. When cells suffer from DNA damage, excessive proliferation, hypoxia, lack
of nutrition, telomere loss, or in the environment of oxidative stress, lack of nucleotides or
replication pressure, p53 will be activated to induce cell cycle arrest, apoptosis, aging or
autophagy, preventing cells from growing and dividing and killing cells before they become
cancerous [18]. p53 removes cells with high mutation risk in this way, inhibiting tumor
formation. In normal cells, p53 remains at a low level and dormant state under non-stress
conditions to prevent its adverse effects on cell growth. Its low expression is mainly by
its interaction with ubiquitin E3 ligase MDM2 [19]. A stress response can prevent MDM2
mediated p53 degradation by various mechanisms, promoting the stability and activation
of p53. About 50% of cancers still express wild-type p53, but these p53 proteins usually
lose its function, because of the over activation of MDM2 and MDMX. The stability and
transcriptional activity of p53 depend on its phosphorylation [20]. According to research,
the phosphorylation of p53 protein Ser15, Ser20, Ser33 and Ser37 could enhance its binding
to P300, thereby activating the transcriptional activity of p53.The phosphorylation of Thr18
can not only enhance p53-p300 binding, but also interfere with p53-MDM2 binding [21].
Reactivating p53 and restoring its function is a feasible and promising tumor treatment
strategy. Moreover, p53 is the most common mutant gene in human cancer, of which p53
mutations are found in more than 50% of tumors. For example, approximately 80% of
TNBCs express an inactive, mutant form of the p53 tumor suppressor protein (mtp53),
resulting in rapid tumor growth and metastasis [22]. Many mutations occur in the DNA
binding domain of p53 gene and the altered mutant p53 protein (mtp53) is subsequently not
degraded, in which high levels of mtp53 protein accumulate within the cell, leading to the
development of tumors. Therefore, converting the mtp53 protein back into its functional
wild-type conformation is also a promising means to prevent or reverse tumor development.
Restoring the function of wild-type p53 and developing drug candidates for mutant p53
to restore the normal function of p53 can activate p53 to inhibit tumor. At present, many
anti-cancer drugs targeting p53 have been developed. For example, the arsenic trioxide,
which is used for acute primary myeloid leukemia, can restore the transcriptional activity
of p53 mutants by arsenic ions binding to three cysteine residues in the DNA-binding
domain [23]. HDAC6 (Histone deacetylase 6) can promote the combination of HSP90 (heat
shock protein 90) and mutant p53 protein by catalyzing HSP90 deacetylation and thus
make mutant p53 molecule more stable. So, some HDAC6 inhibitors (e.g., statin) or HSP90
inhibitors (e.g., Ganetespib) have been found to induce mutant p53 degradation [24,25].
Small molecule compounds like RG7112 and some nucleic acid drugs can activate p53 by
promoting the expression of TP53 gene or inhibiting the expression of MDM2 [26–28].

In 2002, PRIMA-1 was discovered as a mutant p53 reactivator based on the tumor
cells screening of the mutated p53 [29]. The specific mechanism was not studied that
it directly bound to the Cys124 of mutant p53 protein until 2009 [30]. Cys124 locating
in loop1/sheet3 (L1/S3) pocket of p53 protein, plays a key role in maintaining stable
conformation. Loop1 can directly interact with helix2 in the p53 DNA binding domain,
suggesting that the stability of p53 can be improved by small molecules compounds to
stabilize loop1. The compounds targeting wild-type p53 L1/S3 pockets could improve
the stability of p53. L1/S3 pocket was a target for pharmaceutical reactivation of p53
mutants [31]. We constructed the computer virtual screening system with wild-type p53
as the target. In the computer docking experiment, LM could bind with L1/S3 pockets of
p53 protein well, forming one hydrogen bond with Cys124. Subsequent WB experiments
showed that LM could activate p53 signal pathway. Although, the molecular docking
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did not provide direct proof that LM interacts with p53, but explored a potential route to
influence the p53 pathways.

The epidermal growth factor receptor (EGFR) is a receptor tyrosine kinase that belongs
to the ErbB family and is involved in angiogenesis, cell proliferation, metastases as well
as inhibition of apoptosis. It was demonstrated that EGFR is overexpressed in TNBC
cells [32]. Its expression was an independent poor prognostic factor associated with worse
DFS and OS [33,34]. In light of the high expression level of EGFR and its strong effect
on cell proliferation and motility, EGFR has been considered as an attractive therapeutic
target for TNBC [35]. EGFR is on the upstream of PI3K and activates PI3K/AKT/mTOR
pathway. The PI3K/AKT/mTOR pathway is associated with cell metabolism, proliferation,
differentiation, and survival. PI3Ks are heterodimers composed of regulatory (p85) and
catalytic (p110) subunits and exist in four isoforms (α, β, δ, and γ) [36]. The signaling
pathway is activated by stimulation of receptor tyrosine kinases, which in turn trigger PI3K
activation, followed by phosphorylation of AKT and mTOR complex 1 (mTORC1). It is
speculated that on one hand, LM could restore the function of wild-type p53 to activate
p53, on the other hand, LM may inhibit the classical EGFR/PI3K/AKT/mTOR pathway to
inhibit the growth of the cells; the specific mechanism needs to be further explored.

Glycosylation is one of the most important post-translational modifications of the pro-
tein, including N-glycosylation and O-glycosylation. O-linked glycosylation is considered
more complicated than N-linked for its unknown initiation [37]. O-glycosylation added
single monosaccharides one by one through enzymatic reaction. The linking monosaccha-
ride GalNAc is added directly to Ser/Thr/Tyr residues in glycoproteins within the Golgi
apparatus from the nucleotide sugar donor uridine diphospho-GalNAc (UDP-GalNAc).
This linking sugar is commonly modified in all cells by the addition of galactose (Gal)
from the donor UDP-Gal to create the disaccharide Galβ1-3GalNAcα1-O-Ser/Thr, known
as core 1. Such O-glycans can be further modified and extended within the Golgi appa-
ratus to generate an incredible diversity of many tens of thousands of different glycan
structures. Meanwhile, the changes in the core structure of several types of O-glycans
are related to multiple cancers, which abnormal O-linked glycosylation has been widely
proved to act biological functions to directly result in cancer growth and progression. The
T antigen and sialyl-Tn antigen (STn), tumor-associated carbohydrate antigens (TACAs),
are truncated O-glycans commonly expressed by carcinomas on multiple glycoproteins
which serve as potential biomarkers for tumor presence and stage both in immunohisto-
chemistry and in serum diagnostics [38]. CA199 and CA125 are used as circulating tumor
biomarkers. In 90% of breast cancers, altered O-glycosylation has been observed to have
a correlation with cancer progression, worse prognosis, and metastatic potential; like the
number of O-GalNAc glycans in glycoproteins changes, the core structure of O-GalNAc
glycosylation changes, and breast cancer cells with shorter O-glycans (abnormal glycosyl-
transferase activity, premature sialylation of polylactosamine chain blocking the addition
of more glycans or truncation of O-glycans at core 1 level). These abnormalities lead to the
expression of TACA, such as Tn antigen, St antigen and STn antigen [39]. The polypeptide-
N-acetylgalactosaminyl transferase (GT) is a key enzyme of O-linked glycosylation. In our
validation experiment, LM down-regulated the GalNAc-T2 with no statistical difference. It
is speculated that some other members of GTs should be validated in the future.

In general, the study showed that LM was a potential antitumor compound in vitro
and in vivo. LM may target p53 and EGFR/PI3K/AKT/mTOR signaling pathway, inhibit-
ing topoisomerase to exhibit its anticancer activity according to the combined transcriptome
and proteome analyses. Our study provided important information for the specific cytotox-
icity mechanism of LM and explanation of the anticancer activity of rebeccamycin analog.

4. Materials and Methods
4.1. Reagents

LM was isolated from Nocardiopsis flavescens NA01583 from marine sediment and
provided by research group of Prof. Ge Huiming, Nanjing University. It was dissolved
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in dimethyl sulphoxide and stored at −20 ◦C until use. The Cell Cycle Analysis Kit,
penicillin/streptomycin were acquired from Beyotime. The fetal bovine serum (FBS),
phosphate-buffered saline (PBS), Dulbecco’s modified Eagle medium (DMEM) and Lei-
bovitz’s L-15 medium (L-15) were obtained from Gibco (Thermo Fisher Scientific, Waltham,
MA, USA). The cell counting kit-8 (CCK8) was purchased from Dojindo Molecular Tech-
nology. Specific primary antibodies against β-actin, mTOR, P-mTOR, PI3K, P-PI3K, EGFR,
p-EGFR, AKT, P-AKT, BCL-2, p53, p-p53 were acquired from CST (Cell Signaling Tech-
nology, Danvers, MA, USA); 0.25% trypsin and 0.2% EDTA were purchased from Gibco
(Thermo Fisher Scientific, Waltham, MA, USA).

4.2. Cell Culture

TNBC cell line MDA-MB-468 (Cat.TCHu136) were cultured in 90% L-15 medium
supplemented with 10% fetal bovine serum and 100 mg/L streptomycin–100 U/mL peni-
cillin mixture. Cells were cultured at 37 ◦C in an incubator with controlled humidified
atmosphere. The cell dispersed liquid was prepared by 0.25% trypsin plus 0.2% EDTA for
subculturing and then spun down by centrifugation at 800 rpm for 5 min, after which the
supernatant was removed and precipitated cells was resuspended in culture medium.

4.3. Growth Curve Measured by CCK-8 Method

The MDA-MB-468 cells were seeded in 96-well E-plates with the density of 5000 cells/well.
After 24 h, the cells were treated with LM or 0.06% DMSO as control for 48 h or 72 h. LM
treatment concentrations were 0.0625 µM, 0.125 µM, 0.25 µM, 0.5 µM, 1 µM, 2 µM and 4 µM,
and each group was performed in triplicate; 10 µL CCK-8 reagent was added for 1 h after
treatment and the optical density value (OD450) was measured at the wavelength of 450 nm.
The IC50 of LM was calculated by the cell growth curves drawn with Prism-GraphPad.

4.4. Topoisomerase I-Mediated DNA Relaxation and Cleavage Assays

The different concentrations of LM (5 µM, 10 µM, 20 µM) and camptothecin (CPT,
20 M) were incubated with supercoiled pUC19 plasmid DNA in relaxation buffer (50 mM
Tris-HCl (pH7.5), 100 mM KCl, 0.5 mM EDTA and 30 pg/mL BSA) for 15 min at 37 ◦C
to ensure binding equilibrium. Then, the recombinant topoisomerase I enzyme (from
calf thymus, Beytime, China) was added for a further 30 min of incubation at 37 ◦C. The
mixture of sodium dodecyl sulfate (SDS) and protease K (the final concentration was 0.25%
and 250 g/mL, respectively) was added for a 30 min incubation at 50 ◦C to terminate the
reaction. To obtain single stranded DNA, samples were loaded onto a 1% agarose gel
lacking ethidium bromide at room temperature for 2 h at 120 V in TBE buffer. Gels were
stained after migration using Gelred and then washed and finally photographed under
UV light.

4.5. RNA-seq Analysis

Total RNA was extracted from cells using TRIzol® reagent, and genomic DNA was
removed using DNase I. RNA integrity was detected by Agilent 2100 BioAnalyzer. The
library was built by the NEB method. AMPure XP Beads were used to screen cDNA, con-
duct PCR amplification, and purify PCR products. NEBNext® Ultra™ RNA Library Prep
Kit for Illumina® was used for Library construction. The library was initially quantified
by Qubit2.0 Fluorometer and was diluted to 1.5 ng/uL. The insert size of the library was
detected using Agilent 2100 BioAnalyzer. qRT-PCR was used to quantify the effective con-
centration of the library to ensure the quality of the library. Then, the Illumina sequencing
was conducted. The basic principle is sequencing by synthesis.

The raw data was filtered by the removal of reads with adapter, the removal of reads
with N (N indicates that the base information cannot be determined), and the removal of
low-quality reads. At the same time, the Q20, Q30 and GC contents of clean data were
calculated. All subsequent analyses were based on clean data. Hisat2v2.0.5 was used to
compare clean reads of paired terminal with genomic species: human genes (GrCH38.p12).
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String Tie (1.3.3b) (Mihaela-Pertea et al., 2015) was used for new gene prediction. Feature
Counts (1.5.0-P3) were used to calculate recounts mapped to each gene. The FPKM of each
gene was calculated based on the length of the gene and the readout mapped to the gene
was calculated to obtain the expression value matrix.

Gene expression analysis of the different groups was performed by The DESeq2
software (V1.16.1) (n = 3). The p-value was adjusted using Benjamini and Hochberg’s
method. Genes with an adjusted p-value (FDR) < 0.05 were defined as differentially
expressed genes (DEGs). Gene Ontology analysis (GO) and KEGG pathway enrichment
analysis of DEGs were implemented by cluster Profiler (3.4.4). GSEA enrichment analysis
was performed using GSEA (V4.1.0).

4.6. TMT Labeling and LC-MS/MS Analysis

The MDA-MB-468 cells were treated with 1.6 µM LM or 0.06% DMSO control medium
for 48 h. SDT buffer was added to the sample. The lysate was sonicated and then boiled
for 15 min. After centrifuged at 14,000× g for 40 min, the supernatant was quantified
with the BCA Protein Assay Kit (P0012, Beyotime, Shanghai, China). The protein was
digested by Filter aided proteome preparation (FASP) method, and 100 µg peptide mixture
of each sample was labeled using TMT reagent according to the manufacturer’s instructions
(Thermo Fisher Scientific, USA). TMT labeled peptides were fractionated by RP chromatog-
raphy using the Agilent 1260 infinity II HPLC. The collected fractions were combined into
10 fractions and dried down via vacuum centrifugation at 45 ◦C.

Each fraction was injected for nano LC-MS/MS analysis. The peptide mixture was
loaded onto the C18-reversed phase analytical column (Thermo Fisher Scientific, Acclaim
PepMap RSLC 50 µm × 15 cm, nano viper, P/N164943) in buffer A (0.1% Formic acid) and
separated with a linear gradient of buffer B (80% acetonitrile and 0.1% Formic acid) at a
flow rate of 300 nL/min. The linear gradient was as follows: 6% buffer B for 3 min, 6–28%
buffer B for 42 min, 28–38% buffer B for 5 min, 38–100% buffer B for 5 min, hold in 100%
buffer B for 5 min.

LC-MS/MS analysis was performed on a Q Exactive HF mass spectrometer (Thermo
Fisher Scientific, Waltham, MA, USA) that was coupled to Easy nLC (Thermo Fisher
Scientific, Waltham, MA, USA) for 60 min. The mass spectrometer was operated in positive
ion mode. MS data was acquired using a data-dependent top 10 method dynamically
choosing the most abundant precursor ions from the survey scan (350–1800 m/z) for HCD
fragmentation. Survey scans were acquired at a resolution of 60,000 at m/z 200 with an
AGC target of 3 × 106 and a maxIT of 50 ms. MS2 scans were acquired at a resolution of
15,000 for HCD spectra at m/z 200 with an AGC target of 2 × 105 and a maxIT of 45 ms,
and the isolation width was 2 m/z. Only ions with a charge state between 2 and 6 and
a minimum intensity of 2 × 103 were selected for fragmentation. Dynamic exclusion for
selected ions was 30 s. Normalized collision energy was 30 eV.

MS/MS raw files were processed using MASCOT engine (Matrix Science, London,
UK; version 2.6) embedded into Proteome Discoverer 2.2. The protein database was
Uniprot_HomoSapiens_20367_20200226. The search parameters included trypsin as the
enzyme used to generate peptides with a maximum of 2 missed cleavages permitted.
A precursor mass tolerance of 10 ppm was specified and 0.05 Da tolerance for MS2 frag-
ments. Except for TMT labels, carbamidomethyl (C) was set as a fixed modification.
Variable modifications were Oxidation(M) and Acetyl (Protein N-term). A peptide and
protein false discovery rate of 1% was enforced using a reverse database search strategy.
Proteins with fold change > 1.2 and p value (Student’s t-test) < 0.05 were considered to be
differentially expressed proteins. Wolf PSORT software was used for localization analysis
of differential proteins. Gene Ontology analysis (GO) and KEGG pathway enrichment
analysis of DEGs were implemented by clusterProfiler (3.4.4). GSEA enrichment analysis
was performed using GSEA (V4.1.0).
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4.7. Molecular Docking

Molecular docking was performed using the Schrodinger software (Schrödinger, Inc.,
New York, NY, USA). The 3D structure of p53 were retrieved from the protein data
bank (PDB ID: 1TSR). In LM-p53 covalent docking, the protein p53 was prepared by
Protein Preparation Tool in Schrodinger including optimized hydrogen bond network at
pH 7.0 with PROKA tool. The ligand LM was prepared by Avogadro Tool to obtain the
structural optimization.

4.8. Western Blot Analysis

The MDA-MB-468 cells were treated with 1.6 µM LM or 0.06% DMSO control medium
for 48 h. Cells were harvested with trypsin/EDTA and then total proteins were extracted by
using RIPA lysis buffer (RIPA lysis buffer (Beyotime, Shanghai, China)), 100 µg/mL PMSF
(Beyotime, Shanghai, China), and 1 × protease inhibitor (Sigma, St. Louis, MO, USA). The
protein was quantified by BCA methods according to the instructions (Beyotime, Shanghai,
China). The proteins extracted from cells were separated by SDS-PAGE electrophoresis
and transferred to nitrocellulose membrane. The membrane was incubated with primary
antibodies and anti-rabbit IgG (HRP-linked). The bands were detected by ECL Western
blot system (Kodak, Rochester, NY, USA). Western blotting bands from three independent
measurements were quantified with ImageJ.

4.9. Xenograft Model

Twenty-five female BALB/c nude mice aged 6–8 weeks were kept at constant tem-
perature and humidity. The body weight was 20–24 g. Animals were supplied by Labo-
ratory Animal Business Department of Shanghai Family Planning (certificate of quality:
20210715Abzz0619000729). Each mouse was inoculated subcutaneously at the right flank
with MDA-MB-468 tumor cells (1 × 107) in 0.2 mL of PBS with Matrigel (1:1) for tumor
development. Treatments were started on day 27 after tumor inoculation when the average
tumor size reached 160 mm3. The animals were assigned into groups randomly based
upon tumor volumes. Each group consisted of 4 tumor-bearing mice. The vehicle was
2%DMSO + 15% Solutol + 83%Saline. The mice in control group were injected 2.5 mL/kg
vehicle by i.v. The mice in the positive control group were injected 15 mL/kg Paclitaxel by
i.p. The mice in the low-dose group were injected 10 mL/kg LM by i.v. The mice in the high
dose group were injected 20 mL/kg LM by i.v. The animals were checked daily for any
effects of tumor growth and treatments on normal behavior, and body weights were mea-
sured every 3 days. Tumor size was measured every 3 days by a caliper using the formula:
V = 0.5a × b2 where a and b are the long and short diameters of the tumor, respectively.

4.10. Statistical Analysis

One-way ANOVA analysis was used for comparison between groups, and Student’s
t-test was used for pair-wise comparison within groups. All statistical analyses were
processed with GraphPad Prism 7.0 software (GraphPad Software, San Diego, CA, USA).
p < 0.05 was considered statistically significant.
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