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Abstract
Background: In this study, we aimed to screen methylation signatures associated with 
the prognosis of patients with clear cell renal cell carcinoma (ccRCC).
Methods: Gene expression and methylation profiles of ccRCC patients were down-
loaded from publicly available databases, and differentially expressed genes (DEGs)-
differentially methylated genes (DMGs) were obtained. Subsequently, gene set 
enrichment and transcription factor (TF) regulatory network analyses were per-
formed. In addition, a prognostic model was constructed and the relationship be-
tween disease progression and immunity was analyzed.
Results: A total of 23 common DEGs-DMGs were analyzed, among which 14 DEGs-
DMGs were obtained with a cutoff value of PCC < 0 and p < 0.05. The enrichment 
analysis showed that the 14 DEGs-DMGs were enriched in three GO terms and three 
KEGG pathways. In addition, a total of six TFs were shown to be associated with the 
14 DEGs-DMGs, including RP58, SOX9, NF-κB65, ATF6, OCT, and IK2. A prognos-
tic model using five optimized DEGs-DMGs which efficiently predicted survival was 
constructed and validated using the GSE10​5288 dataset. Additionally, four types of 
immune cells (NK cells, macrophages, neutrophils, and cancer-associated fibroblasts), 
as well as ESTIMATE, immune, and stromal scores were found to be significantly cor-
related with ccRCC progression (normal, primary, and metastasis) in addition to the 
five optimized DEGs-DMGs.
Conclusion: A five-gene methylation signature with the predictive ability for ccRCC 
prognosis was investigated in this study, consisting of CCNB2, CDKN1C, CTSH, E2F2, 
and ERMP1. In addition, potential targets for methylation-mediated immunotherapy 
were highlighted.
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1  |  INTRODUC TION

Renal cell carcinoma (RCC) is a malignant tumor of the urinary sys-
tem, with an annual incidence rate accounting for 2–3% of all ma-
lignant tumors.1 The incidence rate in males is higher than that in 
females, with the ratio of males to females being approximately 2:1.2 
Clear cell RCC (ccRCC) is the most common histological subtype of 
RCC, accounting for more than 70% of all RCC cases. Moreover, its 
patho-physiological behavior is extremely complex.3 Approximately 
25% of ccRCC patients are first diagnosed in advanced stages and 
approximately 33% of ccRCC patients show recurrence or metas-
tasis after surgery.4 Thus, there is an urgent need to develop more 
effective therapeutic strategies against ccRCC.

Methylation is a first-line biochemical process playing an import-
ant role in the transmission of life and essentially involved in DNA 
and histone modification.5 Numerous studies have shown that dys-
regulation of methylation processes (histones and DNA) can result 
in cancer development. For instance, Botezatu et al.6 have reported 
that changes in DNA methylation can lead to the activation of typi-
cally silent genes or silencing of generally active genes. Koch et al.7 
have also suggested that cancer-related changes in DNA methyla-
tion are promising targets for the development of powerful diagnos-
tic, prognostic, and predictive biomarkers. Moreover, McCabe et al.8 

have validated numerous potential therapeutic targets for cancer, 
including many that affect histone methylation. As compared to 
DNA mutations, gene methylation changes are often events that 
happen early in the process of cellular carcinogenesis. Thus, they 
can be used as important risk factors for tumor occurrence and as 
molecular marker for early diagnosis.9 As such, screening of high-
risk groups via methylation detection could improve the accuracy of 
early diagnoses and provide valuable therapeutic intervention time 
for patients with tumors10,11. However, few studies have reported 
methylation signatures that are associated with the prognosis of pa-
tients with different stages of ccRCC progression.

In this study, gene expression and methylation profiles were 
downloaded from Gene Expression Omnibus (GEO) and The Cancer 
Genome Atlas (TCGA) databases. Differentially expressed genes 
(DEGs) and differentially methylated genes (DMGs) were obtained 
between primary vs. normal, metastasis vs. normal, and metastasis 
vs. primary ccRCC samples. Additionally, a prognostic model was 
constructed and the relationship between disease progression and 
immunity was analyzed. Consequently, our study highlights the 
potential implication of novel methylation-related biomarkers for 
ccRCC progression offering a theoretical basis for efficacious drug 
development for the same. The systematic workflow of this study is 
illustrated in Figure 1.

F I G U R E  1 The schematic workflow of the study
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2  |  MATERIAL S AND METHODS

2.1  |  Data acquisition and preprocessing

The GSE10​5288 dataset12 was downloaded from the GEO database,13 
which included two sub-datasets, namely GSE10​5260 (methylation 
profiling, 44  samples) and GSE10​5261 (gene expression profiling, 
44  samples), obtained using the Illumina HumanMethylation450 
BeadChip and Illumina HumanHT-12 V4.0 expression beadchip de-
tection platforms, respectively. Preprocessed data with methylated 
beta detection values and standardized gene expression levels were 
downloaded, and the methylation and gene expression profile of the 
probe corresponding to the gene information were obtained accord-
ing to the annotation information for each detection platform.

The data of ccRCC patients with methylated beta detection val-
ues and level 3 normalized data of log(FPKM+1,2) expression level 
based on the Illumina Infinium Human Methylation 450 BeadChip 
and Illumina HiSeq 2000 RNA Sequencing detection platforms, re-
spectively, were downloaded from TCGA. A total of 333  samples 
with information regarding methylation and expression levels were 
obtained, among which 306 samples that had survival prognostic in-
formation were used in this study.

2.2  |  Identification of DEGs-DMGs

Based on the GSE10​5261 and GSE10​5260 datasets, the DEGs and 
DMGs were screened between primary vs. normal, metastasis 
vs. normal, metastasis vs. primary using limma package14 with the 
threshold of FDR <0.05, |log2FC| >0.263. The overlapping DEGs and 
DMGs were then obtained, and a heatmap was constructed using 
the “pheatmap” package15 in R software. The overlapping DEGs 
were intersected with overlapping DMGs, and the overlapping co-
expressed genes were considered to be the common DEGs-DMGs. 
The Pearson correlation coefficient (PCC) and Spearman's coef-
ficient (Rho) of methylation and expression levels of the common 
DEGs-DMGs were calculated using the cor.test function in R soft-
ware. The DEGs-DMGs with cutoff values of PCC <0 and p < 0.05 
were used for further analysis. In addition, the DAVID tool16 was 
used to perform gene set enrichment analysis with a cutoff value 
of p < 0.05.

2.3  |  Gene expression trends based on the Mfuzz 
clustering algorithm

Based on the expression level of DEGs-DMGs with cutoff values of 
PCC  <  0 and p  <  0.05, the “Mfuzz” package17 in R software was 
used to conduct the change trend analysis of expression patterns for 
these DEGs-DMGs and the expression trend module gene cluster-
ing was obtained. Here, special attention was paid to related genes 
whose expression levels continued to increase or decrease along 
with the progression (normal, primary, and metastasis) of ccRCC.

2.4  |  Construction of the transcription factor (TF) 
regulatory network

Based on the expression level of the DEGs-DMGs with a cutoff value 
of PCC < 0 and p < 0.05, the DAVID tool was then used to screen 
TFs significantly associated with DEGs-DMGs. Subsequently, the 
interactions between TFs and DEGs-DMGs were obtained and the 
TF-DEGs-DMGs regulatory network was built using Cytoscape.18

2.5  |  Construction of a prognostic model

The data retrieved from TCGA were used to construct a prognostic 
model. The 306 ccRCC tumor samples from the database were ran-
domly divided into two groups, including the training and validation 
datasets. Based on the methylation and expression level of the DEGs-
DMGs with a cutoff value of PCC < 0 and p < 0.05, the “survival” R 
package19 was used to conduct a univariate Cox regression analysis 
on the training dataset to screen DEGs-DMGs significantly associ-
ated with survival prognosis at both methylation and expression 
levels. p < 0.05 was the criteria for determining prognosis-related 
DEGs-DMGs. The LASSO regression20 from the “lars” R package 
was used to conduct the survival regression analysis to screen the 
optimized DEGs-DMGs based on the gene methylation levels in the 
training dataset samples. Moreover, the optimized DEGs-DMGs 
were verified in the GSE10​5288 dataset, which included 9 normal, 
9 primary, and 26 metastasis samples. Subsequently, a prognostic 
score (PS) model was established. The formula PS =  ∑Coefgenes  × 
Methylationgenes (where Coefgenes represents the LASSO progno-
sis coefficient of genes and Methylationgenes represents the gene 
methylation levels in the training dataset) was used to derive the risk 
score. The PS was then calculated for the training dataset, validation 
dataset, and whole groups. The samples were later divided into the 
low- and high-PS groups using the median PS value. Subsequently, 
the Kaplan-Meier curve method in the “survival” package was used 
to compare differences in survival between the low-  and high-PS 
groups. To further understand the correlation between the methyla-
tion and expression levels of the optimized DEGs-DMGs screened 
and survival prognosis, the Kaplan-Meier curve analyses were also 
performed on the whole dataset. Based on the clinical information 
of the samples in TCGA dataset, the aov function was used to con-
duct variance analysis to compare the differences in the distribution 
of methylation levels of optimized DEGs-DMGs in different clinical 
groups.

2.6  |  Analysis of disease progression and immunity

Based on the genome-wide expression levels obtained in the 
GSE10​5261 dataset, the “MCPcounter”21 R package was utilized 
to evaluate the level of immune cell infiltration, including eight 
immune cell types [CD3+ T cells, CD8+ T cells, cytotoxic lympho-
cytes, NK cells, B lymphocytes, cells originating from monocytes 

http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE105288
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE105260
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE105261
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE105261
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE105260
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE105288
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE105261
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(monocytic lineage), myeloid dendritic cells, and neutrophils], and 
two stromal cell types (endothelial cells and fibroblasts). The aov 
function was used to conduct variance analysis to compare the dif-
ferences between the proportions of different immune cells in the 
progression groups (normal, primary, and metastatic). In addition, 
the “estimate” R package22 was used to calculate the ESTIMATE, 
immune, and stromal scores. The aov function was also used to 
conduct variance analysis to compare the differences between the 
distribution of the three scores in the progression groups (normal, 
primary, and metastatic). Subsequently, the correlation between 
DEGs-DMG methylation levels and the proportion of various im-
mune cells along with the three scores were calculated.

2.7  |  Statistics analysis

The DEGs and DMGs were screened with the threshold of 
FDR  <  0.05, |log2FC| >0.263, and the DEGs-DMGs were identi-
fied using the “limma” R package with cutoff values of PCC < 0 and 
p  <  0.05. Correlation analysis was performed using the Pearson 
and Spearman correlation test. A univariate Cox regression analy-
sis was conducted using the “survival” package. Survival regression 
analysis was carried out utilizing LASSO algorithm. Kaplan-Meier 
curves were used to evaluate survival time in patients with ccRCC. 
The aov function was used to conduct variance analysis to compare 
the differences in the distribution of methylation levels of optimized 
DEGs-DMGs in different clinical groups. p  <  0.05 was considered 
statistically significant.

3  |  RESULTS

3.1  |  Identification of DEGs-DMGs

As shown in Figure 2A, total of 862, 2431, and 1333 DEGs were 
screened between primary vs. normal, metastasis vs. normal, me-
tastasis vs. primary groups, respectively. Likewise, a total of 1460, 
2811, and 1044 DMGs were screened between primary vs. normal, 
metastasis vs. normal, metastasis vs. primary groups, respectively. 
Our analyses thus revealed a total of 350 and 367 overlapping 
DEGs and DMGs, respectively (Figure  2B and C); the heatmap is 
shown in Figure 2D and E. Subsequent intersections of overlapping 

DEGs with overlapping DMGs led to the identification of 23 com-
mon DEGs-DMGs (Figure 2F and Supplementary File S1). The over-
all correlation between the methylation and expression levels of the 
23 common DEGs-DMGs was analyzed, and the results showed that 
14 DEGs-DMGs were above the cutoff threshold of PCC < 0 and 
p < 0.05 (Figure 2G and Supplementary File S2). Further, gene set 
enrichment analysis showed that the 14 DEGs-DMG were enriched 
in three gene ontology (GO) terms and three Kyoto Encyclopedia of 
Genes and Genomes (KEGG) pathways (Table 1).

3.2  |  Identification of the DEGs-DMGs with the 
same expression pattern trends

The “Mfuzz” package in R software was used to conduct the change 
trend analysis of expression patterns for the DEGs-DMGs, and the 
expression trend module gene clustering was obtained. The results 
revealed that the 14 DEGs-DMGs could be clustered into two ex-
pression trends categories, with the expression of Cluster 1 being 
significantly downregulated, while the expression of Cluster 2 
continued to be significantly upregulated (Figure 3A). A total of 11 
DEGs-DMGs (CAPS, CDKN1C, CKMT1B, CTSH, ERMP1, ERP27, GGT6, 
GSTM3, KCNJ1, SCNN1A, and STK33) were found in Cluster 1, while 
Cluster 2 included three DEGs-DMGs (CCNB2, E2F2, and SLFN11).

3.3  |  Construction of the TF regulatory network 
associated with the 14 DEGs-DMGs

The 14 DEGs-DMGs were subjected to functional annotation using 
Database for Annotation, Visualization, and Integrated Discovery 
(DAVID) tools, and a total of six TFs were found to be associated 
with the 14 identified DEGs-DMGs, including RP58, SOX9, NF-κB65, 
ATF6, OCT, and IK2 (Table 2). Accordingly, a TF-DEGs-DMGs regula-
tory network was built using Cytoscape (Figure 3B).

3.4  |  Construction of a ccRCC prognostic model 
based on five-gene DEG-DMG signature

Based on the univariate Cox regression analysis, a total of seven 
DEGs and eight DMGs were found to be significantly associated 

TA B L E  1 Enrichment analysis of the 14 DEG-DMRs

Category Term Count p-Value Genes

Biology Process GO:0006749~glutathione metabolic process 2 1.43E−02 GSTM3, GGT6

GO:0006508 ~ proteolysis 3 2.56E−02 ERMP1, GGT6, CTSH

GO:0051726 ~ regulation of cell cycle 2 3.92E−02 CCNB2, E2F2

KEGG Pathway hsa04110:Cell cycle 3 8.41E−03 CDKN1C, CCNB2, E2F2

hsa04960:Aldosterone-regulated sodium 
reabsorption

2 2.44E−02 SCNN1A, KCNJ1

hsa00480:Glutathione metabolism 2 4.58E−02 GSTM3, GGT6
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with prognosis. Moreover, both the methylation and expression 
levels of seven genes were shown to be significantly associated 
with prognosis. Thus, these seven DEGs-DMGs were used for 
further analyses. Based on the seven DEGs-DMGs, five optimized 
DEGs-DMGs were obtained using the LASSO regression, including 
CCNB2, CDKN1C, CTSH, E2F2, and ERMP1 (Table 3). Moreover, the 
five optimized DEGs-DMGs were verified in GSE10​5288 dataset 
with the results showing that the gene expression levels of CCNB2 
and E2F2 were upregulated with tumor progression, whereas those 

of CDKN1C, CTSH, and ERMP1 were downregulated. Furthermore, 
the change trends of these DEGs-DMGs were consistent with the 
above results (Figure 3C). Subsequently, the five optimized DEGs-
DMGs were used to construct a prognostic model. Based on the 
calculated PS values, the samples were divided into low- or high-
PS groups based on the median PS value. In the training, valida-
tion, and entire datasets, patients in the low-PS group exhibited 
significantly longer OS than those in the high-PS group (Figure 4A, 
D, and G). The predictive ability of the five DEGs-DMGs-based 

F I G U R E  2 Identification of differentially expressed genes (DEGs)-differentially methylated genes (DMGs). (A) DEGs and DMGs screened 
between the primary vs. normal, metastasis vs. normal, and metastasis vs. primary groups, respectively. The overlapping DEGs (B) and DMGs 
(C) obtained between the primary vs. normal, metastasis vs. normal, and metastasis vs. primary groups. The heatmap of overlapping DEGs 
(D) and DMGs (E). (F) The common DEGs-DMGs screened from overlapping DEGs and DMGs. G: Scatter plot of the correlation between the 
expression level of 23 common DEGs-DMGs and the overall methylation level. The red line represents the correlation trend line

http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE105288
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prognostic model was evaluated subsequently by calculating the 
area under the curve (AUC) value of the receiver operating char-
acteristic (ROC) curve. The AUC values for the 1-, 3-, and 5-year 
survival curves in the training, validation, and entire datasets are 
shown in Figure 4B, E, and H, respectively. The distribution of PS 

and survival status for the samples was displayed for the training, 
validation, and entire datasets (Figure 4C, F, and I). Based on the 
expression and methylation levels, the samples were divided into 
low-  and high-expression or low-  and high-methylation based on 
median expression or methylation levels, respectively. Survival 

F I G U R E  3 Identification of differentially expressed genes (DEGs)-differentially methylated genes (DMGs) with the same expression 
pattern trends, construction of the transcript factor (TF) regulatory network, and verification of the optimized DEGs-DMGs. (A) The 
expression trend module gene clustering based on 14 DEGs-DMGs. (B) The TF regulatory network. The red nodes had high p values. C: Five 
optimized DEGs-DMGs verified in GSE10​5288 dataset

http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE105288
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analysis showed that the expression or methylation level of the five 
optimized DEGs-DMGs was significantly associated with survival 
of ccRCC patients (Figure 5). In addition, the differences between 
the distributions of methylation levels for the five optimized DEGs-
DMGs in different clinical groups were evaluated and the results 
showed that the methylation level of CCNB2 was significantly 
correlated with pathological M, T, and stage of ccRCC samples 
(Figure 6A). The methylation level of CDKN1C was also shown to be 
significantly correlated with age, neoplasm histological grade, and 
pathological M (Figure 6B). Lastly, the methylation level of ERMP1 
was significantly correlated with neoplasm histological grade, path-
ological T, and tumor stage (Figure 6C).

3.5  |  Correlation analysis of ccRCC progression 
with immunity and the five-gene DEGs-
DMGs signature

Based on the genome-wide expression levels obtained in the GSE10​
5261 dataset, the “MCPcounter” R package was utilized to evalu-
ate the level of immune cell infiltration. The results of this analysis 
showed that four immune cell types were significantly correlated 
with ccRCC progression (normal, primary, and metastatic), which 
included NK cells, macrophages, neutrophils, and cancer-associated 
fibroblasts (Figure 7A–D). Moreover, the ESTIMATE, immune, and 
stromal scores were also found to be correlated with ccRCC progres-
sion (normal, primary, and metastasis) (Figure  7E–G). A significant 

correlation was also found among the four immune cell types, the 
three scores (ESTIMATE, immune, and stromal score), and the five 
optimized DEGs-DMGs (Figure 7H).

4  |  DISCUSSION

Methylation is an important epigenetic modification of proteins and 
nucleic acids, which plays a crucial role in the regulation of gene 
expression; however, it is also closely associated with the devel-
opment of several diseases, such as cancer.23 In this study, meth-
ylation signatures associated with the prognosis of ccRCC patients 
were evaluated. A total of 23 common DEGs-DMGs were analyzed, 
among which 14 DEGs-DMGs were above the cutoff threshold of 
PCC < 0 and p < 0.05. Gene set enrichment analysis showed that 
the 14 DEGs-DMGs were enriched in three GO terms and three 
KEGG pathways. In addition, a total of six TFs were shown to be sig-
nificantly associated with the 14 identified DEGs-DMGs, including 
RP58, SOX9, NF-κB65, ATF6, OCT, and IK2. Further, a prognostic 
model which effectively predicted survival of ccRCC patients was 
constructed using five optimized DEGs-DMGs and then validated 
using the GSE10​5288 dataset. Moreover, infiltration of four im-
mune cells types (NK cells, macrophages, neutrophils, and cancer-
associated fibroblasts) and the ESTIMATE, immune, and stromal 
scores were found to be significantly correlated with ccRCC pro-
gression (normal, primary, and metastasis). Additionally, the five 
optimized DEGs-DMGs were also shown to be correlated with the 

Term Count p-Value Genes

RP58 10 1.33E−02 CDKN1C, GSTM3, ERMP1, SLFN11, GGT6, 
SCNN1A, CKMT1B, E2F2, ERP27, 
KCNJ1

SOX9 9 1.48E−02 CDKN1C, CCNB2, STK33, ERMP1, 
SCNN1A, CKMT1B, CTSH, E2F2, KCNJ1

NFKAPPAB65 5 4.61E−02 CDKN1C, GSTM3, STK33, CTSH, KCNJ1

ATF6 8 4.64E−02 CDKN1C, ERMP1, SLFN11, GGT6, 
SCNN1A, CKMT1B, ERP27, KCNJ1

OCT 8 4.70E−02 CDKN1C, STK33, SLFN11, SCNN1A, 
CKMT1B, CTSH, ERP27, KCNJ1

IK2 6 4.74E−02 CDKN1C, GSTM3, CCNB2, GGT6, SCNN1A, 
CKMT1B

TA B L E  2 Total 6 TFs obtained related 
to the 14 DEG-DMRs

TA B L E  3 Five optimized DEG-DMRs obtained using LASSO arithmetic

ID
LASSO 
Coefficient

Methylation level Expression level

Hazard Ratio 
(95%CI)

Standard 
error Z score p-value

Hazard Ratio 
(95%CI)

Standard 
error Z score p-value

CCNB2 −0.8117 0.080(0.011–0.842) 0.0761 −2.032 4.21E−02 2.239(1.695–2.958) 0.447 5.676 2.26E−09

CDKN1C 0.9393 2.611(1.025–6.650) 0.00383 1.391 1.64E−02 0.784(0.566–0.985) 1.276 −1.469 1.41E−02

CTSH 6.4132 2.482(1.393–25.73) 0.00239 1.457 1.48E−02 0.774(0.503–0.911) 1.293 −1.168 2.37E−02

E2F2 −0.2661 0.475(0.268–0.798) 0.0211 −1.240 1.98E−02 4.091(1.779–9.404) 0.245 3.317 7.54E−04

ERMP1 1.0382 8.876(4.123–70.13) 0.0113 4.254 1.31E−05 0.750(0.496–0.913) 1.334 −1.368 1.72E−02

http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE105261
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE105261
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE105288
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F I G U R E  4 Construction of ccRCC 
prognostic model with the five-gene 
DEGs-DMGs signature. The Kaplan-
Meier analysis, time-dependent ROC 
analysis, and risk score analysis for the 
five optimized DEGs-DMGs for the 
overall survival of ccRCC patients. (A, B, 
C) Training dataset. (D, E, F) Validation 
dataset. (G, H, I) Entire dataset
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infiltration of these four immune cell types and the ESTIMATE, im-
mune, and stromal score.

In this study, we found that the gene expression levels of 14 
DEGs-DMGs were significantly correlated with methylation level. 
Their enrichment analysis showed that the 14 DEGs-DMGs were 
enriched in three KEGG pathways, including cell cycle, aldosterone-
regulated sodium reabsorption, and glutathione metabolism. Cell 
cycle plays an important role in cancer development. Uncontrolled 
cell proliferation is a hallmark of carcinogenesis, and tumor cells 
usually exhibit impairment in genes that directly regulate the cell 
cycle.24 Cell cycle dysregulation via the cyclin D/CDK/pRb pathway 
is frequently observed in breast cancer, which supports the rationale 
underlying the development of drugs targeting the cell cycle control 
machinery.25 Hao et al.26 have also identified potential biomarkers 
for ccRCC as being enriched in the aldosterone-regulated sodium 
reabsorption pathway. Glutathione is a major low-molecular-weight 
antioxidant, and targeting of the glutathione metabolism is import-
ant mechanism associated with anticancer therapies.27 Notably, the 
augmented oxidative stress typically exhibited by cancer cells is also 
accompanied by an increase in glutathione levels, which confers 
growth advantages and resistance to a number of chemotherapeutic 
agents.28 A total of six TFs were shown to be associated with the 
14 identified DEGs-DMGs, including RP58, SOX9, NF-κB65, ATF6, 
OCT, and IK2. Some SOX proteins are potential molecular mark-
ers of cancer prognosis and are recognized as potential therapeu-
tic targets, including SOX9, SOX2, and SOX4.29 NF-κB proteins are 
key regulators of innate and adaptive immune responses and can 
accelerate cell proliferation. Notably, increased NF-κB activity is 
most often observed in solid tumors.30 Moreover, higher but non-
homogeneous expression of vascular endothelial growth factor is 

associated with NF-κB 65 activity in ccRCC cells.31 ATF6 is one of 
the three major endoplasmic reticulum stress transducers and has 
been shown to promote chemotherapy resistance by regulating can-
cer cell survival.32 Few studies have investigated the role of OCT, 
IK2, and RP58 in ccRCC.

As an important part of this study, we have constructed a prog-
nostic model using five optimized DEGs-DMGs, including CCNB2, 
CDKN1C, CTSH, E2F2, and ERMP1, which effectively predict survival 
of ccRCC patients and are verified in GSE10​5288 dataset. Moreover, 
the model was verified using an external dataset and was found to 
have statistical significance. The five DEGs-DMGs used have been 
reported to be associated with ccRCC progression. For instance, 
there is evidence that CCNB2 is associated with the prognosis of 
human cancers, such as RCC,33 bladder cancer,34 and lung cancer.35 
Qiu et al.36 have shown that chromodomain Y-like promotes che-
moresistance in small cell lung cancer by silencing its downstream 
mediator CDKN1C. Moreover, Na et al.37 have reported that ln-
cRNA STEAP3-AS1 modulates cell cycle progression by affecting 
CDKN1C expression via STEAP3 in colon cancer. LBX2-AS1 has also 
been shown to promote ovarian cancer progression by facilitating 
E2F2 gene expression via miR-455-5p and miR-491-5p sponging.38 
Abnormal expression or activation of E2Fs is a common phenome-
non in malignant tumors, and E2Fs are significantly correlated with 
the occurrence or progression of various types of tumors.39 Notably, 
a study by Zhou et al.40 has suggested that E2F2/5/8 could serve as a 
potential prognostic biomarker and target for human ovarian cancer. 
ERMP1, a novel potential oncogene involved in the unfolded protein 
response and oxidative stress defense, is highly expressed in human 
cancers.41 In addition, CCNB2 methylation levels were shown to be 
significantly correlated with pathological M, T, and stage, whereas 

F I G U R E  5 Kaplan-Meier analysis of the expression or methylation level of the five optimized DEGs-DMGs. (A) Methylation level. (B) 
Expression level

http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE105288
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F I G U R E  6 The differences between the distributions of methylation levels of the five optimized DEGs-DMGs in different clinical groups. 
(A) CCNB2. (B) CDKN1C. (C) ERMP1

F I G U R E  7 Analysis of ccRCC progression and immunity. (A–G) Four immune cell types were found to be significantly correlated with 
ccRCC progression (normal, primary, and metastasis), including NK cells (A), macrophages (B), neutrophils (C), and cancer-associated 
fibroblasts (D). The stromal score (E), immune score (F), and ESTIMATE score (G) were shown to be correlated with ccRCC progression. (H) 
The correlation of the five optimized DEGs-DMGs and the four immune cell types, ESTIMATE score, immune score, and stromal score
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the methylation levels of CDKN1C were significantly correlated 
with age, neoplasm histological grade, and pathological M. Finally, 
ERMP1 methylation levels were found to be significantly correlated 
with neoplasm histological grade, pathological T, and stage. These 
findings further suggest that these five DEGs-DMGs are associated 
with the development and prognosis of ccRCC and could be used as 
potential therapeutic targets.

It has been reported that ccRCC is characterized by mutation 
of the von Hippel-Lindau (VHL) gene in factors governing the 
hypoxia signaling pathway42,43, resulting in metabolic dysregu-
lation, heightened angiogenesis, intratumoral heterogeneity, and 
tumor microenvironmental (TME) crosstalk. Thus, we speculated 
whether crosstalk also occurs between metabolic dysregulation, 
intratumoral heterogeneity, and TME in ccRCC owing to methyl-
ation. The GO functional analysis and KEGG enrichment analysis 
revealed that these 14 DEGs-DMGs were crucial in functions re-
lated to metabolic dysregulation. Moreover, TME is a complex in-
tegrated system categorized into the immune microenvironment 
and non-immune microenvironment.44 Stromal components dom-
inate the non-immune microenvironment, particularly cancer-
associated fibroblasts.45 Tumor-infiltrating immune cells in the 
TME have also been shown to critically relate cancer outcomes 
and play a vital role in tumor immunotherapy46,47. The present 
study also reports that four immune cell types (NK cells, macro-
phages, neutrophils, and cancer-associated fibroblasts) and the 
ESTIMATE, immune, and stromal scores are significantly cor-
related with ccRCC progression (normal, primary, and metastatic). 
NK cells are cytotoxic lymphocytes that are part of the innate 
immune system and are capable of killing virus-infected and/or 
cancerous cells.48 Macrophages act as scavengers, modulating 
the immune response against pathogens and maintaining tissue 
homeostasis,49 while tumor-associated macrophages exhibit both 
anti-inflammatory and pro-tumoral effects.50 Neutrophils are the 
first responders to inflammation and infection and respond to di-
verse inflammatory cues, including cancer development.51 Finally, 
cancer-associated fibroblasts, a type of perpetually activated fi-
broblasts, have been shown to have a strong tumor-modulating 
effect.52 In addition, we also found that the five optimized DEGs-
DMGs used in our prognostic model significantly correlate with 
these four immune cell types in addition to the ESTIMATE, im-
mune, and stromal scores. For instance, E2F2 was negatively 
correlated with NK cells, macrophages, cancer-associated fibro-
blasts, ESTIMATE score, immune score, and stromal score, while 
being positively correlated with neutrophils. Thus, the results 
of this study might reveal crosstalk between metabolic dysreg-
ulation and TME in ccRCC owing to methylation. While these 
findings essentially require further validation, these results also 
suggested that immunotherapy might serve as an effective treat-
ment strategy for the treatment of ccRCC.

However, our study had some limitations. First, the prognostic 
model constructed from five optimized DEGs-DMGs was only vali-
dated using the GSE10​5288 dataset; thus, further verification using 
different datasets is vital. In addition, in vitro and in vivo studies 

should be performed in order to verify the methylation signatures 
and to help understand their functional role in ccRCC progression.

5  |  CONCLUSION

This study has identified a five-gene methylation signature with 
significant predictive ability for ccRCC prognosis. In addition, it has 
highlighted potential targets for methylation-mediated immunother-
apy for the treatment of ccRCC. It is imperative for future research 
to focus on the validation of these findings of this study through 
pre-clinical studies and clinical trials.
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