
J Clin Lab Anal. 2021;35:e24031.	 		 	 | 1 of 13
https://doi.org/10.1002/jcla.24031

wileyonlinelibrary.com/journal/jcla

Received:	7	July	2021  | Revised:	14	September	2021  | Accepted:	19	September	2021
DOI: 10.1002/jcla.24031  

R E S E A R C H  A R T I C L E

A five- gene methylation signature predicts overall survival of 
patients with clear cell renal cell carcinoma

Xiao Jing1 |   Gang Xu2 |   Yu Gong1 |   Junlong Li2 |   LingfengWu3 |   Wei Zhu3 |   Yi He3 |   
Zhongyi Li1 |   Shouhua Pan2

This	is	an	open	access	article	under	the	terms	of	the	Creat	ive	Commo	ns	Attri	butio	n-	NonCo	mmerc	ial-	NoDerivs	License,	which	permits	use	and	distribution	in	
any	medium,	provided	the	original	work	is	properly	cited,	the	use	is	non-	commercial	and	no	modifications	or	adaptations	are	made.
©	2021	The	Authors.	Journal of Clinical Laboratory Analysis	published	by	Wiley	Periodicals	LLC.

Xiao	Jing,	Gang	Xu	and	Yu	Gong	authors	contributed	equally	to	this	work.	

1Department	of	Urology,	The	Second	
Affiliated	Hospital	of	Zhejiang	University	
School	of	Medicine,	Hangzhou,	China
2Department	of	Urology,	Shaoxing	
People's	Hospital,	Shaoxing,	China
3Department	of	Urology,	The	Affiliated	
Hospital	of	Jiaxing	University,	Jiaxing,	
China

Correspondence
Shouhua	Pan,	Department	of	Urology,	
Shaoxing	People's	Hospital,	No.	568	
Zhongxing	North	Road,	Yuecheng	District,	
Shaoxing,	Zhejiang	312000,	China.
Email:	13606550587@163.com(SP)

Zhongyi	Li,	Department	of	Urology,	The	
Second	Affiliated	Hospital	of	Zhejiang	
University	School	of	Medicine,	No.	
88	Jiefang	Road,	Shangcheng	District,	
Hangzhou,	Zhejiang	310009,	China.
Email:	1178700168@zju.edu.cn(ZL)

Yi	He,	Department	of	Urology,	The	
Affiliated	Hospital	of	Jiaxing	University,	
No.	1882	Zhonghuan	South	Road,	Jiaxing,	
Zhejiang	314001,	China.
Email:	heyi@zjxu.edu.cn(YH)

Funding information
This	work	was	supported	by	the	Zhejiang	
Provincial	Medicine,	Health,	and	Science	
and	Technology	Project	(grant	number	
2017KY152),	Innovative	Talents	Project	
of	Zhejiang	Medicine	and	Health	Science	
and	Technology	Plan	(grant	number	
2021RC129),	and	Zhejiang	Medical	and	
Health	Research	Fund	Project	(grant	
number	2019KY710)

Abstract
Background: In	this	study,	we	aimed	to	screen	methylation	signatures	associated	with	
the	prognosis	of	patients	with	clear	cell	renal	cell	carcinoma	(ccRCC).
Methods: Gene	expression	and	methylation	profiles	of	ccRCC	patients	were	down-
loaded	from	publicly	available	databases,	and	differentially	expressed	genes	(DEGs)-	
differentially	 methylated	 genes	 (DMGs)	 were	 obtained.	 Subsequently,	 gene	 set	
enrichment	 and	 transcription	 factor	 (TF)	 regulatory	 network	 analyses	 were	 per-
formed.	 In	 addition,	 a	 prognostic	model	was	 constructed	 and	 the	 relationship	 be-
tween	disease	progression	and	immunity	was	analyzed.
Results: A	total	of	23	common	DEGs-	DMGs	were	analyzed,	among	which	14	DEGs-	
DMGs	were	obtained	with	a	cutoff	value	of	PCC	< 0 and p < 0.05. The enrichment 
analysis	showed	that	the	14	DEGs-	DMGs	were	enriched	in	three	GO	terms	and	three	
KEGG	pathways.	In	addition,	a	total	of	six	TFs	were	shown	to	be	associated	with	the	
14	DEGs-	DMGs,	 including	RP58,	SOX9,	NF-	κB65,	ATF6,	OCT,	and	 IK2.	A	prognos-
tic	model	using	five	optimized	DEGs-	DMGs	which	efficiently	predicted	survival	was	
constructed	and	validated	using	the	GSE10	5288	dataset.	Additionally,	four	types	of	
immune	cells	(NK	cells,	macrophages,	neutrophils,	and	cancer-	associated	fibroblasts),	
as	well	as	ESTIMATE,	immune,	and	stromal	scores	were	found	to	be	significantly	cor-
related	with	ccRCC	progression	(normal,	primary,	and	metastasis)	 in	addition	to	the	
five	optimized	DEGs-	DMGs.
Conclusion: A	five-	gene	methylation	signature	with	the	predictive	ability	for	ccRCC	
prognosis	was	investigated	in	this	study,	consisting	of	CCNB2,	CDKN1C,	CTSH,	E2F2,	
and ERMP1.	 In	addition,	potential	targets	for	methylation-	mediated	immunotherapy	
were highlighted.
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1  |  INTRODUC TION

Renal	cell	carcinoma	(RCC)	is	a	malignant	tumor	of	the	urinary	sys-
tem,	with	an	annual	 incidence	rate	accounting	for	2–	3%	of	all	ma-
lignant tumors.1 The incidence rate in males is higher than that in 
females,	with	the	ratio	of	males	to	females	being	approximately	2:1.2 
Clear	cell	RCC	(ccRCC)	is	the	most	common	histological	subtype	of	
RCC,	accounting	for	more	than	70%	of	all	RCC	cases.	Moreover,	its	
patho-	physiological	behavior	is	extremely	complex.3	Approximately	
25%	of	ccRCC	patients	are	first	diagnosed	in	advanced	stages	and	
approximately	 33%	of	 ccRCC	patients	 show	 recurrence	 or	metas-
tasis after surgery.4	Thus,	there	is	an	urgent	need	to	develop	more	
effective therapeutic strategies against ccRCC.

Methylation	is	a	first-	line	biochemical	process	playing	an	import-
ant	role	in	the	transmission	of	 life	and	essentially	 involved	in	DNA	
and histone modification.5	Numerous	studies	have	shown	that	dys-
regulation	of	methylation	processes	(histones	and	DNA)	can	result	
in	cancer	development.	For	instance,	Botezatu	et	al.6 have reported 
that	changes	in	DNA	methylation	can	lead	to	the	activation	of	typi-
cally silent genes or silencing of generally active genes. Koch et al.7 
have	also	suggested	 that	cancer-	related	changes	 in	DNA	methyla-
tion are promising targets for the development of powerful diagnos-
tic,	prognostic,	and	predictive	biomarkers.	Moreover,	McCabe	et	al.8 

have	 validated	 numerous	 potential	 therapeutic	 targets	 for	 cancer,	
including	 many	 that	 affect	 histone	 methylation.	 As	 compared	 to	
DNA	mutations,	 gene	 methylation	 changes	 are	 often	 events	 that	
happen	 early	 in	 the	 process	 of	 cellular	 carcinogenesis.	 Thus,	 they	
can	be	used	as	important	risk	factors	for	tumor	occurrence	and	as	
molecular	marker	 for	 early	 diagnosis.9	As	 such,	 screening	of	 high-	
risk	groups	via	methylation	detection	could	improve	the	accuracy	of	
early diagnoses and provide valuable therapeutic intervention time 
for patients with tumors10,11.	However,	 few	studies	have	 reported	
methylation signatures that are associated with the prognosis of pa-
tients with different stages of ccRCC progression.

In	 this	 study,	 gene	 expression	 and	 methylation	 profiles	 were	
downloaded	from	Gene	Expression	Omnibus	(GEO)	and	The	Cancer	
Genome	 Atlas	 (TCGA)	 databases.	 Differentially	 expressed	 genes	
(DEGs)	and	differentially	methylated	genes	 (DMGs)	were	obtained	
between primary vs.	normal,	metastasis	vs.	normal,	and	metastasis	
vs.	 primary	 ccRCC	 samples.	 Additionally,	 a	 prognostic	 model	 was	
constructed and the relationship between disease progression and 
immunity	 was	 analyzed.	 Consequently,	 our	 study	 highlights	 the	
potential	 implication	 of	 novel	 methylation-	related	 biomarkers	 for	
ccRCC progression offering a theoretical basis for efficacious drug 
development	for	the	same.	The	systematic	workflow	of	this	study	is	
illustrated	in	Figure	1.

F I G U R E  1 The	schematic	workflow	of	the	study
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2  |  MATERIAL S AND METHODS

2.1  |  Data acquisition and preprocessing

The	GSE10	5288	dataset12	was	downloaded	from	the	GEO	database,13 
which	included	two	sub-	datasets,	namely	GSE10	5260	(methylation	
profiling,	 44	 samples)	 and	 GSE10	5261	 (gene	 expression	 profiling,	
44	 samples),	 obtained	 using	 the	 Illumina	 HumanMethylation450	
BeadChip	and	Illumina	HumanHT-	12	V4.0	expression	beadchip	de-
tection	platforms,	respectively.	Preprocessed	data	with	methylated	
beta	detection	values	and	standardized	gene	expression	levels	were	
downloaded,	and	the	methylation	and	gene	expression	profile	of	the	
probe corresponding to the gene information were obtained accord-
ing to the annotation information for each detection platform.

The data of ccRCC patients with methylated beta detection val-
ues	and	level	3	normalized	data	of	log(FPKM+1,2)	expression	level	
based	on	 the	 Illumina	 Infinium	Human	Methylation	450	BeadChip	
and	Illumina	HiSeq	2000	RNA	Sequencing	detection	platforms,	re-
spectively,	were	 downloaded	 from	TCGA.	A	 total	 of	 333	 samples	
with	information	regarding	methylation	and	expression	levels	were	
obtained,	among	which	306	samples	that	had	survival	prognostic	in-
formation were used in this study.

2.2  |  Identification of DEGs- DMGs

Based	on	the	GSE10	5261	and	GSE10	5260	datasets,	the	DEGs	and	
DMGs	 were	 screened	 between	 primary	 vs.	 normal,	 metastasis	
vs.	 normal,	metastasis	vs.	 primary	 using	 limma	package14 with the 
threshold	of	FDR	<0.05,	|log2FC|	>0.263.	The	overlapping	DEGs	and	
DMGs	were	 then	obtained,	and	a	heatmap	was	constructed	using	
the	 “pheatmap”	 package15	 in	 R	 software.	 The	 overlapping	 DEGs	
were	 intersected	with	overlapping	DMGs,	and	the	overlapping	co-	
expressed	genes	were	considered	to	be	the	common	DEGs-	DMGs.	
The	 Pearson	 correlation	 coefficient	 (PCC)	 and	 Spearman's	 coef-
ficient	 (Rho)	 of	methylation	 and	 expression	 levels	 of	 the	 common	
DEGs-	DMGs	were	calculated	using	the	cor.test	 function	 in	R	soft-
ware.	The	DEGs-	DMGs	with	cutoff	values	of	PCC	<0 and p < 0.05 
were	 used	 for	 further	 analysis.	 In	 addition,	 the	DAVID	 tool16 was 
used to perform gene set enrichment analysis with a cutoff value 
of p < 0.05.

2.3  |  Gene expression trends based on the Mfuzz 
clustering algorithm

Based	on	the	expression	level	of	DEGs-	DMGs	with	cutoff	values	of	
PCC < 0 and p <	 0.05,	 the	 “Mfuzz”	 package17 in R software was 
used	to	conduct	the	change	trend	analysis	of	expression	patterns	for	
these	DEGs-	DMGs	and	the	expression	trend	module	gene	cluster-
ing	was	obtained.	Here,	special	attention	was	paid	to	related	genes	
whose	 expression	 levels	 continued	 to	 increase	 or	 decrease	 along	
with	the	progression	(normal,	primary,	and	metastasis)	of	ccRCC.

2.4  |  Construction of the transcription factor (TF) 
regulatory network

Based	on	the	expression	level	of	the	DEGs-	DMGs	with	a	cutoff	value	
of PCC < 0 and p <	0.05,	the	DAVID	tool	was	then	used	to	screen	
TFs	 significantly	 associated	 with	 DEGs-	DMGs.	 Subsequently,	 the	
interactions	between	TFs	and	DEGs-	DMGs	were	obtained	and	the	
TF-	DEGs-	DMGs	regulatory	network	was	built	using	Cytoscape.18

2.5  |  Construction of a prognostic model

The	data	retrieved	from	TCGA	were	used	to	construct	a	prognostic	
model.	The	306	ccRCC	tumor	samples	from	the	database	were	ran-
domly	divided	into	two	groups,	including	the	training	and	validation	
datasets.	Based	on	the	methylation	and	expression	level	of	the	DEGs-	
DMGs	with	a	cutoff	value	of	PCC	< 0 and p <	0.05,	the	“survival”	R	
package19	was	used	to	conduct	a	univariate	Cox	regression	analysis	
on	the	training	dataset	to	screen	DEGs-	DMGs	significantly	associ-
ated	 with	 survival	 prognosis	 at	 both	 methylation	 and	 expression	
levels. p <	0.05	was	 the	criteria	 for	determining	prognosis-	related	
DEGs-	DMGs.	 The	 LASSO	 regression20	 from	 the	 “lars”	 R	 package	
was used to conduct the survival regression analysis to screen the 
optimized	DEGs-	DMGs	based	on	the	gene	methylation	levels	in	the	
training	 dataset	 samples.	 Moreover,	 the	 optimized	 DEGs-	DMGs	
were	verified	in	the	GSE10	5288	dataset,	which	included	9	normal,	
9	primary,	 and	26	metastasis	 samples.	 Subsequently,	 a	 prognostic	
score	 (PS)	model	was	 established.	 The	 formula	PS	=	 ∑Coefgenes × 
Methylationgenes	 (where	 Coefgenes	 represents	 the	 LASSO	 progno-
sis	 coefficient	 of	 genes	 and	Methylationgenes represents the gene 
methylation	levels	in	the	training	dataset)	was	used	to	derive	the	risk	
score.	The	PS	was	then	calculated	for	the	training	dataset,	validation	
dataset,	and	whole	groups.	The	samples	were	later	divided	into	the	
low-		and	high-	PS	groups	using	the	median	PS	value.	Subsequently,	
the	Kaplan-	Meier	curve	method	in	the	“survival”	package	was	used	
to	 compare	 differences	 in	 survival	 between	 the	 low-		 and	 high-	PS	
groups. To further understand the correlation between the methyla-
tion	and	expression	 levels	of	 the	optimized	DEGs-	DMGs	screened	
and	survival	prognosis,	the	Kaplan-	Meier	curve	analyses	were	also	
performed on the whole dataset. Based on the clinical information 
of	the	samples	in	TCGA	dataset,	the	aov	function	was	used	to	con-
duct variance analysis to compare the differences in the distribution 
of	methylation	levels	of	optimized	DEGs-	DMGs	in	different	clinical	
groups.

2.6  |  Analysis of disease progression and immunity

Based	 on	 the	 genome-	wide	 expression	 levels	 obtained	 in	 the	
GSE10	5261	dataset,	 the	 “MCPcounter”21	 R	 package	was	 utilized	
to	 evaluate	 the	 level	 of	 immune	 cell	 infiltration,	 including	 eight	
immune cell types [CD3+	T	cells,	CD8+	T	cells,	cytotoxic	 lympho-
cytes,	NK	cells,	B	 lymphocytes,	cells	originating	from	monocytes	

http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE105288
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE105260
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE105261
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(monocytic	lineage),	myeloid	dendritic	cells,	and	neutrophils],	and	
two	stromal	cell	types	(endothelial	cells	and	fibroblasts).	The	aov	
function was used to conduct variance analysis to compare the dif-
ferences between the proportions of different immune cells in the 
progression	groups	(normal,	primary,	and	metastatic).	In	addition,	
the	“estimate”	R	package22	was	used	to	calculate	the	ESTIMATE,	
immune,	 and	 stromal	 scores.	 The	 aov	 function	was	 also	 used	 to	
conduct variance analysis to compare the differences between the 
distribution	of	the	three	scores	in	the	progression	groups	(normal,	
primary,	 and	metastatic).	 Subsequently,	 the	 correlation	 between	
DEGs-	DMG	methylation	 levels	and	the	proportion	of	various	 im-
mune cells along with the three scores were calculated.

2.7  |  Statistics analysis

The	 DEGs	 and	 DMGs	 were	 screened	 with	 the	 threshold	 of	
FDR	 <	 0.05,	 |log2FC|	 >0.263,	 and	 the	 DEGs-	DMGs	 were	 identi-
fied	using	the	“limma”	R	package	with	cutoff	values	of	PCC	< 0 and 
p < 0.05. Correlation analysis was performed using the Pearson 
and	Spearman	correlation	 test.	A	univariate	Cox	 regression	analy-
sis	was	conducted	using	the	“survival”	package.	Survival	regression	
analysis	 was	 carried	 out	 utilizing	 LASSO	 algorithm.	 Kaplan-	Meier	
curves were used to evaluate survival time in patients with ccRCC. 
The aov function was used to conduct variance analysis to compare 
the	differences	in	the	distribution	of	methylation	levels	of	optimized	
DEGs-	DMGs	 in	different	 clinical	 groups.	p < 0.05 was considered 
statistically significant.

3  |  RESULTS

3.1  |  Identification of DEGs- DMGs

As	shown	 in	Figure	2A,	 total	of	862,	2431,	and	1333	DEGs	were	
screened between primary vs.	normal,	metastasis	vs.	normal,	me-
tastasis vs.	primary	groups,	respectively.	Likewise,	a	total	of	1460,	
2811,	and	1044	DMGs	were	screened	between	primary	vs.	normal,	
metastasis vs.	normal,	metastasis	vs.	primary	groups,	respectively.	
Our	 analyses	 thus	 revealed	 a	 total	 of	 350	 and	 367	 overlapping	
DEGs	 and	DMGs,	 respectively	 (Figure	 2B	 and	C);	 the	 heatmap	 is	
shown	in	Figure	2D	and	E.	Subsequent	intersections	of	overlapping	

DEGs	with	overlapping	DMGs	led	to	the	identification	of	23	com-
mon	DEGs-	DMGs	(Figure	2F	and	Supplementary	File	S1).	The	over-
all	correlation	between	the	methylation	and	expression	levels	of	the	
23	common	DEGs-	DMGs	was	analyzed,	and	the	results	showed	that	
14	DEGs-	DMGs	were	above	the	cutoff	threshold	of	PCC	< 0 and 
p <	0.05	(Figure	2G	and	Supplementary	File	S2).	Further,	gene	set	
enrichment	analysis	showed	that	the	14	DEGs-	DMG	were	enriched	
in	three	gene	ontology	(GO)	terms	and	three	Kyoto	Encyclopedia	of	
Genes	and	Genomes	(KEGG)	pathways	(Table	1).

3.2  |  Identification of the DEGs- DMGs with the 
same expression pattern trends

The	“Mfuzz”	package	in	R	software	was	used	to	conduct	the	change	
trend	analysis	of	expression	patterns	for	the	DEGs-	DMGs,	and	the	
expression	trend	module	gene	clustering	was	obtained.	The	results	
revealed	 that	 the	14	DEGs-	DMGs	could	be	clustered	 into	 two	ex-
pression	 trends	categories,	with	 the	expression	of	Cluster	1	being	
significantly	 downregulated,	 while	 the	 expression	 of	 Cluster	 2	
continued	to	be	significantly	upregulated	(Figure	3A).	A	total	of	11	
DEGs-	DMGs	(CAPS,	CDKN1C,	CKMT1B,	CTSH,	ERMP1,	ERP27,	GGT6,	
GSTM3,	KCNJ1,	SCNN1A,	and	STK33)	were	found	in	Cluster	1,	while	
Cluster	2	included	three	DEGs-	DMGs	(CCNB2,	E2F2,	and	SLFN11).

3.3  |  Construction of the TF regulatory network 
associated with the 14 DEGs- DMGs

The	14	DEGs-	DMGs	were	subjected	to	functional	annotation	using	
Database	 for	 Annotation,	 Visualization,	 and	 Integrated	 Discovery	
(DAVID)	 tools,	 and	 a	 total	 of	 six	TFs	were	 found	 to	be	 associated	
with	the	14	identified	DEGs-	DMGs,	including	RP58,	SOX9,	NF-	κB65,	
ATF6,	OCT,	and	IK2	(Table	2).	Accordingly,	a	TF-	DEGs-	DMGs	regula-
tory	network	was	built	using	Cytoscape	(Figure	3B).

3.4  |  Construction of a ccRCC prognostic model 
based on five- gene DEG- DMG signature

Based	on	 the	univariate	Cox	 regression	analysis,	 a	 total	of	 seven	
DEGs	 and	 eight	DMGs	were	 found	 to	be	 significantly	 associated	

TA B L E  1 Enrichment	analysis	of	the	14	DEG-	DMRs

Category Term Count p- Value Genes

Biology Process GO:0006749~glutathione metabolic process 2 1.43E−02 GSTM3,	GGT6

GO:0006508	~ proteolysis 3 2.56E−02 ERMP1,	GGT6,	CTSH

GO:0051726	~ regulation of cell cycle 2 3.92E−02 CCNB2,	E2F2

KEGG	Pathway hsa04110:Cell cycle 3 8.41E−03 CDKN1C,	CCNB2,	E2F2

hsa04960:Aldosterone-	regulated	sodium	
reabsorption

2 2.44E−02 SCNN1A,	KCNJ1

hsa00480:Glutathione	metabolism 2 4.58E−02 GSTM3,	GGT6
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with	 prognosis.	 Moreover,	 both	 the	 methylation	 and	 expression	
levels of seven genes were shown to be significantly associated 
with	 prognosis.	 Thus,	 these	 seven	 DEGs-	DMGs	 were	 used	 for	
further	analyses.	Based	on	the	seven	DEGs-	DMGs,	five	optimized	
DEGs-	DMGs	were	obtained	using	the	LASSO	regression,	including	
CCNB2,	CDKN1C,	CTSH,	E2F2,	and	ERMP1	(Table	3).	Moreover,	the	
five	 optimized	DEGs-	DMGs	were	 verified	 in	GSE10	5288	 dataset	
with	the	results	showing	that	the	gene	expression	levels	of	CCNB2 
and E2F2	were	upregulated	with	tumor	progression,	whereas	those	

of CDKN1C,	CTSH,	and	ERMP1	were	downregulated.	Furthermore,	
the	change	trends	of	these	DEGs-	DMGs	were	consistent	with	the	
above	results	(Figure	3C).	Subsequently,	the	five	optimized	DEGs-	
DMGs	were	used	 to	construct	a	prognostic	model.	Based	on	 the	
calculated	PS	values,	the	samples	were	divided	into	 low-		or	high-
	PS	 groups	based	on	 the	median	PS	 value.	 In	 the	 training,	 valida-
tion,	 and	 entire	 datasets,	 patients	 in	 the	 low-	PS	 group	 exhibited	
significantly	longer	OS	than	those	in	the	high-	PS	group	(Figure	4A,	
D,	 and	 G).	 The	 predictive	 ability	 of	 the	 five	 DEGs-	DMGs-	based	

F I G U R E  2 Identification	of	differentially	expressed	genes	(DEGs)-	differentially	methylated	genes	(DMGs).	(A)	DEGs	and	DMGs	screened	
between the primary vs.	normal,	metastasis	vs.	normal,	and	metastasis	vs.	primary	groups,	respectively.	The	overlapping	DEGs	(B)	and	DMGs	
(C)	obtained	between	the	primary	vs.	normal,	metastasis	vs.	normal,	and	metastasis	vs.	primary	groups.	The	heatmap	of	overlapping	DEGs	
(D)	and	DMGs	(E).	(F)	The	common	DEGs-	DMGs	screened	from	overlapping	DEGs	and	DMGs.	G:	Scatter	plot	of	the	correlation	between	the	
expression	level	of	23	common	DEGs-	DMGs	and	the	overall	methylation	level.	The	red	line	represents	the	correlation	trend	line

http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE105288


6 of 13  |     JING et al.

prognostic	model	was	 evaluated	 subsequently	 by	 calculating	 the	
area	under	 the	curve	 (AUC)	value	of	 the	 receiver	operating	char-
acteristic	 (ROC)	curve.	The	AUC	values	 for	 the	1-	,	3-	,	and	5-	year	
survival	curves	 in	 the	training,	validation,	and	entire	datasets	are	
shown	in	Figure	4B,	E,	and	H,	respectively.	The	distribution	of	PS	

and	survival	status	for	the	samples	was	displayed	for	the	training,	
validation,	and	entire	datasets	 (Figure	4C,	F,	and	 I).	Based	on	the	
expression	and	methylation	 levels,	 the	samples	were	divided	 into	
low-		 and	high-	expression	or	 low-		 and	high-	methylation	based	on	
median	 expression	 or	 methylation	 levels,	 respectively.	 Survival	

F I G U R E  3 Identification	of	differentially	expressed	genes	(DEGs)-	differentially	methylated	genes	(DMGs)	with	the	same	expression	
pattern	trends,	construction	of	the	transcript	factor	(TF)	regulatory	network,	and	verification	of	the	optimized	DEGs-	DMGs.	(A)	The	
expression	trend	module	gene	clustering	based	on	14	DEGs-	DMGs.	(B)	The	TF	regulatory	network.	The	red	nodes	had	high	p	values.	C:	Five	
optimized	DEGs-	DMGs	verified	in	GSE10	5288	dataset

http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE105288


    |  7 of 13JING et al.

analysis	showed	that	the	expression	or	methylation	level	of	the	five	
optimized	DEGs-	DMGs	was	 significantly	 associated	with	 survival	
of	ccRCC	patients	(Figure	5).	In	addition,	the	differences	between	
the	distributions	of	methylation	levels	for	the	five	optimized	DEGs-	
DMGs	 in	different	clinical	groups	were	evaluated	and	 the	 results	
showed that the methylation level of CCNB2 was significantly 
correlated	 with	 pathological	 M,	 T,	 and	 stage	 of	 ccRCC	 samples	
(Figure	6A).	The	methylation	level	of	CDKN1C was also shown to be 
significantly	correlated	with	age,	neoplasm	histological	grade,	and	
pathological	M	(Figure	6B).	Lastly,	the	methylation	level	of	ERMP1 
was	significantly	correlated	with	neoplasm	histological	grade,	path-
ological	T,	and	tumor	stage	(Figure	6C).

3.5  |  Correlation analysis of ccRCC progression 
with immunity and the five- gene DEGs- 
DMGs signature

Based	on	the	genome-	wide	expression	levels	obtained	in	the	GSE10	
5261	dataset,	 the	 “MCPcounter”	 R	 package	was	 utilized	 to	 evalu-
ate the level of immune cell infiltration. The results of this analysis 
showed that four immune cell types were significantly correlated 
with	 ccRCC	 progression	 (normal,	 primary,	 and	 metastatic),	 which	
included	NK	cells,	macrophages,	neutrophils,	and	cancer-	associated	
fibroblasts	 (Figure	7A–	D).	Moreover,	 the	ESTIMATE,	 immune,	 and	
stromal scores were also found to be correlated with ccRCC progres-
sion	 (normal,	 primary,	 and	metastasis)	 (Figure	 7E–	G).	A	 significant	

correlation	was	also	found	among	the	four	 immune	cell	 types,	 the	
three	scores	 (ESTIMATE,	 immune,	and	stromal	score),	and	the	five	
optimized	DEGs-	DMGs	(Figure	7H).

4  |  DISCUSSION

Methylation	is	an	important	epigenetic	modification	of	proteins	and	
nucleic	 acids,	which	plays	 a	 crucial	 role	 in	 the	 regulation	of	 gene	
expression;	 however,	 it	 is	 also	 closely	 associated	with	 the	 devel-
opment	of	several	diseases,	such	as	cancer.23	 In	this	study,	meth-
ylation signatures associated with the prognosis of ccRCC patients 
were	evaluated.	A	total	of	23	common	DEGs-	DMGs	were	analyzed,	
among	which	14	DEGs-	DMGs	were	above	the	cutoff	threshold	of	
PCC < 0 and p <	0.05.	Gene	set	enrichment	analysis	showed	that	
the	 14	DEGs-	DMGs	were	 enriched	 in	 three	GO	 terms	 and	 three	
KEGG	pathways.	In	addition,	a	total	of	six	TFs	were	shown	to	be	sig-
nificantly	associated	with	the	14	identified	DEGs-	DMGs,	including	
RP58,	SOX9,	NF-	κB65,	ATF6,	OCT,	and	IK2.	Further,	a	prognostic	
model which effectively predicted survival of ccRCC patients was 
constructed	using	 five	optimized	DEGs-	DMGs	and	 then	validated	
using	 the	 GSE10	5288	 dataset.	 Moreover,	 infiltration	 of	 four	 im-
mune	cells	types	(NK	cells,	macrophages,	neutrophils,	and	cancer-	
associated	 fibroblasts)	 and	 the	 ESTIMATE,	 immune,	 and	 stromal	
scores were found to be significantly correlated with ccRCC pro-
gression	 (normal,	 primary,	 and	 metastasis).	 Additionally,	 the	 five	
optimized	DEGs-	DMGs	were	also	shown	to	be	correlated	with	the	

Term Count p- Value Genes

RP58 10 1.33E−02 CDKN1C,	GSTM3,	ERMP1,	SLFN11,	GGT6,	
SCNN1A,	CKMT1B,	E2F2,	ERP27,	
KCNJ1

SOX9 9 1.48E−02 CDKN1C,	CCNB2,	STK33,	ERMP1,	
SCNN1A,	CKMT1B,	CTSH,	E2F2,	KCNJ1

NFKAPPAB65 5 4.61E−02 CDKN1C,	GSTM3,	STK33,	CTSH,	KCNJ1

ATF6 8 4.64E−02 CDKN1C,	ERMP1,	SLFN11,	GGT6,	
SCNN1A,	CKMT1B,	ERP27,	KCNJ1

OCT 8 4.70E−02 CDKN1C,	STK33,	SLFN11,	SCNN1A,	
CKMT1B,	CTSH,	ERP27,	KCNJ1

IK2 6 4.74E−02 CDKN1C,	GSTM3,	CCNB2,	GGT6,	SCNN1A,	
CKMT1B

TA B L E  2 Total	6	TFs	obtained	related	
to	the	14	DEG-	DMRs

TA B L E  3 Five	optimized	DEG-	DMRs	obtained	using	LASSO	arithmetic

ID
LASSO 
Coefficient

Methylation level Expression level

Hazard Ratio 
(95%CI)

Standard 
error Z score p- value

Hazard Ratio 
(95%CI)

Standard 
error Z score p- value

CCNB2 −0.8117 0.080(0.011–	0.842) 0.0761 −2.032 4.21E−02 2.239(1.695–	2.958) 0.447 5.676 2.26E−09

CDKN1C 0.9393 2.611(1.025–	6.650) 0.00383 1.391 1.64E−02 0.784(0.566–	0.985) 1.276 −1.469 1.41E−02

CTSH 6.4132 2.482(1.393–	25.73) 0.00239 1.457 1.48E−02 0.774(0.503–	0.911) 1.293 −1.168 2.37E−02

E2F2 −0.2661 0.475(0.268–	0.798) 0.0211 −1.240 1.98E−02 4.091(1.779–	9.404) 0.245 3.317 7.54E−04

ERMP1 1.0382 8.876(4.123–	70.13) 0.0113 4.254 1.31E−05 0.750(0.496–	0.913) 1.334 −1.368 1.72E−02

http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE105261
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE105261
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE105288
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F I G U R E  4 Construction	of	ccRCC	
prognostic	model	with	the	five-	gene	
DEGs-	DMGs	signature.	The	Kaplan-	
Meier	analysis,	time-	dependent	ROC	
analysis,	and	risk	score	analysis	for	the	
five	optimized	DEGs-	DMGs	for	the	
overall	survival	of	ccRCC	patients.	(A,	B,	
C)	Training	dataset.	(D,	E,	F)	Validation	
dataset.	(G,	H,	I)	Entire	dataset



    |  9 of 13JING et al.

infiltration	of	these	four	immune	cell	types	and	the	ESTIMATE,	im-
mune,	and	stromal	score.

In	 this	 study,	 we	 found	 that	 the	 gene	 expression	 levels	 of	 14	
DEGs-	DMGs	 were	 significantly	 correlated	 with	 methylation	 level.	
Their	 enrichment	 analysis	 showed	 that	 the	 14	 DEGs-	DMGs	were	
enriched	in	three	KEGG	pathways,	including	cell	cycle,	aldosterone-	
regulated	 sodium	 reabsorption,	 and	 glutathione	 metabolism.	 Cell	
cycle plays an important role in cancer development. Uncontrolled 
cell	 proliferation	 is	 a	 hallmark	 of	 carcinogenesis,	 and	 tumor	 cells	
usually	 exhibit	 impairment	 in	 genes	 that	 directly	 regulate	 the	 cell	
cycle.24 Cell cycle dysregulation via the cyclin D/CDK/pRb pathway 
is	frequently	observed	in	breast	cancer,	which	supports	the	rationale	
underlying the development of drugs targeting the cell cycle control 
machinery.25	Hao	et	al.26	have	also	 identified	potential	biomarkers	
for	 ccRCC	 as	 being	 enriched	 in	 the	 aldosterone-	regulated	 sodium	
reabsorption	pathway.	Glutathione	is	a	major	low-	molecular-	weight	
antioxidant,	and	targeting	of	the	glutathione	metabolism	is	import-
ant mechanism associated with anticancer therapies.27	Notably,	the	
augmented	oxidative	stress	typically	exhibited	by	cancer	cells	is	also	
accompanied	 by	 an	 increase	 in	 glutathione	 levels,	 which	 confers	
growth advantages and resistance to a number of chemotherapeutic 
agents.28	A	 total	of	six	TFs	were	shown	to	be	associated	with	 the	
14	 identified	DEGs-	DMGs,	 including	RP58,	SOX9,	NF-	κB65,	ATF6,	
OCT,	 and	 IK2.	 Some	 SOX	 proteins	 are	 potential	 molecular	 mark-
ers	of	 cancer	prognosis	and	are	 recognized	as	potential	 therapeu-
tic	targets,	including	SOX9,	SOX2,	and	SOX4.29	NF-	κB proteins are 
key	 regulators	 of	 innate	 and	 adaptive	 immune	 responses	 and	 can	
accelerate	 cell	 proliferation.	 Notably,	 increased	 NF-	κB activity is 
most often observed in solid tumors.30	Moreover,	higher	but	non-	
homogeneous	 expression	 of	 vascular	 endothelial	 growth	 factor	 is	

associated	with	NF-	κB	65	activity	 in	ccRCC	cells.31	ATF6	is	one	of	
the three major endoplasmic reticulum stress transducers and has 
been shown to promote chemotherapy resistance by regulating can-
cer cell survival.32	Few	studies	have	 investigated	 the	 role	of	OCT,	
IK2,	and	RP58	in	ccRCC.

As	an	important	part	of	this	study,	we	have	constructed	a	prog-
nostic	model	 using	 five	 optimized	DEGs-	DMGs,	 including	CCNB2,	
CDKN1C,	CTSH,	E2F2,	and	ERMP1,	which	effectively	predict	survival	
of	ccRCC	patients	and	are	verified	in	GSE10	5288	dataset.	Moreover,	
the	model	was	verified	using	an	external	dataset	and	was	found	to	
have	statistical	significance.	The	five	DEGs-	DMGs	used	have	been	
reported	 to	 be	 associated	 with	 ccRCC	 progression.	 For	 instance,	
there is evidence that CCNB2 is associated with the prognosis of 
human	cancers,	such	as	RCC,33	bladder	cancer,34 and lung cancer.35 
Qiu et al.36	 have	 shown	 that	 chromodomain	Y-	like	 promotes	 che-
moresistance in small cell lung cancer by silencing its downstream 
mediator CDKN1C.	 Moreover,	 Na	 et	 al.37 have reported that ln-
cRNA	 STEAP3-	AS1	 modulates	 cell	 cycle	 progression	 by	 affecting	
CDKN1C	expression	via	STEAP3	in	colon	cancer.	LBX2-	AS1	has	also	
been shown to promote ovarian cancer progression by facilitating 
E2F2	gene	expression	via	miR-	455-	5p	and	miR-	491-	5p	sponging.38 
Abnormal	expression	or	activation	of	E2Fs	is	a	common	phenome-
non	in	malignant	tumors,	and	E2Fs	are	significantly	correlated	with	
the occurrence or progression of various types of tumors.39	Notably,	
a	study	by	Zhou	et	al.40	has	suggested	that	E2F2/5/8	could	serve	as	a	
potential	prognostic	biomarker	and	target	for	human	ovarian	cancer.	
ERMP1,	a	novel	potential	oncogene	involved	in	the	unfolded	protein	
response	and	oxidative	stress	defense,	is	highly	expressed	in	human	
cancers.41	In	addition,	CCNB2 methylation levels were shown to be 
significantly	correlated	with	pathological	M,	T,	and	stage,	whereas	

F I G U R E  5 Kaplan-	Meier	analysis	of	the	expression	or	methylation	level	of	the	five	optimized	DEGs-	DMGs.	(A)	Methylation	level.	(B)	
Expression	level

http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE105288
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F I G U R E  6 The	differences	between	the	distributions	of	methylation	levels	of	the	five	optimized	DEGs-	DMGs	in	different	clinical	groups.	
(A)	CCNB2.	(B)	CDKN1C.	(C)	ERMP1

F I G U R E  7 Analysis	of	ccRCC	progression	and	immunity.	(A–	G)	Four	immune	cell	types	were	found	to	be	significantly	correlated	with	
ccRCC	progression	(normal,	primary,	and	metastasis),	including	NK	cells	(A),	macrophages	(B),	neutrophils	(C),	and	cancer-	associated	
fibroblasts	(D).	The	stromal	score	(E),	immune	score	(F),	and	ESTIMATE	score	(G)	were	shown	to	be	correlated	with	ccRCC	progression.	(H)	
The	correlation	of	the	five	optimized	DEGs-	DMGs	and	the	four	immune	cell	types,	ESTIMATE	score,	immune	score,	and	stromal	score
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the methylation levels of CDKN1C were significantly correlated 
with	age,	neoplasm	histological	grade,	and	pathological	M.	Finally,	
ERMP1 methylation levels were found to be significantly correlated 
with	neoplasm	histological	grade,	pathological	T,	and	stage.	These	
findings	further	suggest	that	these	five	DEGs-	DMGs	are	associated	
with the development and prognosis of ccRCC and could be used as 
potential therapeutic targets.

It	has	been	reported	that	ccRCC	is	characterized	by	mutation	
of	 the	 von	 Hippel-	Lindau	 (VHL)	 gene	 in	 factors	 governing	 the	
hypoxia	 signaling	 pathway42,43,	 resulting	 in	 metabolic	 dysregu-
lation,	heightened	angiogenesis,	intratumoral	heterogeneity,	and	
tumor	microenvironmental	(TME)	crosstalk.	Thus,	we	speculated	
whether	crosstalk	also	occurs	between	metabolic	dysregulation,	
intratumoral	heterogeneity,	and	TME	in	ccRCC	owing	to	methyl-
ation.	The	GO	functional	analysis	and	KEGG	enrichment	analysis	
revealed	that	these	14	DEGs-	DMGs	were	crucial	in	functions	re-
lated	to	metabolic	dysregulation.	Moreover,	TME	is	a	complex	in-
tegrated	system	categorized	into	the	immune	microenvironment	
and	non-	immune	microenvironment.44	Stromal	components	dom-
inate	 the	 non-	immune	 microenvironment,	 particularly	 cancer-	
associated fibroblasts.45	 Tumor-	infiltrating	 immune	 cells	 in	 the	
TME	have	also	been	 shown	 to	critically	 relate	 cancer	outcomes	
and play a vital role in tumor immunotherapy46,47. The present 
study	also	reports	that	four	immune	cell	types	(NK	cells,	macro-
phages,	 neutrophils,	 and	 cancer-	associated	 fibroblasts)	 and	 the	
ESTIMATE,	 immune,	 and	 stromal	 scores	 are	 significantly	 cor-
related	with	ccRCC	progression	(normal,	primary,	and	metastatic).	
NK	 cells	 are	 cytotoxic	 lymphocytes	 that	 are	 part	 of	 the	 innate	
immune	 system	and	 are	 capable	 of	 killing	 virus-	infected	 and/or	
cancerous cells.48	 Macrophages	 act	 as	 scavengers,	 modulating	
the immune response against pathogens and maintaining tissue 
homeostasis,49	while	tumor-	associated	macrophages	exhibit	both	
anti-	inflammatory	and	pro-	tumoral	effects.50	Neutrophils	are	the	
first responders to inflammation and infection and respond to di-
verse	inflammatory	cues,	including	cancer	development.51	Finally,	
cancer-	associated	fibroblasts,	a	type	of	perpetually	activated	fi-
broblasts,	 have	been	 shown	 to	have	a	 strong	 tumor-	modulating	
effect.52	In	addition,	we	also	found	that	the	five	optimized	DEGs-	
DMGs	used	 in	our	prognostic	model	significantly	correlate	with	
these	 four	 immune	 cell	 types	 in	 addition	 to	 the	ESTIMATE,	 im-
mune,	 and	 stromal	 scores.	 For	 instance,	 E2F2 was negatively 
correlated	with	NK	cells,	macrophages,	cancer-	associated	 fibro-
blasts,	ESTIMATE	score,	immune	score,	and	stromal	score,	while	
being	 positively	 correlated	 with	 neutrophils.	 Thus,	 the	 results	
of	 this	 study	might	 reveal	 crosstalk	 between	metabolic	 dysreg-
ulation	 and	 TME	 in	 ccRCC	 owing	 to	 methylation.	 While	 these	
findings	essentially	 require	further	validation,	 these	results	also	
suggested that immunotherapy might serve as an effective treat-
ment strategy for the treatment of ccRCC.

However,	our	study	had	some	 limitations.	First,	 the	prognostic	
model	constructed	from	five	optimized	DEGs-	DMGs	was	only	vali-
dated	using	the	GSE10	5288	dataset;	thus,	further	verification	using	
different	 datasets	 is	 vital.	 In	 addition,	 in vitro and in vivo studies 

should be performed in order to verify the methylation signatures 
and to help understand their functional role in ccRCC progression.

5  |  CONCLUSION

This	 study	 has	 identified	 a	 five-	gene	 methylation	 signature	 with	
significant	predictive	ability	for	ccRCC	prognosis.	In	addition,	it	has	
highlighted	potential	targets	for	methylation-	mediated	immunother-
apy for the treatment of ccRCC. It is imperative for future research 
to focus on the validation of these findings of this study through 
pre-	clinical	studies	and	clinical	trials.
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