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Abstract

Motivation: Moonlighting proteins (MPs) are an important class of proteins that perform more

than one independent cellular function. MPs are gaining more attention in recent years as they are

found to play important roles in various systems including disease developments. MPs also have a

significant impact in computational function prediction and annotation in databases. Currently MPs

are not labeled as such in biological databases even in cases where multiple distinct functions are

known for the proteins. In this work, we propose a novel method named DextMP, which predicts

whether a protein is a MP or not based on its textual features extracted from scientific literature

and the UniProt database.

Results: DextMP extracts three categories of textual information for a protein: titles, abstracts from

literature, and function description in UniProt. Three language models were applied and compared:

a state-of-the-art deep unsupervised learning algorithm along with two other language models of

different types, Term Frequency-Inverse Document Frequency in the bag-of-words and Latent

Dirichlet Allocation in the topic modeling category. Cross-validation results on a dataset of known

MPs and non-MPs showed that DextMP successfully predicted MPs with over 91% accuracy with

significant improvement over existing MP prediction methods. Lastly, we ran DextMP with the best

performing language models and text-based feature combinations on three genomes, human,

yeast and Xenopus laevis, and found that about 2.5–35% of the proteomes are potential MPs.

Availability and Implementation: Code available at http://kiharalab.org/DextMP.

Contact: dkihara@purdue.edu

1 Introduction

Investigation of function of proteins is a central problem in bioinfor-

matics as it is an essential step for unfolding obscurities of cellular

processes. Although a majority of proteins are speculated to perform

a single function, over the past decade a significant number of multi-

functional, or more popularly called ‘moonlighting’ proteins are

emerging into attention in the biology community (Campbell and

Scanes, 1995; Jeffery, 1999; Weaver, 1998). Moonlighting proteins

(MPs) are defined as proteins that perform multiple independent cel-

lular functions within a single polypeptide chain. Functional diver-

sity of these proteins are not due to gene fusions, multiple domains

in the same protein chain, multiple RNA splice variants or proteo-

lytic fragments, families of homologous proteins or pleotropic ef-

fects (Huberts and Vander Klei, 2010; Jeffery, 1999, 2004; Mani

et al., 2014). Most prominent examples of MPs are enzymes

(Jeffery, 1999, 2004). The first of such findings was in late 1980s,

crystallins (Piatigorsky and Wistow, 1989; Wistow and Kim, 1991),

which are structural eye lens proteins that also have enzyme func-

tion. Since then, MPs are continued to be found in a wide variety of

genomes with diverse cellular functions and molecular mechanisms

for switching functions.

In parallel to serendipitous findings of MPs through experiments,

bioinformatics approaches have been applied to characterize MPs in

recent years (Khan and Kihara, 2014). Existing studies investigated

different aspects of MPs such as sequence similarity (Gomez et al.,

2003; Khan et al., 2012), conserved motifs/domains, structural dis-

order (Hern�andez et al., 2011), and protein-protein interaction (PPI)

patterns (Chapple et al., 2015; G�omez et al., 2011; Pritykin et al.,

2015). We have recently developed a computational prediction

method named MPFit, which predicts MPs and non-MPs using a di-

verse set of proteomics data (Khan and Kihara, 2016). Development

of MPFit was based on our previous study where we presented a sys-

tematic characterizations of MPs in a computational framework

(Khan et al., 2014). However, all these existing studies overlook a
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major resource of information of protein function, i.e. text-based in-

formation that underlies in scientific literature and textual descrip-

tion of protein annotation in databases such as UniProt (UniProt

Consortium, 2014). In most cases MPs are not explicitly labelled in

the database with ‘moonlighting’, ‘dual function’, ‘multitasking’, or

other related words, even in cases where two distinct functions are

known and clearly stated in its database entry. To accommodate the

current limited knowledge of MPs, two online repositories of MPs

(Hern�andez et al., 2014; Mani et al., 2014) were built on expert

knowledge with manual curation from literature. This situation con-

vinced us that application of text mining techniques on MP litera-

ture would provide a major boost towards automatic MP

annotation. In this work we propose a first text mining-based ap-

proach for predicting MPs, named DextMP (Deep dive into tEXT

for predicting Moonlighting Proteins).

For the last decade, text mining techniques has been extensively

developed to unravel non-trivial knowledge from structured/un-

structured text data (Manning et al., 2008). Most of the existing

works are based on bag-of-words that leverages word-related statis-

tics in the text (Joachims, 1998). The next generation of text-based

feature learning models represent each text with a distribution of la-

tent topics (Hoffman et al., 2010). In recent years, unsupervised

deep learning-based feature construction has become popular in text

mining (Mikolov et al., 2013). Such deep-learning-based methods

map text into a condensed d-dimensional continuous vector space

such that semantically similar texts are embedded nearby each

other.

DextMP consists of four logical steps: first, it extracts textual in-

formation of proteins from literature (publication titles or abstracts)

and functional description in UniProt. Next, it constructs a k-dimen-

sional feature vector from each text. In this step, a state-of-the-art

deep unsupervised learning algorithm is applied, which is called

paragraph vector (Le and Mikolov, 2014), along with two other

widely used language models, Term Frequency-Inverse Document

Frequency (TFIDF) in the bag-of-words category (Manning et al.,

2008) and Latent Dirichlet Allocation (LDA) in the topic modeling

category (Hoffman et al., 2010). Third, using four machine learning

classifiers, a text is classified to MP or to non-MP based on the text

features. Finally, prediction made to each literature for a protein is

summarized to make a prediction to the protein. Cross-validation

results on the dataset of known MPs and non-MPs (control dataset)

show that DextMP can successfully predict MPs with over 91% ac-

curacy, with a significant improvement over existing MP prediction

methods. Among the different forms of text information, abstracts

taken from literature and function description in UniProt showed

better performance than the title of literature. Lastly, we ran

DextMP with the best performing language models and text-based

feature combinations on three genomes, Saccharomyces cerevisiae

(yeast), Homo sapiens (human) and Xenopus laevis (African clawed

frog), and found that about 2.5–35% of the proteomes are potential

MPs.

2 Materials and methods

We first explain text data and features used, then describe learning

models of DextMP.

2.1 Dataset of MPs and non-MPs
The dataset of MPs and non-MPs (i.e. negative example of moon-

lighting proteins) were taken from our previous work (Khan and

Kihara, 2016). The dataset contains 263 MPs selected from a

manually curated MP database, MoonProt (Mani et al., 2014).

Proteins that do not have a UniProt ID were discarded. In addition,

five MPs were discarded because they have over 25% sequence iden-

tity to other proteins in the dataset. Non-MPs were selected using

the following Gene Ontology (GO) function annotation-based crite-

ria developed in our previous works (Khan et al., 2014; Khan and

Kihara, 2016). From the four most dominant genomes in the MP

dataset, namely, human (45 MP, 17.1%), E.coli (29 MPs, 11%),

yeast (23 MPs, 8.7%) and mouse (11 MPs, 4.2%), a protein was se-

lected as a non-MP if a) it has at least eight GO term annotations, b)

when GO terms in the Biological Process (BP) category were clus-

tered using the semantic similarity score (Schlicker et al., 2006) no

more than one cluster was obtained at either the 0.1 threshold or the

0.5 threshold, and c) no more than one cluster of Molecular

Function (MF) GO terms at semantic similarity scores of 0.1 and 0.5

were formed. In essence, a protein is considered as a non-MP if it

has a sufficient number of GO annotations but they are not func-

tionally diverse. We further ruled out non-MPs that had above 25%

sequence identity with another non-MP sequences, and finally se-

lected 162 non-MPs, among which 60 are from human (37.0%), 52

from mouse (32.1%), 34 from yeast (20.9%) and 16 from E.coli

(9.88%). In summary, 263 MP and 162 non-MP were selected as

the control dataset for the DextMP model.

2.2 Text extraction
For each of the proteins in the control dataset, we extracted three

categories of text information from UniProt: a) the title of each ref-

erence paper of the protein entry; b) the abstract of each reference;

and c) the summary description of the protein’s function in the

FUNCTION field in UniProt. The text data for a) and c) were dir-

ectly collected from the UniProt data dump (http://www.uniprot.

org/downloads), and b) was collected by crawling web links in the

PUBLICATION list of the entry. Table 1 shows the statistics of the

data size. Note that while one protein can have multiple titles and

abstracts associated with it, it only has one function description. For

49 MPs, no publication title was found, whereas 105 MPs did not

have a hyperlink directed to a publication abstract (Table 1). Figure

1 shows the distribution of the number of abstracts per MP and

non-MP in the dataset.

Obtained text data underwent three layers of data clean-up.

First, redundant literature that appears both in MPs and non-MPs

were discarded (this typically happens for papers that describe many

proteins, e.g. genome annotation). Second, from each text data, all

stop words, punctuations, and special symbols including Greek let-

ters were removed. Finally, stemming and lemmatization were per-

formed (Manning et al., 2008) using the nltk package (Bird, 2006).

As an example we briefly describe text data for a MP, phospho-

glucose isomerase (PGI) in mouse (UniProt ID: P06745). It primarily

acts as an enzyme in the second step of glycolysis. This protein

moonlights by acting as a cytokine/growth factor, and causes pre-B

cells to mature into antibody secreting cells, supports survival of em-

bryonal neurons, and causes differentiation of some leukemia cell

Table 1. Data size for the MP/non-MP dataset

#Proteins #Titlesa #Abstractsa #Functions

MP 263 2496 (214) 1450 (158) 194

non-MP 162 1665 (162) 1624 (162) 162

aIn the parenthesis the number of proteins is shown for which the text data

was found. For example, out of 263 MPs, at least one publication title was

found for 214 MPs.
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lines. Among 14 references for this protein, one is entitled ‘tumor

cell autocrine motility factor is the neuroleukin/phosphohexose

isomerase polypeptide’, which implies that this protein is an MP. It

becomes apparent if one reads the abstract of this paper (http://

www.uniprot.org/citations/8674049) or the function description of

the entry, which says ‘besides its role as a glycolytic enzyme, mam-

malian PGI can function as a tumor-secreted cytokine and an angio-

genic factor (AMF) that stimulates endothelial cell motility. PGI is

also a neurotrophic factor (Neuroleukin) for spinal and sensory neu-

rons’. Despite this clear knowledge of moonlightness of this protein,

the UniProt entry does not use any exact keyword, e.g. moonlight-

ing proteins, multifunction, etc., which clearly indicates that this is

an MP.

2.3 Framework of DextMP
The overall framework of DextMP is shown in Figure 2. It is split in

two parts, MP/non-MP prediction to a text (the text prediction

model, the top panel in Fig. 2) and prediction made to a query pro-

tein by combining prediction made for each text of the protein (the

bottom panel).

In the text prediction model, first, three different types of text in-

formation, titles, abstracts and function descriptions, are extracted.

Then the data clean-up step is carried out. Next, the texts in the

dataset are applied to a deep unsupervised feature construction tech-

nique (Le and Mikolov, 2014), a bag of words model (Manning

et al., 2008), and topic modeling (Hoffman et al., 2010) to construct

text features. Finally, machine learning classification algorithms,

namely, logistic regression (LR), random forest (RF), Support

Vector Machine (SVM) and gradient boosted machine (GBM)

(Pedregosa et al., 2011) are applied to the learned features to pro-

vide a MP/non-MP prediction on each text data.

Once we have a MP/non-MP class prediction for each text, we

use the model shown in bottom panel of Figure 2 to obtain a class

prediction for proteins (protein-level prediction). Each protein is

associated with a certain number of texts (titles/abstracts) that have

predicted class labels. To make the final MP/non-MP classification,

two heuristics were applied: (i) A majority vote, where we simply

take the binary class label votes for the protein using different ma-

jority cutoffs, 50%, 70%, 80% and 90%. (ii) A weighted majority

vote, where a weight for a text is from the class prediction

probability from the text level prediction. The weighted majority

vote was applied to three classifiers, LR, RF and GBM. This latter

part of DextMP is not applied when function description of proteins

was used, since there is only one description for a protein and voting

is not needed.

2.4 Learning features from text
Here we explain the three language models used for feature con-

struction from text (Fig. 2, top panel).

1. Bag-of-words with TFIDF: Given a text corpus (collection of

sentences/texts), the bag-of-words model first computes the diction-

ary that contains all the words in the text corpus. Given a dictionary

of size N, a text can be represented as an N-dimensional real-valued

vector with TFIDF values for each word in the dictionary. For a

word w, TFIDF is be computed as follows: TFIDF(w)¼TF(w) *

IDF(w), where Term Frequency, TF(w)¼ (number of times word w

appears in a text)/(total number of words in the text); and Inverse

Document Frequency, IDF(w)¼ loge(total number of texts in the

corpus/number of texts with word w); Intuitively, TFIDF measures

the importance of a keyword to a sentence with respect to its entire

dictionary corpus.

2. Topic Modeling with LDA: In principle, the bag-of-words

model has two critical limitations: for a large dictionary, the size of

the feature vector for each text can be huge, which makes it compu-

tationally expensive, and it does not take consideration of the word

ordering in a text. To alleviate above two challenges, in topic model-

ing a text is modeled as a distribution of words for latent topics,

where the number of topics is a user-defined parameter. Latent

Dirichlet Allocation (LDA) is one of the most popular topic model-

ing algorithms, which uses two Dirichlet-multinomial distributions

to model the mappings between documents and topics, and topics

Fig. 1. Distribution of the number of abstracts per protein. Black, MP; gray,

non-MP in the control dataset. The first bar is for 1 and 2 abstracts, next bar is

for 3 and 4 and so on

Fig. 2. Schematic diagram of DextMP. The upper panel shows the text predic-

tion process while the bottom panel is for the prediction model that uses pre-

dicted text labels to make the final MP/non-MP classification. P1, Protein 1,

CL: Class Label
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and words. We used an open source Python implementation of LDA

(Rurek and Sojka, 2010).

3. Unsupervised Deep Language Model, DEEP and PDEEP: As

the third language model, we used a deep learning-based unsuper-

vised feature construction algorithm (Le and Mikolov, 2014). This

model maps texts into a continuous vector space of a dimension d,

such that semantically similar texts appear close in the space. For a

sequence of words W¼ (w0, w1, . . ., wn), where wi 2D (D is the dic-

tionary), suppose wi is an input word and rest of the words in the

dictionary form the context wc¼ (w0, w1, . .wi-1, wiþ1, . wn) . A neu-

ral network with a single hidden layer is trained so that for a vector

of D dimension with 1 for wi and 0 otherwise, the network outputs

the conditional probability that the other words co-appear in the

neighborhood of wi in a text. Using the conditional probabilities

that each word co-appears with wi in the training dataset of texts as

known outputs, weights of hidden layers are trained with back-

propagation, and the weights of hidden layers are considered as a

feature vector of wi.

Mikolov et al. extended the above model by modifying the prob-

ability expression to Pr[WjT]. Here, T is the text containing the se-

quence of words, and can be thought as another word. Similar to

the above model along with the task of maximizing the conditional

probability, it outputs d-dimensional feature vector representation

of each text, T. We used an open source Python implementation of

the ‘paragraph vector’ deep learning model (Rurek and Sojka,

2010).

Using the deep learning method, we computed two models,

DEEP and PDEEP (Pre-trained deep learning model). For DEEP, fea-

tures were constructed on texts from the control dataset of MP and

non-MP only. For PDEEP, we used the entire text data from

UniProt. Concretely, we extracted a total of 1 060 520 titles and

551 056 function descriptions from the UniProt data dump. Since

publication abstracts are not available in the data dump, we omitted

PDEEP training for abstracts.

2.5 Parameter tuning of DextMP
We used a grid search to determine hyper-parameters for LDA and

DEEP. In LDA, the ‘number of topics’ parameter was tuned by a

grid search performed between 10 and 100 with a step size of 10 for

each text type. In DEEP, we tuned three hyper-parameters: the ‘min-

imum count’ parameter was tuned within a range of 1–5, ‘window

size’ was tuned within 2–8, both with a step size of 1, and ‘dimen-

sion size’ was tuned in a range from 20 to 200 with an increasing

step size of 20. The parameter ‘minimum count’ indicates the min-

imum number of texts that the word must appear in, ‘window size’

is the size of the convolution context, and ‘dimension size’ indicates

the length of the feature vector representation. For PDEEP, we used

the same parameters as DEEP.

The hyper-parameters associated with the four classifiers of

DextMP were also determined using a grid search. For LR and SVM

we tuned the regularization, a cost parameter and a kernel function

(linear or radial basis function), and used the default values for the

other parameters in the models in the sklearn package (Pedregosa

et al., 2011). For RF and GBM, we tuned the ‘number of trees’ par-

ameter, the ‘learning rate’ parameter for GBM, and used the default

for the others.

We performed a five-fold cross-validation. The dataset was split

into five sub-groups, among which three sub-groups were used for

training, another sub-group was used for validation, and the last

sub-group was used for testing. Given a vector of hyper-parameters

for a combination of a model and a classifier, where a model is

either LDA/DEEP and a classifier be LR/RF/SVM/GBM, we per-

formed a grid search for the optimal hyper-parameters over the

training set, used the validation set to find the best hyper-parameter

vector, and ran the optimized model with the hyper-parameter val-

ues for the test set to report results. For example, when LDA and LR

combination was to be trained, for each of all the combinations of

the ‘number of topics’ parameter for LDA and the regularization

parameter for LR, model parameters were optimized on a training

set that consists of three sub-groups. Once the model was optimized

for each of the all hyper-parameter combinations on the training set,

the optimized models were tested on the validation set to determine

the best hyper-parameter combination and the model optimized

under the hyper-parameters. Then, the selected model was tested on

the testing set to report the F-score for that parameter setting. Each

sub-group was used once for testing. We performed the above pro-

cedure for five test sub-groups independently, and finally reported

the average F-score computed for the 5 test sub-groups.

3 Results

3.1 Text features of MPs
To begin with, we browsed abundant words in texts of MPs in the

control dataset. In Figure 3, word clouds of the three categories of

texts, publication titles, function descriptions and abstracts, are

shown.

From the word clouds, a few points came to light: the words ‘en-

zyme’, ‘kinase’ and ‘transcription’ appear in all three text types in

Figure 3 (red circles). Word counts of ‘enzyme’ in titles, abstracts,

UniProt function descriptions are 108/34, 562/107, 89/26, respect-

ively for MP/non-MP. Counts for ‘kinase’ and ‘transcription’ were

(102/16, 210/105, 44/9) and (87/59, 431/331, 75/34), respectively,

for (titles, abstracts, UniProt function descriptions) of MP/non-MP.

This is consistent with previous reports that many MPs were known

primarily as enzymes when their secondary function, such as tran-

scription factor, was discovered (Hern�andez et al., 2014; Jeffery,

2003; Khan and Kihara, 2016; Mani et al., 2014). The word ‘ribo-

some’, which appeared as the top word in Figure 3A (green circles),

also agrees with our previous finding (Khan and Kihara, 2016) that

predicted MPs were enriched in ribosomal pathways in the KEGG

database (Kanehisa and Goto, 2000), and found in literature (Wool,

1996). Additionally, words that are clear indicators of MPs also ap-

peared, such as ‘bifunctional’ (counts were 21/0, 29/5, 6/0 for MP/

non-MP in titles, abstracts, function descriptions, respectively; blue

Fig. 3. Word clouds of text information of moonlighting protein dataset. The

size of a word in the visualization is proportional to the number of times the

word appears in the input text. (A–C): titles, function descriptions and ab-

stracts, respectively. The images were generated at http://www.wordle.net/
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circle in Fig. 3A) and ‘multifunctional’ (12/0, 19/4, 4/0 for MP/non-

MP in titles, abstracts, function descriptions, respectively).

3.2 DextMP performance on text level prediction
We now show prediction results of the text-level MP prediction by

DextMP on the control dataset (Table 2). A schematic diagram of

this part of the DextMP model is described in the top panel of

Figure 2 and explained in Section 2.2. Along with the two different

deep learning based models (DEEP and PDEEP), we used two other

methods in popular language model categories, TFIDF in the ‘bag-

of-words’ category and LDA in the ‘topic modelling’ category. For

each language model, three forms of text information, titles, ab-

stracts and UniProt function descriptions, were used and compared.

Note that the abstracts-PDEEP combination was omitted, as it re-

quires all publication abstracts for the entire protein corpus in

UniProt for model training. Since UniProt does not maintain any file

dump for publication abstracts, it requires running a web-crawler

and downloading abstract texts for all proteins in UniProt, which

became computationally very expensive. For learned features by

each language model, we further used four classifiers, LR, RF, SVM

and GBM to make MP/non-MP classification (shown in right col-

umns of Table 2).

Among all the text-language_model-classifier combinations tested

in Table 2, the highest F-score, 0.9371, was recorded by the combin-

ation of TFIDF and SVM when it was applied to literature abstracts

(abstracts-TFIDF-SVM). The precision was 0.8920 and the recall was

0.8640. Besides this best combination, seven more combinations

showed an F-score over 0.850. Comparing the three text types, ab-

stracts had the highest F-score (0.9371), and UniProt function descrip-

tions was second highest (0.9184), and using titles had the lowest

(0.8751).This order was consistent when the average F-score across

different model-classifier combinations for each text type was con-

sidered: the abstracts again showed the highest value of 0.8053 in

comparison to the function descriptions (0.7138) and the titles

(0.7141). We further counted which text type showed the highest

F-score for combinations of language models (PDEEP was excluded)

and classifiers, e.g. TFIDF-LR. Six combinations showed the highest

F-score when applied to abstracts, four combinations with function

descriptions, and two were best with literature titles. These analyses

show that MP detection can be done better by using abstracts or

UniProt function descriptions than simply using literature titles.

Next we compare four language models. In Table 2, for each

text type, the best performing language model under four classifiers

is highlighted in bold. Surprisingly, that the simple TFIDF worked

well with titles and abstracts. This is likely because titles are simpler

so that TFIDF can easily capture MP-specific words to make correct

predictions. DEEP showed superior performance in the function de-

scription category, which implies that complex semantic inter-word

relations in the function descriptions require a complex model to

correctly identify characteristics of MPs and non-MPs. DEEP clearly

outperforms LDA in all three text information categories and all

four classifiers, while PDEEP had 3 (out of 8) wins over LDA.

PDEEP was built as an extension from DEEP by enlarging its train-

ing set to the whole corpus in UniProt. This model showed a lower

F-score consistently for both the title and the function description

categories. The reason for the lower accuracy of PDEEP is maybe

because the training data used for PDEEP is too large and somewhat

generalized textual features unique for MPs.

Comparing the four classifiers, SVM showed the best result in six

cases among the eleven different settings (rows in Table 2), GBM won

for four cases and RF for one case. LR did not win a single setting.

We have also tested DextMP’s prediction accuracy when text sum-

maries were used as input. A summary of each abstract and each

UniProt function description was computed using a well-known algo-

rithm, TextRank (Rada and Tarau, 2004) implemented in a general-

purpose python text summarization package, sumy (https://pypi.py

thon.org/pypi/sumy). On average a summary reduced word counts of

an abstract from 178.3 to 152.7 and from 172.2 to 145.4 for a func-

tion description. Using computed summaries of abstracts, F-score for

the TFIDF model with the LR, SVM, GBM and RF classifiers reduced

to 0.7937, 0.8043, 0.7259 and 0.7692, respectively. We used the

TFIDF model for this comparison because it performed best among

the language models used on the original abstract texts (Table 2). For

functional descriptions, using summaries also reduced F-score of the

DEEP model with the four classifies to 0.8525, 0.8395, 0.7494 and

0.8210, respectively. DEEP was used here since it performed best for

function descriptions. The reduction of the F-score was about 5 to

20% relative to when the original texts were used.

In terms of computational time, DEEP takes substantially more

time in training relative to TFIDF and LDA, because the neural net-

work needs to be trained (Table 3). However, since training can be

pre-computed using a training dataset and reused later, in practice

DEEP does not take much time when applied to predictions of new

data relative to the time needed for training. In contrast, although

TFIDF takes a short time for training, it takes a substantially longer

time in prediction because the size of a feature vector becomes large

as more unique words appear, which exceeded 16 000.

Computational time is classified into three steps of the DextMP

algorithm, training, feature generation and classification. Training is

the time needed on average for processing a text to compute param-

eters of a language model. Feature generation is the time needed to

compute a feature vector of a text to be classified. Classification is

the average time that each classifier took to make a classification to

a text.

3.3 DextMP performance on protein level prediction
Next, we discuss the performance of DextMP on the final protein-

level MP/non-MP classification using predictions made to each text

Table 2. Summary of the text-level prediction with different com-

binations of text types, language models and classifiers

Text Type Language Model Classifiers

LR RF SVM GBM

Titles TFIDF 0.7774 0.7942 0.8751 0.7218

LDA 0.6128 0.6829 0.6584 0.7065

DEEP 0.7696 0.7402 0.8429 0.8029

PDEEP 0.6262 0.5482 0.4836 0.6445

Abstracts TFIDF 0.9220 0.8682 0.9371 0.8396

LDA 0.6419 0.6936 0.6512 0.7349

DEEP 0.7775 0.8119 0.8480 0.7987

PDEEP – – – –

Function Descriptions TFIDF 0.7412 0.7439 0.7715 0.6947

LDA 0.6128 0.6829 0.6582 0.7065

DEEP 0.8929 0.8962 0.9184 0.8788

PDEEP 0.7017 0.7211 0.3474 0.6917

Two-class weighted F-score was reported, where F-score of MP and non-

MP was calculated and weighted average of them was taken, where the

weights are the number of data points of each class. The values shown are the

average of the test sets in the Five-fold cross-validation. LR, Logistic

Regression; RF, Random Forest; SVM, Support Vector Machine; GBM,

Gradient Boosted Machine.
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that belongs to proteins. This process is represented in the bottom

panel in Figure 2. When UniProt function descriptions are used, a

protein-level prediction is identical to the text-level prediction, be-

cause a query protein has only one UniProt description. When titles

or abstracts of literature were used as text information, classification

labels assigned to texts of a query protein were summarized using a

simple majority vote or a weighted majority vote. As mentioned in

Section 2.3, for a simple majority vote, four majority cutoffs, 50%,

70%, 80%, 90%, were tested in cross-validation for each combin-

ation of (text type)-(language model)-(classifier), and the cutoff that

gave the largest F-score in the validation set was chosen and applied

to the testing set. In Figure 4 we compared F-scores of protein level

classification of the 21 (text type)-(language model)-(classifier) com-

binations using the simple majority votes and the weighted majority

votes. Out of all 44 combinations in Table 2, the 21 combinations

used in Figure 4 were LR, RF, and GBM classifiers applied to the

title and abstract categories. The function descriptions category was

excluded as a text type because it does not need voting. Among the

21 combinations, the simple majority votes showed a larger F-score

for 15 cases than the counterpart, although margins are not very

large. Therefore, we only show the results with the simple voting for

the rest of this work.

Table 4 summarizes F-scores of the protein-level MP prediction.

The highest F-score was achieved when function descriptions were

used by a combination of DEEP-SVM (0.9184). Note that values

for function descriptions are identical to the text-level accuracy

(Table 2) because one protein has only one description in UniProt.

Comparing with the text-level prediction results in Table 2, a simi-

lar order of performance by different setting combinations was

observed. However, a difference is that in almost all the cases the

text-level accuracy was higher than the protein-level, which indicates

the voting step in the protein-level prediction decreased the accuracy.

Following the highest F-score combination of function descriptions-

DEEP-SVM, the next three top combinations were all with function

descriptions, which kept the same values as the text-level prediction,

using the DEEP language model. Similar to what was observed in

Table 2, TFIDF showed the best results with all the classifiers in the

titles category, and also the best with three classifiers in the abstracts

category, as highlighted in bold. Precision and recall values were well

balanced for the F-score results in Table 4. For example, for the titles-

TFIDF-SVM combination, which showed an F-score of 0.8330, preci-

sion and recall were 0.8316 and 0.8479, respectively.

For comparison, we ran a sequence-based function prediction

method, PFP (Hawkins et al., 2006, 2009) on the control dataset

and classified the proteins to MP/non-MP based on predicted GO

terms. Following the GO term-based MP/non-MP classification per-

formed in our previous study (Khan et al., 2014), a protein was

classified into MP if more than one GO term in the BP category was

predicted with moderate or higher confidence scores (a PFP raw

score>500), and if the GO terms were classified into more than

two clusters using the relevance semantic similarity (SS_Rel) score

(Schlicker et al., 2006) of 0.1 and more than four clusters at SS_Rel

of 0.5. This protocol predicted 127/52 MPs/non-MPs correctly out

of 263/162 MPs/non-MPs, resulting in an F-score of 0.4472. Thus,

DextMP showed a higher accuracy than the function prediction-

based results.

We think the prediction accuracy shown in Table 4 is sufficiently

high for practical use, particularly for a large scale screening con-

sidering that an alternative for finding MPs from text is for someone

to read texts one by one.

3.4 Genome-scale MP prediction using DextMP
Finally, we applied DextMP for predicting MPs in three genomes.

Two genomes, S. cerevisiae (yeast) and H. sapiens (human), were

chosen because MP prediction by MPFit (Khan and Kihara, 2016)

were previously tested on them, so that we can compare DextMP

with MPFit. One more genome, X.laevis, was chosen because

omics-data, such as gene expression and protein-protein interaction

Table 3. Computational time (seconds)

Phase Text Type Language model

TFIDF LDA DEEP

Training Titles 5.8*10�5 1.0*10�3 4.4*10�1

Abstracts 3.3*10�4 2.9*10�3 9.0*10�1

Function Dsc. 6.3*10�4 1.5*10�2 1.2

Feature generation Titles 7.8*10�4 3.3*10�4 1.8*10�4

Abstracts 3.2*10�3 6.6*10�4 2.4*10�4

Function Dsc. 2.2*10�3 1.0*10�3 2.0*10�4

Classification Titles 5.1*10�2 3.8*10�3 9.2*10�3

Abstracts 1.2*10�1 4.0*10�3 1.3*10�2

Function Dsc. 7.0*10�2 5.3*10�3 6.1*10�3

Fig. 4. Protein-level cross-validation F-scores for weighted and non-weighted

majority votes. Results for 21 (text type)-(language model)-(classifier) com-

binations are compared

Table 4. Summary of the protein-level prediction

Text Type Language Model Classifiers

LR RF SVM GBM

Titles TFIDF 0.7703 0.7474 0.8330 0.6901

LDA 0.5654 0.5723 0.5836 0.6227

DEEP 0.6651 0.6698 0.7557 0.6826

PDEEP 0.6611 0.5278 0.4314 0.6021

Abstracts TFIDF 0.8132 0.8225 0.8208 0.7833

LDA 0.5459 0.5739 0.5342 0.5713

DEEP 0.7650 0.8105 0.7747 0.7909

PDEEP – – – –

Function Descriptions TFIDF 0.7412 0.7439 0.7715 0.6947

LDA 0.6128 0.6829 0.6582 0.7065

DEEP 0.8929 0.8962 0.9184 0.8788

PDEEP 0.7017 0.7211 0.3474 0.6917

F-score was reported. The values shown are the average of the test sets in

the five-fold cross validation. LR, Logistic Regression; RF, Random Forest;

SVM, Support Vector Machine; GBM, Gradient Boosted Machine. For each

text type, titles, abstracts and function descriptions, the best performing lan-

guage model under four classifiers is highlighted in bold.
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data, are not available for this organism, and thus existing MP pre-

diction methods (Chapple et al., 2015; G�omez et al., 2011), which

rely on omics-data, cannot be used. Therefore DextMP can make

unique contributions. Among the eleven settings we tested in Table

3, we used the top two models in the titles category and the top two

in the function descriptions category from Table 4, i.e. titles-

TFIDF-SVM, titles-TFIDF-LR, function_descriptions-DEEP-RF and

function_descriptions-DEEP-SVM, and took the consensus of the

four predictions. We did not use abstracts-based methods because

abstracts were not directly available at UniProt and were not con-

venient for a large-scale prediction.

In our previous work, we developed an omics-data-based MP

prediction method, MPFit (Khan and Kihara, 2016) and demon-

strated that it outperformed two existing methods, one of which

uses a target organism’s PPI network (Chapple et al., 2015) and an-

other method that is based on GO term annotation of proteins

(Pritykin et al., 2015). Therefore, in this section, we compare

DextMP mainly with MPFit on the yeast and human genomes for

which MPFit was applied.

Table 5 summarizes predictions to the three genomes. For the

yeast genome, out of 6721 proteins, 6500 had both title and func-

tion description in UniProt so that DextMP can run on them (cover-

age 96.73%). Among these proteins, 2316 (34.46% of the entire

proteins in the genome) were predicted as MP by DextMP when a

consensus of three settings are considered, and 896 (13.33%) if a

consensus of the all four settings was considered. In our previous

work, MPFit predicted 10.97% of the yeast proteins are MPs, which

is similar to the current prediction with the full (four) consensus.

Since yeast has 27 known MPs in the MoonProt database (Mani

et al., 2014), we computed recall based on them. Out of 27 known

MPs, 24 and 20 are detected as MPs when a consensus of �3 and 4

settings are considered, which give recall value of 0.889 and 0.741,

respectively. MPFit recorded a recall of 0.8146 (22 out of 27) in the

previous work, which is between the two values in the current work.

These two recall values are significantly higher than the GO term-

based prediction by Pritykin et al. (2015), which was 0.4815.

Besides the high recall value, DextMP also has a strong advantage of

having a higher coverage than both MPFit and the method by

Pritykin et al., because text information is in general more available

than omics-data or GO annotations, which the two methods use as

input. The coverage for DextMP was 96.73%, while MPFit and

Pritykin et al. had a coverage of 69.56% and 68.69%, respectively.

The human genome has a very high coverage of 98.06% (19 713

proteins out of 20, 104 proteins), which have text information and

were subject to DextMP’s prediction. This is much higher than the

coverage for both MPFit (67.91%), the GO-based method by

Pritykin et al. (48.08%) and the PPI-based method (Chapple et al.,

2015) (64.01%). Out of 45 known MPs in human, 42 were pre-

dicted correctly by DextMP (recall: 0.9333) when a consensus with

three or more settings was considered. With the full consensus of the

four settings, 31 MPs were correctly detected (recall: 0.689). These

two recall values are higher than the two existing methods, the GO-

based method (recall: 0.4889) and the PPI-based method (recall:

0.0667). Our previous method, MPFit, had a recall of 0.7333, which

is between the two recall values recorded in the current work.

DextMP predicted that 23.78% to 8.37% of human proteins are

MPs with the two cutoffs of consensus voting. The lower value,

8.37%, is close to the MPFit’s prediction of 7.82% (Khan and

Kihara, 2016).

As discussed above, a major advantage of DextMP is that it

solely relies on text information of proteins, unlike the other meth-

ods that cannot be applied for proteins that lack experimental

studies (e.g. PPI) or well-curated GO term annotations. Capitalizing

on this aspect, we ran another genome, X.laevis with DextMP as it

is not applicable for MPFit or the two other existing prediction

methods because the genome lacks experimental studies. For

X.laevis, out of 11 078 proteins 30.5% have literature information

in UniProt. Due to the smaller number of proteins with literature in-

formation as compared with human and yeast, the fraction of pre-

dicted MPs in X.laevis, 2.51-5.42%, seems small, but the fraction

against the 11 078 proteins with literature is in accordance with the

results for yeast and human.

We now discuss three case studies where DextMP made correct

prediction to known MPs while our previous method, MPFit, failed.

The first example is a band 3 anion transport protein in human

(UniProt ID: P02730). The primary function of this protein is trans-

portation of inorganic anions across the plasma membrane while the

moonlighting function is a scaffold providing binding sites for glyco-

lytic enzymes (Low et al., 1993). MPFit failed to predict this protein

as an MP because this protein lacks four out of six omics-data fea-

tures (i.e. PPI, phylogenetic profile, genetic interaction), which

MPFit imputes to complete input feature values but apparently it

did not work. In contrast, this protein has functional description in

UniProt, which clearly depicts its two functions as follows: functions

both as a transporter that mediates electroneutral anion exchange

across the cell membrane and as a structural protein, and inter-

actions of its cytoplasmic domain with cytoskeletal proteins, glyco-

lytic enzymes, and hemoglobin. Based on this text, it was easy for

DextMP to make a correct MP prediction.

The second example is protein PHGPx (UniProt ID: P36969) in

human. The primary function of this MP is cell protection against

membrane lipid peroxidation and cell death while the moonlighting

function is the protein’s structural role in mature spermatozoa

(Scheerer et al., 2007). MPFit could not see characteristics of MPs in

this protein’s omics data, because some input features were not

available and moreover, an important feature, functional divergence

of interacting proteins in its PPI network, was not observed.

However, the protein’s functional description in UniProt indicates

two functions, protects cells against membrane lipid peroxidation

and required for normal sperm development and male fertility,

which resulted in a correct MP prediction by DextMP.

The last example is gephyrin (UniProt ID: Q9NQX3) in human.

This protein anchors transmembrane receptors by connecting mem-

brane proteins to cytoskeleton microtubule binding proteins. Its

Table 5. Genome-scale prediction by DextMP

Yeast Human X.laevis

# Proteins 6721 20 104 11 078

Coverage 96.73% 98.06% 30.54%

# MPs (%) (vote � 3) 2316 4781 600

(34.46%) (23.78%) (5.42%)

# MPs (%) (vote ¼ 4) 896 1682 279

(13.33%) (8.37%) (2.51%)

# known MPs 23 45 –

recall (vote � 3) 0.889 0.933 –

recall (vote ¼ 4) 0.741 0.689 –

Coverage, the percentage of proteins in a genome that have both literature

title and function descriptions, so that DextMP can run on them. Two predic-

tion results are shown: the number of predicted MP proteins which are de-

tected by three or more settings (vote� 3) and the number of MPs detected by

the all four settings unanimously (vote¼ 4). X.laevis does not have known

MPs. The fraction in parentheses was computed for predicted MPs among all

the proteins in the genome.
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moonlighting function is biosynthesis of the molybdenum cofactor

(Stallmeyer et al., 1999). Similar to the previous two examples, this

protein lacks several omics-data that are used as features in MPFit.

Gene expression data showed that this protein has a similar expres-

sion pattern with genes with different functional classes, which is an

indicator of an MP, but this information was diluted in combination

with other omics-data. On the other hand, it is clear from its

functional description that it has two functions: It says microtubule-

associated protein involved in membrane protein-cytoskeleton inter-

actions related to its first function, and catalyzes two steps in the

biosynthesis of the molybdenum cofactor, which is related to the se-

cond function.

Lastly, we provide two examples where DextMP made novel MP

prediction (i.e. proteins which are not recorded as known MPs in

the MoonProt database). The first example is aminoacyl tRNA

synthase complex-interacting protein 1 (UniProt ID: Q12904) in

human. This protein is a non-catalytic component of the multi-

synthase complex, and among other multi-functionalities, it moon-

lights by binding to tRNA, possesses inflammatory cytokine activity,

and is involved in glucose homeostasis, angiogenesis and wound re-

pair (Han et al., 2006). The second example is exoribonuclease in

yeast (UniProt ID: P22147). According to its function description in

UniProt, this is also a multi-functional protein that exhibits several

independent functions at different levels of the cellular processes. It

is a 50–30 exonuclease component of the nonsense-mediated mRNA

decay (NMD), and has a role in multiple processes including DNA

strand exchange and exonuclease activities, preventing accumula-

tion of potentially harmful truncated proteins, regulating the decay

of wild-type mRNAs, degradation of mature tRNA, and defense

against viruses, among other functions (Johnson and Kolodner,

1999; K€aslin and Heyer, 1994).

4 Discussion

We developed DextMP that predicts MPs from text information,

which is the first work of this kind. DextMP complements our ear-

lier work, MPFit, which predicts MPs from their omics data-based

features. DextMP showed significant improvement of predictions

over existing methods. Moreover, it is widely applicable because it

only needs the text information of target proteins. Since the study of

MPs is still in its early stage, even in cases that proteins are known

to have multiple distinct functions, they are not explicitly labeled as

MPs in databases. DextMP will be a very useful tool for detecting

potential MPs from a vast amount of UniProt entries.

It would be appropriate to discuss implication and technical na-

ture of the provided genome-scale MP prediction. Since DextMP

uses literature information of genes, the quantity and the quality of

available literature directly affects to prediction results. A smaller

number of MPs were detected in X. laevis than yeast and human ap-

parently because only 30.54% of genes in the genome have literature

information. It is also noticed that the predicted fraction of MPs in

yeast is larger than human, but this result is also at least partly re-

flecting the fact that yeast has one of the most well studied and

annotated genomes as it is a model organism for systems biology.

Another technical point to note is that the accuracy of DexMP was

confirmed on the control set, where the numbers of positive and

negative data are balanced. Since this MP/non-MP distribution is

different in genomes from the control set, the accuracy of the

genome-scale prediction may be affected by that. Also the negative

data used in the control set have unavoidable uncertainty, because

non-MPs in the dataset may be found as MPs in the future.

In Table 5, we provided two MP estimations by using cutoffs of

three or four votes. Using the three-vote criterion showed a better re-

call against known MPs by design, however, it is difficult to de-

termine which estimations should be more trusted since the number

of known MPs are currently very limited. Thus these two criteria

should be considered as confidence levels of a prediction. The cur-

rent prediction provides a rough estimates of MPs in genomes,

which itself would be informative and useful to gain a large perspec-

tive of MPs. Ultimately, literature of all genes in genomes needs to

be manually checked to obtain the precise number of MPs, where

DextMP’s prediction can help in prioritizing genes to examine.

The results of the genome-scale prediction nevertheless suggest

that MPs are not mere exceptions but common in organisms. This

observation triggers various interesting biological questions, for ex-

ample, how proteins gain moonlighting functions during evolution

and biophysical mechanisms that enable a protein to have multiple

functions. Correct annotation to proteins with dual functions also

affects to functional enrichment analysis (Wei et al., 2017), which is

commonly used in systems and network biology (Dotan-Cohen

et al., 2009; Hawkins et al., 2010; Rachlin et al., 2006). This work

is also relevant to computational biologists, particularly those who

are working on developing function prediction methods (Hawkins

and Kihara, 2007), genome annotation, function analysis on net-

works and curation of functional annotation in databases.

Overall this work will help our understanding of the multi-

functional nature of proteins at the systems level, and will aid in

exploring the complex functional interplay of proteins in a cellular

process.
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