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Abstract. Radioresistance remains a major obstacle for 
the radiotherapy treatment of cancer. Previous studies have 
demonstrated that the radioresistance of cancer is due to 
the existence of intrinsic cancer stem cells (CSCs), which 
represent a small, but radioresistant cell subpopulation that 
exist in heterogeneous tumors. By contrast, non‑stem cancer 
cells are considered to be radiosensitive and thus, easy to 
kill. However, recent studies have revealed that under condi-
tions of radiation‑induced stress, theoretically radiosensitive 
non‑stem cancer cells may undergo dedifferentiation subse-
quently obtaining the phenotypes and functions of CSCs, 
including high resistance to radiotherapy, which indicates 
that radiation may directly result in the generation of novel 
CSCs from non‑stem cancer cells. These findings suggest that 
in addition to intrinsic CSCs, non‑stem cancer cells may also 
contribute to the relapse and metastasis of cancer following 
transformation into CSCs. This review aims to investigate the 
radiation‑induced generation of CSCs, its association with 
epithelial-mesenchymal transition and its significance with 
regard to the radioresistance of cancer.
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1. Introduction

As one of the main treatments for cancer, radiotherapy has been 
widely used in the clinic for >100 years (1). With the devel-
opment of advanced radiotherapy techniques, radiotherapy 
has become an extremely efficacious treatment for cancer. 
However, radioresistance and subsequent relapse and metas-
tasis of cancer occurs in numerous patients that have received 
advanced radiotherapy (2). Previous studies have reported that 
intrinsic cancer stem cells (CSCs), which represent a small 
subpopulation of cancer cells that exist within heterogeneous 
tumors, are responsible for radioresistance in various types of 
cancer (3-6). By contrast, non‑stem cancer cells, which are the 
differentiated progeny of CSCs that account for a substantial 
part of the tumor, are hypothesized to be radiosensitive and 
thus easy to kill using radiotherapy, resulting in the short‑term 
regression of tumors.

In 1994, Lapidot first reported the existence of a particular 
subpopulation of cells in leukemia, which were finally termed 
CSCs or cancer initiating cells (7,8). CSCs are defined as a 
small cancer cell population within a tumor that has the 
capacity to self‑renew and differentiate into the heteroge-
neous lineages of cancer cells that comprise the tumor (9). At 
present, it is postulated that tumor development is driven by 
the self‑renewal and multi‑lineage differentiation of CSCs, 
while their differentiated offspring do not possess the ability 
to self‑renew and extensively proliferate, therefore losing 
tumorigenic potential (10). Tumors have been demonstrated 
to be heterogenic with hierarchical organization (11-13) and 
CSCs are considered to lie at the peak of the tumor hier-
archy (8). Despite accounting for only a small proportion of 
the tumor mass, CSCs have been identified as the main reason 
for the development of therapeutic resistance, recurrence and 
metastasis  (14-19), which indicates that the elimination of 
CSCs, rather than non‑stem cancer cells, is important for the 
treatment of cancer. Therefore, recent studies have focused on 
developing novel treatment strategies that target CSCs (20-23).
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To study these cells, CSCs must be identified and isolated 
from the tumor bulk or cancer cell lines. The most widely used 
method for identifying/isolating CSCs is based on the expres-
sion of specific cell surface marker or sets of markers (24). A 
number of specific cell surface markers of CSCs have been 
identified in a number of diverse human cancers, such as 
cluster of differentiation (CD)34+CD38‑ for CSCs of acute 
myelomonocytic leukemia  (25) and CD133+ for CSCs of 
central nervous system tumors (26) and colon cancer (27). 
Recently, Schatton et al (24) extensively reviewed the specific 
cell surface markers of CSCs of diverse human cancers. It 
has been reported that the activity or expression of certain 
enzymes and membrane transporters in CSCs are different 
from that in non‑stem cancer cells. For example, the activity 
of aldehyde dehydrogenase 1 (ALDH1) in CSCs is increased 
in various cancer types, including breast (28), lung (29) and 
pancreatic cancer  (30). Furthermore, the cell membrane 
adenosine triphosphate‑binding cassette (ABC) transporter is 
overexpressed in the CSCs of ovarian cancer (31), nasopharyn-
geal carcinoma (32), glioma (33) and lung cancer (34). Notably 
an isolation method for CSCs, which is based on the enzymatic 
activity of ALDH1, has been developed and is now widely 
accepted (28,35-38). Furthermore, side population assays, a 
well‑known and extensively used technique for isolation of 
CSCs, are based on the fact that the overexpression of ABC 
transporter in CSCs effectively effuse the Hoechst dye (39). 
In addition to surface markers and functional markers, CSCs 
exhibit unique characteristics, including upregulation of 
anti‑apoptotic proteins, increased efficiency of DNA repair and 
dormancy/slow cell cycle kinetics (40). These characteristics, 
together with functional markers, are reported to contribute to 
the resistance of CSCs to therapy (41-44).

A recent study revealed that like induced stem cells, 
non‑stem cancer cells can dedifferentiate into CSCs via 
epithelial‑mesenchymal transition (EMT) (45). In addition, 
it has been reported that radiotherapy induces cancer cells 
to undergo EMT, which results in the development of cancer 
cell radioresistance (46). Recent studies have confirmed that 
radiation can induce non‑stem cancer cells to obtain the 
phenotype and functions of CSCs, including high resistance to 
radiotherapy (47,48). These results indicate that radiation can 
directly result in the generation of new CSCs from non‑stem 
cancer cells and that these transformed non‑stem cancer cells 
therefore become radioresistant and thus survive radiotherapy 
treatment (47,48). These findings indicate that non‑stem cancer 
cells, in addition to intrinsic CSCs, contribute to relapse and 
metastasis of cancer following transformation into CSCs. This 
review will investigate the radiation‑induced generation of 
CSCs, its association with EMT and its significance in cancer 
radioresistance.

2. CSCs exhibit a critical function in cancer cell radiore-
sistance

Radiotherapy is one of the common approaches for cancer 
therapy. It may be used alone or in combination with chemo-
therapy and/or surgery. Radiotherapy has demonstrated 
therapeutic effects for the majority of cancer types and exhibits 
curative potential in a number of solid human tumors (49), 
including head and neck carcinoma (50) and non‑small cell 

lung cancer (51). However, despite continuous advances in 
radiotherapy technology, a high proportion of patients succumb 
due to tumor recurrence and metastasis as a result of radiore-
sistant cancer cells (2). Increasing evidence has revealed that 
CSCs are the main contributor to cancer radioresistance in the 
majority of tumor types, such as glioblastoma (3), head and 
neck cancer (4), breast cancer (5) and pancreatic cancer (6). 
Furthermore, Baumann et al (52) reported that the radiore-
sistance of a tumor depends on the number of CSCs present 
within the tumor itself. Therefore, it was hypothesized that 
CSCs are responsible for the failure of radiotherapy (53).

Although the mechanism that confers radioresistance 
to CSCs remains unclear, significant advances in this area 
of study have been made. A number of potential factors are 
hypothesized to be involved in the radioresistance of CSCs. 
Desai et al (54) demonstrated that altered regulation of DNA 
repair genes, which contributes to enhanced double-strand 
break resolution, resulted in the radioresistance of human lung 
CSCs. Furthermore, compared with adherent prostate cancer 
cells (prostate cancer non‑stem cells), cells in prostatospheres 
(prostate CSCs) exhibited higher expression levels of DNA 
repair proteins following exposure to ionizing radiation, which 
efficiently repair radiation‑induced DNA injury  (55) and 
therefore confer a survival advantage to CSCs. Bao et al (16) 
reported that CD133+ glioma stem cells conferred glioma 
radioresistance via preferential activation of the DNA damage 
checkpoint response, as well as increased DNA repair 
capacity. Recently, Diehn et al (17) reported that, compared 
with non‑tumorigenic cells, breast CSCs possessed increased 
free radical‑scavenging ability due to the increased expression 
of free radical scavenging systems, which may reduce reactive 
oxygen species‑mediated DNA damage and cell death after 
radiation. The Notch (56), c‑Jun N‑terminal kinase (57) and 
protein kinase Cδ signaling (58) pathways are also hypoth-
esized to contribute to CSC radioresistance.

The tumor microenvironment also contributes to the 
radioresistance of CSCs. Jamal  et  al  (59) reported that 
CD133+ glioblastoma cells grown as intracranial xenografts 
repaired DNA damage more efficiently than those grown 
in vitro, as demonstrated by a more rapid decrease in level of 
radiation‑induced γH2AX and tumor suppressor p53-binding 
protein 1 foci, the indicators of DNA damage, in the CD133+ 
glioma cells grown in vivo. In a study using explant model 
and neurospheres culture models derived from surgical 
glioblastoma multiforme specimens, radiation was found 
to significantly reduce neurosphere formation in the neuro-
spheres cultures model, but not in the explant model  (60), 
which confirmed the involvement of the tumor microenviron-
ment in CSC radioresistance.

3. Origins of CSCs

Although the function of CSCs in therapy resistance of cancer 
has been confirmed, the origin of CSCs remains controversial. 
Several hypotheses regarding the origin of CSCs have been 
suggested to date, including cell fusion between adult stem 
cells and transformed or normal somatic cells, horizontal 
gene transfer from apoptotic cells into normal stem/progen-
itor cells, chromosome derangements and gene mutations 
in stem/progenitor and differentiated cells and inflammatory 
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microenvironment stimulation, all of which have been 
reviewed by Bu and Cao (61). However, the present review 
focused on EMT as a potential mechanism by which CSCs 
are generated.

EMT is a unique dedifferentiation process that is involved 
in embryonic development, whereby cells lose epithelial 
features and gain mesenchymal properties (62). EMT has also 
been identified in cancers derived from numerous tissue types, 
including esophageal (63), breast (64), colon (65), ovarian (66) 
and thyroid gland tissues (67). The cells undergoing oncogenic 
EMT observed in cancer exhibit similar characteristics to 
those undergoing developmental EMT, such as spindle-
shaped morphology, loss of cellular polarity, disintegration 
of tight junctions and adherens junctions, downregulation 
of E‑cadherin (epithelial cell marker) and upregulation of 
N‑cadherin and vimentin (mesenchymal markers) and an 
increase in migratory and invasive ability. The EMT process 
transforms the epithelial phenotype exhibited by cancer cells 
into a mesenchymal phenotype, resulting in cells that are more 
invasive, metastatic and resistant to therapy (68). Therefore, 
EMT is hypothesized to promote progression and aggres-
siveness of tumors (62) and notably, increased expression of 
EMT markers in tumors is associated with distant metastasis 
and poor prognosis (69). Therefore, these results indicate an 
association between EMT and CSCs.

It has been reported that EMT‑derived cells exhibit 
potential for multi‑lineage differentiation that is similar to 
mesenchymal stem cells (70). Furthermore, the induction of 
the EMT process in immortalized human mammary cells 
results in the expression of stem cell markers and an increased 
ability to form mammospheres, which are similar to those of 
stem cell‑like cells isolated from cultured human mammary 
epithelial cells (45). These findings indicate that EMT gener-
ates mammary cells with stem cell properties from normal 
mammary epithelial cells. Notably, the study also indicated 
that after undergoing EMT, experimentally immortalized 
human mammary epithelial cells dedifferentiated into CSCs, 
as demonstrated by the increased formation of colonies in soft 
agar suspension culture and tumor spheres, which indicate the 
in vitro tumorigenicity and stemness of cells, respectively (45). 
In addition, the in vivo tumorigenic capacity assay also demon-
strated that the immortalized human mammary epithelial 
cells that had undergone EMT formed tumors more efficiently 
than those that were undergoing the EMT process upon 
subcutaneously injecting them into athymic nude mice (45). 
These findings indicate that EMT promotes the generation 
of CSCs from more differentiated neoplastic cells. Similarly, 
Morel et al (71) confirmed that breast CSCs possessing stem 
and tumorigenic traits may be generated from non‑tumorigenic 
mammary epithelial cells through EMT. Another similar 
study using a breast cancer model also demonstrated that EMT 
in vivo generates breast CSCs, even if the process of EMT is 
incomplete or aberrant  (72). Furthermore, a clinical study 
using thyroidectomy specimens obtained from patients with 
anaplastic thyroid carcinoma (ATC) and contiguous differenti-
ated thyroid carcinoma (DTC) revealed that nestin, a marker 
for stem cell phenotype, was overexpressed in ATC, while no 
expression of E‑cadherin was observed in ATC. By contrast, 
contiguous DTC specimens were negative for nestin and posi-
tive for E‑cadherin expression (67). This study confirmed that 

EMT is associated with the acquisition of a stem cell pheno-
type in ATC, however, the significance of the study is limited 
by the small case series: The authors suggested that a further 
study based on a larger series of cases is required.

4. Radiation induces EMT in cancer

The association between radiation and EMT has gained 
increasing attention recently. A number of studies have 
confirmed that radiation can induce EMT or phenotypic changes 
similar to EMT (73-75). For example, in KYSE‑150R cells, a 
radioresistant esophageal cancer cell line, phenotypic changes 
similar to EMT are induced by radiation, including decreased 
E‑cadherin and increased Snail and Twist expressions (76), 
which are also observed in nasopharyngeal carcinoma (77) 
and colorectal cancer (78). Furthermore, a number of path-
ways have been reported to contribute to radiation‑induced 
EMT of cancer cells. In lung cancer cells, radiation increases 
EMT by regulating epithelial and mesenchymal cell markers 
via the Janus kinase 2/ p21-activated kinase 1/Snail signaling 
pathway  (79). Furthermore, Yuan  et  al  (80) reported that 
B lymphoma Mo-MLV insertion region 1 exhibits a central 
function in the regulation of radiation‑induced EMT via acti-
vation of phosphoinositide 3-kinase/protein kinase B signaling 
in breast cancer cells. In addition, in a study using cervical 
cancer cells, low‑dose radiation was demonstrated to activate 
the nuclear factor‑κB (NF-κB) pathway, which subsequently 
resulted in EMT of cervical cancer cells (81).

In contrast with phenotypic changes, the characteristic 
changes in the behavior of cancer cells that have undergone 
EMT post‑radiation are more attractive to investigators. The 
finding that cancer cells that have obtained mesenchymal 
phenotypes by EMT are more resistant to therapy implies 
that radiation‑induced EMT may have conferred radioresis-
tance to these cancer cells, which contribute to the relapse 
of cancer following radiotherapy. This hypothesis has been 
confirmed by numerous studies involving various types of 
cancer. Chang et al (46) revealed that prostate cancer cells 
exhibiting EMT after radiation therapy become more resistant 
to radiation. Similar results have also been reported in other 
types of cancer, including pancreatic cancer (82), colorectal 
cancer (83), breast cancer (84), lung cancer (79), nasopharyn-
geal carcinoma (77), hepatocellular carcinoma cells (85) and 
gastric cancer (86).

5. Radiation induces the generation of CSCs

The observation that radiation induces EMT of cancer cells, 
which drives the dedifferentiation of adult cancer cells into 
CSCs, indicates that radiation may result in the generation 
of CSCs from differentiated cancer cells. It has been demon-
strated that CSCs can be enriched both in vitro and in vivo by 
radiation, which indicates the possibility of radiation‑induced 
generation of CSCs. Wang et al (87) demonstrated that the 
proportion of prostate cancer stem‑like cells in a human 
prostate cancer cell culture increased significantly following 
exposure to radiation. The authors postulated that radiation 
eliminated the radiosensitive adult cancer cells in the culture 
by inducing apoptosis, which resulted in the enrichment of 
radioresistant CSCs. Al‑Assar et al (88) reported that breast 
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CSCs in xenografts exposed to radiation were enriched, as 
demonstrated by an increased number of CD24‑/epithelial-
specific antigen+ cancer cells, a marker of breast CSCs, in 
xenografts. The enrichment of breast CSCs in xenografts 
exposed to radiation was also considered as the result of 
different radioresistance between CSCs and adult cancer cells, 
which was consistent with the aforementioned speculation of 
Wang et al (87). This explanation was undoubtedly reasonable, 
but may be not complete. Thus, there may be another reason-
able source causing an increase in the absolute number of CSCs 
and subsequently resulting in CSCs enrichment upon radiation: 
Radiation‑induced generation of CSCs. This source cannot be 
ignored, since the possibility that cancer cells without stem-
ness markers could obtain stemness markers upon exposure to 
irradiation was not excluded in the aforementioned studies of 
Wang et al (87) and Al‑Assar et al (88).

In 2012, Lagadec et al  (48) revealed for the first time 
that the enrichment of breast CSCs following radiation was 
involved in the induction of stem cell‑like properties in 
non‑stem cancer cells. In this study, the non‑stem breast 
cancer cells (ALDH1- cells) in single cell suspensions obtained 
from fresh human breast specimens or established cells lines, 
were isolated using fluorescence‑activated cell sorting after 
ALDH1 staining (48). These non‑stem breast cancer cells were 
subsequently exposed to various dose of radiation. Following 
5 days of irradiation, the number of ALDH1+ cells in the 
irradiated non‑stem breast cancer cell population increased 
significantly in a dose‑dependent manner, which indicated 
that radiation promoted the non‑stem breast cancer cells to 
exhibit a CSC phenotype. Furthermore, the generated breast 
CSCs induced by radiation exhibited increased mammo-
sphere formation, increased tumorigenicity and expressed the 
same stemness‑related genes as breast CSCs obtained from 
non‑irradiated samples. Furthermore, these induced breast 
CSCs exhibited resistance to radiation. This study confirmed 
that radiation induced the generation of CSCs, which was also 
reported by Wang et al (89). Additionally, Ghisolfi et al (47) 
demonstrated that radiation induced stem cell‑like properties 
in non‑stem hepatocarcinoma cells, as demonstrated by the 

findings that non‑side population (CSC‑depleted population) 
cells from HepG2 and Huh7 cells exhibited increased sphere 
formation and stemness gene expression after exposure to 
radiation.

To date, no studies have investigated the involvement 
of EMT in the radiation‑induced generation of CSCs. 
However, studies investigating the mechanism underlying 
radiation‑induced generation of CSCs have indicated the 
potential association between EMT and the generation of 
radiation‑induced CSCs (90,91). Lagadec et al (48) reported 
that inhibition of Notch receptor expression reduced the 
ability of the cells to form mammospheres, and therefore 
concluded that the ionizing radiation‑induced translation of 
non‑stem breast cancer cells was Notch‑dependent. Previous 
studies have revealed that Notch signaling mediates EMT 
via direct or indirect regulation of Snail expression (92-94), 
a key transcription factor regulating EMT, or via epigenetic 
mechanisms involving miRNA  (95). In another study by 
Wang et al (89), the expression of NF‑κB in breast cancer cells 
was elevated after radiation exposure, which contributed to 
the expression of stemness genes. Inhibition of NF‑κB blocked 
radiation‑induced stemness in vitro and in vivo, which indicated 
that the NF‑κB pathway was involved in the radiation‑induced 
generation of breast CSCs. Similar to the Notch pathway, the 
NF‑κB pathway was also reported to contribute to EMT via 
transcriptional regulation of genes involved in EMT, including 
Snail (96), zinc-finger E-box-binding (ZEB)1 and ZEB2 (97) 
and Twist (98). These findings suggest that EMT is involved in 
the radiation‑induced generation of CSCs.

The observation that radiation induces the generation 
of CSCs from differentiated cancer cells highlights a novel 
interaction between radiation and cancer, which may be key 
to understanding cancer radioresistance. The killing effect 
of radiation on cancer cells has been well established and 
is widely used in the clinic as the main approach for cancer 
therapy. Previous studies have recognized that radiotherapy 
can effectively kill the majority of differentiated cancer cells 
in the hierarchical cancer tissue during treatment, however, 
the intrinsic radioresistant CSCs in the cancer tissue survive 

Figure 1. Radiation‑induced generation of CSCs contributes to the relapse and metastasis of cancer. CSCs are a small, but radioresistant cell subpopulation 
that exist within heterogeneous cancer masses. Under conditions of radiation‑induced stress, CSCs survive following IR; however, the majority of non‑stem 
cancer cells are killed via various mechanisms such as induction of cell apoptosis or mitotic death. However, a small number of non‑stem cancer cells undergo 
dedifferentiation and transform into CSCs via unknown mechanisms. The newly generated CSCs, together with the intrinsic CSCs, subsequently contribute to 
relapse and metastasis of cancer. CSCs, cancer stem cells; IR, irradiation.
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radiotherapy and therefore this results in the relapse and 
metastasis of cancer (2,99). The findings that radiation can 
induce the generation of fresh CSCs from non‑stem cancer 
cells and that the novel CSCs exhibit radioresistant traits 
similar to the intrinsic CSCs indicates that the newly gener-
ated CSCs induced by radiation may be partly responsible for 
the radioresistance of cancer (Fig. 1).

6. Conclusion

Previous studies have established that the relapse and 
metastasis of cancer is due to the existence of intrinsic, radio-
resistant CSCs in hierarchical cancer tissue (100-104). Recent 
evidence indicates that radiation converts non‑stem cancer 
cells into CSCs, which exhibit similar radioresistance to 
intrinsic CSCs (90). These results provide novel insights with 
regard to the mechanism of cancer radioresistance, through 
which the differentiated and radiosensitive non‑stem cancer 
cells that should be killed by radiotherapy are able to survive 
radiotherapy. After radiotherapy‑induced stresses disappear, 
these newly generated CSCs, together with the intrinsic CSCs, 
contribute to the relapse and metastasis of cancer. Future 
studies investigating the underlying pathways driving this 
transformation may lead to the development of treatment 
approaches that block the generation of induced CSCs and 
subsequently enhance the efficacy of radiation treatment.
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