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Abstract

Amino acid substitution models are commonly used for phylogenetic inference, for ancestral sequence reconstruction, and for the

inference of positive selection. All commonly used models explicitly assume that each site evolves independently, an assumption that

is violated by both linkage and protein structural and functional constraints. We introduce two new models for amino acid substi-

tution which incorporate linkage between sites, each based on the (population-genetic) Moran model. The first model is a gener-

alized population process tracking arbitrarily many sites which undergo mutation, with individuals replaced according to their

fitnesses. This model provides a reasonably complete framework for simulations but is numerically and analytically intractable.

We also introduce a second model which includes several simplifying assumptions but for which some theoretical results can be

derived. We analyze the simplified model to determine conditions where linkage is likely to have meaningful effects on sitewise

substitutionprobabilities, aswell as conditionsunderwhich theeffectsare likely tobenegligible.Thesefindingsarean important step

in the generation of tractable phylogenetic models that parameterize selective coefficients for amino acid substitution while ac-

counting for linkage of sites leading to both hitchhiking and background selection.
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Introduction

Computational prediction of protein-encoding genes that

have changed functions under positive directional selection

over the lineages of a phylogenetic tree remains one of the

grand challenges in computational evolutionary genomics

(Anisimova and Liberles 2012). Mutation–selection style mod-

els to perform this task have begun to replace dN/dS-based

approaches for their greater mechanistic parameterization

and insensitivity to dS saturation, but the development of

improved codon models and mutation–selection models is

ongoing (Spielman and Wilke 2015; Teufel et al. 2018). The

mutation–selection framework creates a model for substitu-

tions occurring along the branches of a phylogenetic tree by

combining a model for mutation with a model for selection

(Halpern and Bruno 1998). Since the original implementation,
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mechanistic mis-specifications of mutation–selection models

have begun to be addressed, including parameterized mixture

models of sitewise amino acid fitness profiles and relaxation

of the equilibrium assumption (Teufel et al. 2018).

One of the important remaining mis-specifications is that

of the nonindependence of sites. Nonindependence of

sites because of structural and functional interaction can be

described with chemical detail (see Grahnen et al. 2011).

Nonindependence of sites due to linkage requires a population

genetic framework that is distinct and is specifically addressed

here. To enable future improvements to amino acid substitu-

tion models, including mutation–selection models, a better un-

derstanding of the dynamics of amino acid substitution with

linked sites is needed. The effects of genetic linkage have been

studied in population genetic models for some time. Early work

by Griffing (1960), Nei (1963), Felsenstein (1965), and Hill and

Robertson (1966) detailed the interactions between selection,

linkage disequilibrium, and epistasis. In particular, an effect

(widely known as the Hill–Robertson effect) by which linkage

between sites leads to reduced efficacy of selection in finite

populations was established by Hill and Robertson (1966). The

Hill–Robertson effect can be conceptualized in terms of two

parts, genetic hitchhiking (Smith and Haigh 1974) where less

fit amino acids are fixed with higher probability due to more fit

amino acids they are linked to and background selection

(Charlesworth et al. 1993), where more fit amino acids are

eliminated from the population without fixing due to less fit

amino acids at other sites they are linked to. These linkage

effects are distinct from nonindependence due to protein

structural effects, which have previously received specific con-

sideration in the context of amino acid substitution models

(Parisi and Echave 2001; Robinson et al. 2003; Rodrigue et

al. 2005, 2009; Dasmeh and Serohijos 2018). In contrast to

protein-structural effects, the effects of linkage have largely

been ignored in existing amino acid substitution models.

The parameterization of selective coefficients from muta-

tion–selection models is informative about the nature of se-

lective pressures. When implemented in a nonequilibrium

framework (Blanquart and Lartillot 2008; Tamuri et al.

2009; Rodrigue et al. 2010; Rodrigue and Lartillot 2014;

Jones et al. 2017; Parto and Lartillot 2017; Rodrigue and

Lartillot 2017; Thiltgen et al. 2017; de Koning and De

Sanctis 2018; Teufel et al. 2018; Kazmi and Rodrigue 2019;

Ritchie et al. 2021), these models can be used to detect line-

age- and site-specific selective pressures, including positive

directional selection, dependent upon correct identification

of selective coefficient parameter values. However, failure to

account for the effects of genetic linkage could lead to mis-

estimation of parameters, and hence to erroneous inferences

of the strength of selective effects. It is an obvious conjecture

that these processes could affect the parameterization of se-

lective coefficients for sites which are treated independently,

especially in regions of low recombination, leading to a damp-

ening of the measured fitness differences corresponding to

support for a neutral model when selective forces are

operating.

The overall aim of this work is to understand the popula-

tion dynamics associated with genetic linkage for ultimate use

in the estimation of selective coefficients. We begin by intro-

ducing a finite-sites model, which, theoretically, is an appro-

priate substitution model for nonrecombining regions of the

genome. Mutation rates can be inferred from a nucleotide-

level model of mutation, and fitnesses could in principle be

estimated from phylogenetic data in much the same way as in

independent-sites mutation–selection models. However, al-

though suitable for simulation of small population size data,

the model is ultimately intractable, and hence, is not suitable

for inference in practice. Therefore, we seek to develop a

framework which captures the qualitative behaviors of this

model in a more practicable way.

The main contribution of this paper is in the analysis of a

simplified, infinite-sites model which is suitable for evaluating

the extent of misestimation caused by fitting a site-

independent mutation-selection model in the presence of

linkage. We address the problem of evaluating the probability

that several mutations fix together given that they do indeed

fix over some branch of length tb. By fix together, we mean

that the two (or more) mutations arise on the same lineage

and that the haplotype introduced by the second (last) muta-

tion then goes to fixation. This is done towards the goal of

identifying which sites on which lineages should be treated as

linked for the purposes of inferring fitness profiles. The natural

link between population-level models that predict fixation and

phylogenetic methods is the understanding that each branch

reflects the evolution of a population over a period of time,

the branch length.

Results

Finite Sites Model

Before we introduce the infinite-sites model which is of prin-

ciple interest in this article, we first introduce a finite-sites

equivalent. The finite sites model is fairly intractable due to

its large state space; however, it would be suitable for simu-

lations. Here, it is introduced to motivate the infinite-sites

model upon which this article focuses. The main distinction

between these models is if each mutation occurs at a distinct

site or has some probability of occurring at a site that has

already experienced a mutation.

Let XðtÞ be a Continuous-time Markov chain with N�M

dimensional state space S0 tracking the evolution of a popu-

lation of size N with genomes consisting of M sites; the state

of the process is a matrix X ¼ ½xij �with xij tracking the allele in

site j of individual i. We assume an alphabetA consisting of 20

characters, corresponding to amino acids. The order of the

state space of the model is then 20MN, which is impractically

large for even moderately large M, N. The model is
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nonetheless of some theoretical interest, and perfectly suit-

able for simulation.

For a state X 2 S0 we denote the kth row of X, tracking the

genome of the kth individual by Xk. We write the (Darwinian)

fitness of amino acid A at site j as fjðAÞ, and we assume that

fitnesses are multiplicative, so that the fitness of the kth indi-

vidual is fðXkÞ ¼
QM
j¼1

fjðXkjÞ. Furthermore, we let lðA; BÞ de-

note the (site-independent) mutation rate from amino acid A

to amino acid B. This process treats the continuous stepwise

probability of losing an individual in proportion to the fre-

quency of its genotype in the population and replacing that

individual with the birth of a new individual in proportion to

the cumulative fitness of individuals with that genotype in the

population.

The process is characterized by the same dynamics as the

Moran process (Moran 1958) with mutation, but for a fixed

finite number of linked sites. More precisely, the generator of

the process is given by T ¼ ½tXY�, where the off diagonal

elements are given by

tXY ¼
X

i;j

f ðXjÞ
N
P

k f ðXkÞ
RijðX;YÞ þ

X
i;j;A;B

lðA; BÞEAB
ij ðX;YÞ;

(1)

where,

RijðX;YÞ ¼
1 if Xk ¼ Yk for all k 6¼ i; and Yi ¼ Xj

0 otherwise ;

(

(2)

and

EAB
ij ðX;YÞ ¼

1 if Xkl ¼ Ykl for all ðk; lÞ 6¼ ði; jÞ;

and Yij ¼ B; and Xij ¼ A

0 otherwise :

8>><
>>: (3)

The diagonal elements of T are as required to ensure zero

row-sums.

That is, RijðX;YÞ is an indicator function which is 1 if and

only if X and Y denote populations which are identical (in

terms of the genomes of the individuals) with the exception

of the ith individual—the ith individual of Y having a genome

matching the jth individual of X. Similarly, EAB
ij ðX;YÞ is an

indicator function which is 1 if and only if X and Y denote

populations which are identical with the exception of the jth

site in the ith individual, where character A is replaced with

character B in Y relative to X. Equation 1 establishes the

modeling framework, describing the transition through in-

stantaneous death of individual i (Yi) and replacement with

the birth of individual Xj, in a population where all other

individuals are unchanged, with the independent additive

process of mutation of individuals. Equation 2 defines an

indicator function to determine which states of the popula-

tion can be reached from a given state X through the birth

and death of individuals (i.e., only one individual can be

replaced at a time, so the new state Y has to be the same

in all but one individual). Similarly, equation 3 similarly defines

the population states that can be reached through a

mutation.

We now detail the infinite-sites model, which can be

thought of as an approximation to the finite-sites model in-

troduced above.

Infinite-Sites Model

The infinite-sites model introduced here can be thought of as

a combined model which transitions probabilistically between

several simpler models, each tracking the evolution of the

population with a fixed number of haplotypes. Initially, the

model behaves as a Poisson process waiting for the first mu-

tation to arise in the population. When the first mutation

arises, the model then behaves as a two-allele continuous-

time Moran model until the second mutation arises. There

are, in general, four possibilities to be considered when the

second mutation arises

• The first mutation may have gone extinct in the popula-

tion—in this case, the process again behaves as a two-allele

model.

• The first mutation may have gone to fixation in the popu-

lation—this again leads to a two-allele model, wherein the

“wild-type” now features the first mutation.

• The first mutation may still be segregating, in which case

the process now behaves as a three-allele Moran model.

This case further divides into two subcases:

• the new mutation may occur in the same lineage as the

first, in which case we treat the fitness effects as multipli-

cative so that the three alleles have fitnesses 1; f1; f1f2.

• the new mutation may occur in a wild-type individual, in

which cases the three alleles will have fitnesses 1; f1; f2.

We reduce the number of possibilities which need to be

explicitly modeled by conditioning on the number of substi-

tutions which occur over the time period of interest and track-

ing only those mutations which lead to substitutions. Thus,

we need only calculate probabilities associated with the event

that the first substitution occurs before the second mutation

arises, or that the first mutation is still segregating when the

second mutation arises, and the second mutation occurs in

the same lineage as the first. For example, applying the model

over a rooted phylogenetic tree, for each branch we would

track only those mutations which lead to substitutions on that

branch, and we would ignore the effects of any haplotypes

segregating on the branch besides the ones that lead to sub-

stitutions within the branch. The identity and number of sub-

stitutions occurring on a branch can be inferred through

phylogenetic substitutional mapping procedures (see e.g.,
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Monit and Goldstein 2018). In such a procedure, this would

occur with a simpler model, but in principle could be per-

formed with any model including the one from this paper

for consistency.

The number of possibilities to be considered in the absence

of conditioning is combinatorially increasing with the number

of mutations which arise. However, conditioning on K sub-

stitutions occurring on a branch, and tracking only those

mutations which eventually fix, the number of possible fixa-

tion histories is given by the number of compositions of K,

2K�1. We give the details for the case of three substitutions

occurring on a branch below, which can be easily generalized

to K substitutions.

For three substitutions, the possible fixation histories are:

each mutation reaching fixation independently, the first two

fixing together, the second two fixing together, and all three

fixing together. Each history is associated with a different set

of three submodels

• If the three mutations each fix separately, then we consec-

utively apply three two-allele models.

• If the first mutation fixes alone, and the second and

third mutations fix together, we apply a two-allele

model, another two-allele model, and then a three-allele

model.

• If the first two mutations fix together and the third fixes

alone, we apply a two-allele model, a three-allele model,

and then a two-allele model.

• If all three fix together, we apply a two-allele model, a

three-allele model, and then a four-allele model.

Denoting the time of the ith mutation by ti, the first of the

submodels is applied during the interval ½t1; t2Þ, the second

during the time interval ½t2; t3Þ, and the third during the time

interval ½t3; tb�.
Probabilities are calculated for each possible history,

which involves the exponentiation of the three generator ma-

trices of the k-allele submodels, which have dimensions

N þ k

k

 !
�

N þ k

k

 !
. Each of the k-allele submodels

reflects the possibility that the population is evolving with k

different possible states for the N individuals at a particular

point in time. For general K substitutions, we consider 2K�1

histories. Each of the histories represents a possible path of

substitutions that could have occurred in the population and is

consistent with the substitutions observed at the end of the

branch. A history can be denoted by a K—1 digit binary num-

ber, with the ith being equal to 1 if a fixation occurs between

the ith and ði þ 1Þth mutations—a final fixation between the

K th mutation and the end of the branch is implied. Each his-

tory is associated with K submodels, the ith of which models

the process between the ith and ði þ 1Þth mutations.

k-Allele Process

Consider a population of fixed size N in which mutations

occurs at Poisson rate um in each individual. New mutations

arise in the population at the overall rate Num. When a new

mutation occurs, it is assumed that it occurs in a different site

to any previous mutation, and hence leads to a never before

seen haplotype (as in the infinite sites model (Kimura 1969)).

When such a population has k unique alleles, we model its

evolution until the time of the next mutation using what we

here call the k-allele process.

We denote the fitness of the ith mutation, relative to the

wild-type allele at its locus as fi. The fitness of the ith haplo-

type, denoted f �i is the product of the fitness of the 1st;2nd;

. . . ; ith mutations, which are all present in the ith haplotype by

the assumptions of our model. That is,

f �i ¼
Yi

j¼1

fj: (4)

We introduce the vector notation f ¼ ½fi �i¼1;...;k and f � ¼
½f �i �1;...;k to track the mutation and haplotype fitnesses,

respectively.

The k-allele process is a k-allele continuous-time Moran

model. That is, a continuous-time Markov chain f
Xkðt; f1; f2; . . . ; fk�1ÞÞg with state space

Sk ¼ fðx1; . . . ; xk�1Þ : xj 2 N
þ;
P

j xj � Ng, and generator

matrix Qðf �Þ ¼ ½qxy ðf �Þ�, where the nonzero off-diagonals

are given by

qxy ðf �Þ ¼

N �
P

j xj

N �
P

j xj þ
P

j xjf
�
j

xl

N
if y ¼ x � e

l

xlf
�
l

N �
P

j xj þ
P

j xjf
�
j

N �
P

j xj

N
if y ¼ x þ e

l

xlf
�
l

N �
P

j xj þ
P

j xjf
�
j

xu

N
if y ¼ x þ e

l
� e

u
;

8>>>>>>>>>><
>>>>>>>>>>:

(5)

where e
i

represents a vector of zeroes with a 1 in the ith

position. The state of the k-allele process is a count of the

individuals with each of the k possible alleles at any time.

The first case in equation (5) represents the death of an

individual carrying the wild-type haplotype and the birth of an

individual carrying the lth haplotype, and the second case is

the reverse situation. The third case represents the death of an

individual carrying the uth haplotype and the birth of an indi-

vidual carrying the lth.

Within each case, the factor on the left accounts for birth

with fecundity selection. The probability that an individual

carrying the jth haplotype is selected to reproduce is given

by the total fitness contribution of haplotype j divided by

the total fitness of the population. The factor on the right is
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a term for death, with any individual in the population being

equally likely to die as any other.

Time is scaled such that we expect 1 birth/death event per

unit time, including the birth and death of individuals of the

same type (which does not lead to any transition of the pro-

cess). This leads to N time units being roughly equivalent to 1

generation in a discrete-time population model. Typically in a

phylogenetic analysis, time is measured in substitutions per

site, which can vary depending on various factors, including

the size of the population and selective effects. For neutral

mutations that arise in proportion to the population size, the

rate of substitution is independent of N. A given mutation,

after being introduced, will have a fixation rate dependence

on the size of the population. Here an individual in the pop-

ulation is expected to be replaced for each unit of time, and

hence N time units corresponds roughly to a single genera-

tion. Readers should keep this difference in time measure-

ments in mind as they consider the methodology.

Case with K¼ 2 Substitutions on a Branch of Length tb

Now consider the situation in which we know a priori that

exactly K¼ 2 substitutions have occurred along a branch of

length tb. We are interested in evaluating the relative proba-

bility that these two mutations will have fixed together, as

opposed to one mutation having fixed before the other oc-

curred. We model the process of substitution occurring over

this branch by applying several different k-allele processes at

different points along the branch. Previously, Tataru et al.

(2017) considered a biallelic polymorphism aware Wright–

Fisher model for the examination of loci under selection.

Here, we present an alternative approach with different

assumptions. We ignore any mutations which did not go to

fixation on the branch, which is to say we explicitly assume no

such mutations occurred. It should be noted that such

“ghost” mutations can in principle be accounted for as a

background distribution of segregating changes without ex-

plicit specification. This could be achieved by treating the fit-

ness of the ancestral (wild type) allele as a frequency weighted

average of alleles which were segregating during the period

over which the substitutions were introduced. Such a calcu-

lation to estimate this was recently presented by Galeota-

Sprung et al. (2020), which shows the distribution of fitnesses

of alleles that are segregating and destined to be lost from the

population. In principle, these “ghost” mutations could be

accounted for by applying the average fitness calculated in

Galeota-Sprung et al. (2020) in place of the normalized “wild-

type” fitness applied here. The overall effect of this would be

to increase the relative fitness of any particular mutation, in-

creasing the chance of substitution. Accounting for this effect

would be important in applications to derive real fitnesses

from empirical data; however, for the purposes of this anal-

ysis, we keep things simple by assuming that new mutations

segregate against a population with fitness normalized to 1.

We start by considering the case in which the arrival times

of the mutations are fixed, which we will relax later on.

Throughout the following argument, all probabilities are con-

ditioned on these arrival times. Suppose that the first muta-

tion arrived at a time t1, and that the second arrived at time t2.

We can model the situation from time t ¼ t1 to time t ¼ t2
with the two-allele process. The initial distribution in this in-

terval has all of its mass in the State 1, since a single mutation

has just occurred. After time t ¼ t2, there are two cases that

need to be considered:

Case 1: the first mutation fixed by time t2, and then the

second mutation fixed by time tb.

Case 2: the first mutation did not fix (or go extinct) by

time t1, but then the haplotype carrying both the first and

second mutation fixed before tb.

Considering the first of the two cases above, the probabil-

ity that the two-allele process reached fixation by time t¼ t2 is

given by

pI ¼ Pðfirst mutation fixes by t2Þ ¼ PðX2ðt2 � t1; f1Þ

¼ NjX2ðt1; f1Þ ¼ 1Þ

¼ ½e
1
eQðf1Þðt2�t1Þ�N;

(6)

and when this fixation event occurs the new “wild-type” has

fitness f1. We can then model the population from t2 to tb
with the two-allele process X2ð�; f2Þ. Thus, the probability that

the first and second mutations fix independently is given by

Pðfix independentlyÞ ¼ PðX2ðt2 � t1; f1Þ

¼ N;X2ðtb � t2; f2Þ ¼ NjX2ðt2; f1Þ ¼ 1Þ

¼ PðX2ðt2 � t1; f1Þ ¼ NjX2ðt2; f1Þ ¼ 1Þ � PðX2ðtb � t2; f2Þ

¼ NjX2ðt2 � t1; f1Þ ¼ N;X2ðt2; f1Þ ¼ 1Þ

¼ ½e
1
eQðf1Þðt2�t1Þ�N � PðX2ðtb � t2; f2Þ ¼ NjX2ðt2; f2Þ ¼ 1Þ

¼ ½e
1
eQðf1Þðt2�t1Þ�N � ½e1

eQðf2Þðtb�t2Þ�N
(7)

Now consider the second case, the probability that there are

i ¼ 1; . . . ;N � 1 individuals carrying the first mutation at time

t2 is given by

PðX2ðt2 � t1; f1Þ ¼ ijX2ðt1; f1Þ ¼ 1Þ ¼ ½e
1
eQðf1Þðt2�t1Þ�i: (8)

Further, the probability that the second mutation occurs in an

individual carrying the first mutation, which we will call oc-

curring in the same lineage and denote by EL, given that there

are i such individuals is given by

PðELjiÞ ¼
i

N
: (9)

In such event, the population can be modeled during the

time from t2 to tb by the three-allele process X3ð�; f1; f2Þ,
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started from the state ½i � 1; 1�, since after the second muta-

tion there will be i � 1 individuals carrying only the first mu-

tation and 1 carrying both. The probability that there were i

individuals carrying the first mutation at time t2, and that the

haplotype carrying both mutations then went to fixation by

time tb is given by

PðX2ðt2 � t1; f1Þ ¼ i;X3ðtb � t2Þ

¼ ½0;N�; ELjX2ðt1; f1Þ ¼ 1Þ

¼ PðX2ðt2 � t1; f1Þ ¼ i; ELjX2ðt1; f1Þ ¼ 1Þ � PðX3ðtb � t2Þ

¼ ½0;N�jX2ðt1; f1Þ ¼ 1; EL;X2ðt2 � t1; f1Þ ¼ iÞ

¼ PðX2ðt2 � t1; f1Þ ¼ ijX2ðt1; f1Þ ¼ 1Þ

�PðELjX2ðt2 � t1; f1Þ ¼ i;X2ðt1; f1Þ ¼ 1Þ

�PðX3ðtb � t2Þ ¼ ½0;N�jX2ðt1; f1Þ

¼ 1; EL;X2ðt2 � t1; f1Þ ¼ iÞ

¼ PðX2ðt2 � t1; f1Þ ¼ ijX2ðt1; f1Þ ¼ 1Þ

�PðELjiÞ � PðX3ðtb � t2Þ ¼ ½0;N�jX3ðt2Þ ¼ ½i � 1; 1�Þ

¼ ½e
1
eQðf1Þðt2�t1Þ�i �

i

N
� ½e½i�1;1�e

Qðf1;f2Þðtb�t2Þ�½0;N�:

(10)

Summing over i ¼ 1; . . . ;N � 1, we see that the probability

that the two mutations fix together is given by

pT ¼ Pðfix togetherÞ

¼
XN�1

i¼1

½e
1
eQðf1Þðt2�t1Þ�i �

i

N
� ½e½i�1;1�e

Qðf1 ;f2Þðtb�t2Þ�½0;N�
� �

:

(11)

The probability that the two mutations fix together, condi-

tional on the two mutations fixing is given by

Pðfix togetherjboth fixÞ ¼ Pðfix together; both fixÞ
Pðboth fixÞ

¼ Pðfix togetherÞ
Pðfix togetherÞ þ Pðfix independentlyÞ

¼ pT

pT þ pI
:

(12)

Notice that if we were to assume independent sites, we

would calculate the probability of fixation of the two muta-

tions as pI. If we think of this assumption as an approximation,

and the linked-sites model as the “true” model, then equa-

tion (12) can be interpreted as the relative error introduced

by the approximation. The absolute error is given by pT.

Thinking in these terms, the probability of fixation is always

underestimated by the independent sites model on branches

with two substitutions, and the same reasoning extends to

multiple substitutions. It should be noted however that in

practical applications it is the long-run probability of indepen-

dent fixation that is usually applied, which does not necessar-

ily underestimate the probability of fixing together or

separately before the end of the branch. The weak mutation

assumption gives each mutation an infinite time in which to

fix or go extinct before the next mutation, which itself leads to

an overestimation of pI. Ideally, the overestimation of pI would

balance out the underestimation of the probability of fixation,

but this would only very rarely be the case by coincidence.

Since it is not generally known (or inferred) at what

time particular mutations were introduced along a branch,

we also calculate the relative probability of mutations fixing

together versus fixing separately without conditioning on the

arrival times (or order) of the mutations. Writing the event

that the two mutations fix as EF, and the event that they

fix together as ET, we can rewrite equation (12) making the

conditioning on particular times at which mutations occur

explicit,

PðET jt1; t2; EFÞ ¼
pT

pT þ pI
: (13)

Now, applying the law of total probability we have

PðET jEFÞ ¼
Ð tb

0

Ð tb

0 PðET jt1; t2; EFÞPðt1; t2Þdt1dt2

¼
Ð tb

0

Ð tb

t1
PðET jt1; t2; EFÞPðt1; t2Þdt2dt1

þ
Ð tb

0

Ð tb

t2
PðET jt2; t1; EFÞPðt2; t1Þdt1dt2:

(14)

Notice that in the last line of equation (14), we have split

the integral into the two alternatives where the “first” mu-

tation arrives first, and the “second” mutation arrives

first—this is in keeping with the preceding results in which

we assumed the order of mutations. Note that these two

terms are essentially the same, but with the roles of t1 and

t2, as well as f1 and f2 reversed (as indicated by our reorder-

ing of the arguments).

Since PðET jt1; t2; EFÞ is given by equation (13) we need

only find Pðt1; t2Þ in order to have an expression for the inte-

grand (which we will proceed to integrate numerically). Since

we assume that mutations arrive at (the same) Poisson rate, a

well-known result (e.g., Ross 1996, p. 66) gives that the joint

distribution of arrival times is

Pðt1; t2Þ ¼
1

t2
b

; (15)

where the usual factor accounting for the order of the ran-

dom variables is dropped, since we have fixed the order within

the two terms of equation (14).
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Computing for Large N

The calculation of PðET jEFÞ involves some expensive compu-

tations, most notably the integration of terms involving the

exponential of the three-allele process’s generator matrix.

Attempting these computations without special consideration

is infeasible for realistic values of N. At the time of writing, we

have not found a suitable approximation or computational

approach to allow us to obtain PðET jEFÞ for large N.

Nonetheless, we detail some particularly efficient approaches

to compute fixation probabilities in the two-allele process,

and a relatively efficient procedure to compute fixation prob-

abilities in the general three-allele process for long branches.

The two-allele Moran model is one of the simplest models

in population genetics from a computational perspective and

has received a lot of attention since its introduction by Moran

in 1958 (Moran 1958). Often diffusion approximations are

used for the Moran model and closely related Wright–Fisher

model, most notably the results derived by Kimura (1969).

Here we take a slightly different approach to compute the

exact long-run fixation probability using standard methods

from the theory of continuous-time Markov chains, as well

as applying a recent approximation due to Hathcock and

Strogatz (2019) for the finite-time case.

The case where the first mutation is segregating for a long

time before the second mutation arises can be approximated

by the long-run fixation probability as t2 !1. The exact

long-run fixation probability is given by

p1fix ¼ lim
t!1

PðX2ðtÞ ¼ NjX2ð0Þ ¼ 1Þ ¼ �e
1
ðQ�Þ�1v

N
; (16)

where,

Q ¼
Q� V

O O

" #
; (17)

and Q� contains the transition rates between the transient

states while V contains the transition rates into the absorbing

states. The matrix �ðQ�Þ�1 records the expected times spent

in each transient state before absorption Darroch and Seneta

(1967), while v
N

records the rate at which absorption into

state N occurs from each transient state.

This can be solved very efficiently using standard linear al-

gebra techniques. Specifically, we can rewrite equation (16) as

p1fix ¼ �ðQ
�Þ�1

1 v
N
; (18)

where ðQ�Þ�1
1 denotes the first row of the inverse of Q�.

Thus, we need only solve the system of linear equations

ðQ�Þ�1
1 Q� ¼ e

1
; (19)

which is considerably less computationally expensive than

computing the inverse �ðQ�Þ�1 itself.

We note that this approach to calculating p1fix is roughly

equivalent to the method applied to the Wright–Fisher

model in Krukov et al.’s Wright–Fisher Exact Solver (WFES)

(Krukov et al. 2017), but applied in our case to the

continuous-time process. Other results equivalent to those

calculated by WFES (Krukov et al. 2017) can be obtained

for continuous-time processes in a straightforward manner

(refer to the supplement of that paper and De Sanctis

et al. (2017)). In the case of the Moran model, exact compu-

tation is more efficient than it is for the Wright–Fisher model

(as noted by De Sanctis et al. (2017)) since the generator

matrix Q� is tridiagonal, leading to effectively instantaneous

computations on our workstation computer for N up to

about 106. Alternatively, the fixation formula derived for the

diffusion approximation by Kimura (1969) can be used in

place of p1fix , which saves time when N is much larger than

106, but becomes inaccurate when the effect of selection is

large.

If the first mutation segregates for a short enough

time that the probability of fixation before the arrival

of the second mutation is not well approximated by the

long-run fixation probability, then we apply the approxima-

tion due to Hathcock and Strogatz (2019). In the present

work, we have a slightly different implementation of

the Moran model (namely, our model is in continuous-time

and allows for an individual to both give birth and die

at any instant). This leads to some differences in the

argument, but the same result is obtained in the two-allele

case.

Hathcock and Strogatz (2019) showed that as

N ! 1
TF � l

r !
d G1 þ fG2ffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ f2
p ; (20)

where TF is a random variable denoting the time of fixa-

tion, conditional on eventual fixation, l and r are it’s ex-

pectation and variance, respectively, G1 and G2 are two

independent Gumbel distributed random variables, and f

is the fitness of the proposed mutation relative to that of

the wild type.

Thus, letting

G ¼ G1 þ fG2ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ f 2
p (21)

We can approximate the cumulative distribution function of

TF, FTF
ðtÞ by

FTF
ðtÞ � FG

t � l
r

� �
: (22)

Hence, we can approximate the probability that a mutation

has gone to fixation by time t using
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pfixðtÞ ¼ PðTF < tjXð0Þ ¼ 1Þ

¼ PðTF < tjXð0Þ ¼ 1; TF < 1ÞPðTF < 1Þ

¼ FTF
ðtÞp1fix

�FG0
t � l

r

� �
p1fix :

(23)

We can obtain l and r quite efficiently, since (Aalto 1989)

l ¼ �
X

j

½ðQ�Þ�1
1 �j

EðT jXð0Þ ¼ jÞ
EðT jXð0Þ ¼ 1Þ ; (24)

and EðT jX0 ¼ iÞ, the mean time to absorption given i initial

mutants can be calculated using

EðT jX0 ¼ iÞ ¼ ½�ðQ�Þ�1V�i: (25)

A similar approach can be applied to the variance, with

r2 ¼ 2
X

j

½ðQ�Þ�2
1 �j

EðT jXð0Þ ¼ jÞ
EðT jXð0Þ ¼ 1Þ � l2; (26)

where

ðQ�Þ�2
1 Q� ¼ ðQ�Þ�1

1 : (27)

Calculating the mean and variance from the above equations

using the MATLAB operator “ ”, takes under a second for N

on the order of 106 on our i7-8700 desktop computer, but

takes several seconds when N is on the order of 107. We then

calculate FG numerically, which is effectively instantaneous

with no parameter dependence.

Hathcock and Strogatz’s analysis (Hathcock and Strogatz

2019) shows that the approximation in equation (22) is highly

accurate for large selective coefficients (Ns¼ 500) even with N

as small as 5000. Investigating some cases, we find that even

with N¼ 100 the exact and approximate curves in equation

(23) are indistinguishable by eye. The fit remains quite good

with Ns ¼ 10 and N ¼ 104, as shown in figure 1. It is reason-

able to think that for realistically large values of N, this approx-

imation is more than sufficient for any practical purpose.

When all that is required is the distribution of time-to-

fixation for the two-allele process, the above procedure is

an efficient way to obtain it. However, in order to apply a

similar approximation for the three-allele process, the full dis-

tribution at the time of the second mutation is required. In this

case, Expokit (Sidje 1998) provides an efficient means to com-

pute the full distribution. Expokit is a software package which

allows the solution of matrix exponential equations involving

very large matrices using Krylov approximation. In particular,

the function “mexpv” solves for the full distribution of a

CTMC at some time t in the future, given an initial distribution

and the generator matrix Q.

The more significant computational difficulties appear

when k> 2. We can use the same approach to the two-allele

model above to compute the probability of fixation in the limit

as tb !1, and this provides a suitable approximation when

tb is large. Given the initial distribution is a, we can calculate

the exact long-run fixation probability by
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FIG. 1.—Gumbel approximation versus exact solution for cumulative distribution of time to fixation given eventual fixation in the two-allele process with

N ¼ 104, Ns ¼ 10 Units of time are expected time to replace one member of the population.

Stark and Liberles GBE

8 Genome Biol. Evol. 13(10) doi:10.1093/gbe/evab225 Advance Access publication 28 September 2021



p1fix ¼ �ðQ
�Þ�1
� v ð0;...;NÞ; (28)

where ðQ�Þ�1
� is computed by solving

ðQ�Þ�1
� Q� ¼ a: (29)

However, the size of the system of equations grows combina-

torially with k, and so is not suitable for k much larger than 3.

In order to make further progress in computing for large N,

an approximation for the probability of fixation in the k-allele

process over short times is required. A promising approach is

to replace the k-allele processes discussed here with appro-

priate diffusion approximations, which could in principle allow

for the application of models accounting for the effects of

linked sites for the estimation of amino acid fitness profiles.

Case with K> 2 Substitutions on a Branch of Length tb

We now consider the case where substitutions occur at K sites

for arbitrary fixed K. Again, we consider only those mutations

that fix. We represent the history of fixation events along a

branch with K substitutions by a ðK � 1Þ-digit binary number

whose ith digit is a 1 if a fixation event occurs between the ith

and ði þ 1Þth mutation events. The final fixation event (be-

tween the K th mutation and the end of the branch) is implied.

For example, with K¼ 4 one possible history is H¼ 001, under

which a fixation occurs between the third and fourth muta-

tions, so that the first three mutations fix together, and then

the fourth mutation fixes alone. Clearly, there are 2K�1 such

possible histories.

We write the ith digit of H as Hi, and the first i digits of H as

HðiÞ, which we call the ith subhistory of H. For example, for

H¼ 101, H2 ¼ 0, and Hð2Þ ¼ 10. For a branch with fixed K,

and fixed mutation times ti, we wish to evaluate the proba-

bility of each possible history for the branch.

We track only the component of the transient

distribution associated with a particular history H at any

time t, which is given in terms of the k-allele process

that is applied at this time for this history. The relevant

model for t 2 ½ti ; tiþ1Þ is a ð2þ i � jÞ-allele process

where j ¼ maxf1; j � i : Hj�1 ¼ 1g, with parameters

fj; fjfjþ1; . . . ;
Qi
j¼j

fj.

Since we only evaluate histories which lead to fixation of all

K mutations, any mutation which is no longer being tracked

must have already fixed. Thus, we can compute the probabil-

ity of all possible histories that lead to eventual fixation of all K

mutations, and the sum of these probabilities is the probability

of fixation of all K mutations (since the histories form a par-

tition of the event that all K mutations fix). Note, this is a

generalization of the procedure for the case K¼ 2, where

the two possible histories are “fix together” and “fix

separately.”

The distribution for t 2 ½t1; t2Þ, for any history H is given in

terms of the two-allele process by

aHðt; tÞ ¼ e
1
eQðf1Þðt�t1Þ; (30)

where t ¼ ½t1; t2; . . . ; tK ; tb�.
The distribution for t 2 ½ti; tiþ1Þ for i ¼ 2; . . . ;K � 1, or t

2 ½tK ; tb� is split into components associated with each

ði � 1Þth subhistory.

If Hi�1 ¼ 0, then the initial distribution of the k-allele pro-

cess applied in the interval ½ti; tiþ1Þ is given by,

½aHðti; tÞ�x ¼
X

fy ;j:ðy�ejÞ_½1�¼xg
yj
N limt!t�

i
½aHðt;t Þ�y ;

(31)

where _ denotes vector concatenation. Note that for

fixed x each y is associated with at most one j in the

sum above. The summand is the probability that the process

is in state y (in terms of a k-allele process) multiplied by

the probability that a mutation introduced when the process

is in state y leads to state x (in terms of a ðk þ 1Þ-allele

process).

If Hi�1 ¼ 1, then the initial distribution of the two-allele

process applied in the interval ½ti ; tiþ1Þ is given (element-wise)

by

aðHÞðti; tÞ ¼ lim
t!t�

i

½aHðt; tÞ�ð0;0;...;NÞe1
: (32)

In either case, the distribution for the rest of the interval—that

is, for t 2 ðti ; tiþ1Þ (or t 2 ðtK ; tb� for the last interval) is given

by

aHðt; tÞ ¼ aHðti; tÞeQðfj;fjþ1;...;fiÞðt�tiÞ; (33)

where j ¼ maxf1; j � i : Hj�1 ¼ 1g.
Finally, the probability of a history H is given by

PðHjt1; ::; tK ; tbÞ ¼ ½aHðtb; tÞ�ð0;0;...;NÞ; (34)

and summing this expression over all H gives the probability of

fixation of all K mutations. Notice that assuming independent

sites, only one of these histories is accounted for in the calcu-

lating of the probability of fixation of all K mutations. Again,

the caveat being that in practice each mutation is given an

infinitely long period during which to fix.

We can extend this to random mutation times in a manner

analogous to the case where K¼ 2. We no longer treat the

order in which mutations arise as fixed—the vector of muta-

tion times t ¼ ½ti�i¼1;::;K , is such that ti corresponds to the time

of the mutation with fitness fi. Assuming that mutations arise

at a Poisson rate, then conditional on K arrivals on a branch of

length tb, mutation times are uniformly distributed. It follows

that the probability of a history H is given by.
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PðHjtbÞ ¼
1

tK
b

ð
T

PðHjtÞdt

¼ 1

tK
b

ð
T
½aHðtb; tÞ�ð0;0;...;NÞdt

; (35)

where T denotes the set of vectors t with elements in

½0; tb�.
Notice that for two histories H and H0 which share the

same ith subhistory we have

aHðt; tÞ ¼ aH0ðt; tÞ; for all t < ti; (36)

which can be applied to reduce the computational require-

ments of evaluating probabilities for the full set of histories.

Discussion

In this article, we have presented an analysis of the probability

that substitutions introduced in some population (or on some

branch of a phylogenetic tree) would have gone to fixation

simultaneously as opposed to fixing sequentially. We make

some strong assumptions about the evolution of the popula-

tion over the branch, most notably we ignore any mutations

segregating in the background besides those which go to

fixation. Recent work by Galeota-Sprung et al. (2020) has

derived the distribution of expected fitness effects caused

by background mutations across the genome. In principle,

the effect of background mutations could be accounted for

by assuming that the introduced substitutions segregate

against individuals with the average fitness derived by

Galeota-Sprung et al. (2020). In effect, this would act to in-

crease the relative fitness of any given mutation, increasing

the probability of fixation. For the purposes of the analysis

presented here, we do not feel that it is necessary to account

for this effect. However, in the case where results are applied

to infer real fitness effects, it would be worthwhile to account

for this effect either using the full distribution derived by

Galeota-Sprung et al. (2020) or applying the average as the

fixed fitness against which new mutations segregate as dis-

cussed here.

Another notable assumption that we make in the infinite

sites model is that the population at time 0 (i.e., the beginning

of a branch) is homogeneous, and similarly we analyze only

the probability of “fixation” in the sense that the population is

again homogeneous at the end of the branch. In reality, there

are likely to be multiple alleles segregating at the beginning

and the end of the branch. In our approach, the focal sites are

those that go to fixation and the equilibrium distribution of

other segregating alleles could be partly accounted for by the

application of the results of Galeota-Sprung et al. (2020) as

discussed above. The finite sites model that was also pre-

sented, while suffering from other limitations, does not

make the assumptions about evolution over the branch that

need this type of correction.

For the case of a branch upon which two substitutions

occur, we have computed the relative probability that the

two substitutions fix together versus fix separately for various

different fitness values with both fixed and random mutation

times for various branch lengths under our infinite sites sub-

stitution model with complete linkage.

For fixed mutation times, we observe that, conditional on

fixation, the probability that the two mutations go to fixation

together is near 1 or 0 for most of the parameter space, with a

sharp boundary between the two modes which depends on

the time-between-mutations. These regions correspond re-

spectively to a region in which the independent-sites model

is highly mis-specified, and correctly specified. Two mutations

which fix separately can be modeled as independent, while

two that fix together cannot. For small time-between-

mutations, the region of the parameter space in which the

independent-sites model is mis-specified is largest, with

regions in which the assumption of independence is valid

appearing and growing as the time-between-mutations

becomes larger. Figure 2 shows the long-run conditional

probability of fixing together given fixation as a function of

f1, f2 for four times-between-mutations t.

For (random) variable mutation times, we observe that

conditional on fixation, the probability that the two mutations

go to fixation together is largely dependent on the branch

length tb (which in biological terms corresponds to the sub-

stitution rate). While branch lengths measured in amino acid

distance would make this inference impossible, branch

lengths measured in synonymous site substitution rates would

enable independent estimation of the branch length and the

number of amino acid substitutions. For short branch lengths,

the two mutations are most likely to fix together, and for

longer branch lengths they are most likely to fix separately.

For a given tb, the highest conditional probability of fixing

together occurs where both mutations are associated with

neutral fitnesses, while the lowest probability is associated

with mutations which are both associated with fitnesses less

than one. Figure 3 shows these results for three different

branch lengths. Note that here we do not assume an order

for the arrival of mutations, hence the symmetry about the

line f1 ¼ f2.

These results are consistent with the observation that se-

lectively neutral alleles of a given frequency tend to have been

segregating for longer than alleles under either positive direc-

tional or negative selection (Platt et al. 2019). The observation

that fixing together is most likely for neutral alleles could be

explained by such alleles segregating for longer, providing a

longer window before fixation for the second mutation to

arise. It should be noted that these neutral changes are the

substitutions where the selective effects are least expected to

be mis-estimated.
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FIG. 2.—Probability that two mutations fix together conditional on both reaching fixation eventually for various fixed time-between-mutations t (units of

average time to replace an individual in the population) as a function of f1 (fitness of first mutation to arise relative to wild-type) and f2 (fitness of second

mutation to arise relative to wild-type) with N¼100

FIG. 3.—Probability that two mutations (arising according to a Poisson process) fix together conditional on exactly two mutations arising, and both

reaching fixation eventually on a branch of length tb (units of average time to replace an individual in the population) as a function of their (unordered)

fitnesses relative to the wild-type f1, f2 with N¼10
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Notably, the conditional probability of the two mutations

fixing together is not symmetric about the line f1 þ f2 ¼ 2, as

might be expected from (but is not implied by) the results in

(Maruyama 1974). The intuition for expecting symmetry is

that the age distribution of alleles observed at a given fre-

quency under selection is independent of the direction of se-

lection. As such the window of opportunity for a second

mutation to arise in the same lineage as the first is identical

for f1 ¼ 1þ � and f1 ¼ 1� �. However, this line of reasoning

neglects the effect of fitness (and multiplicative fitnesses in

particular) on the probability of fixation. When both muta-

tions are advantageous the combined allele is relatively more

likely to fix than either single-mutation allele would be, while

the reverse is true for disadvantageous mutations. Hence,

even when conditioning on eventual fixation, we see the

asymmetry about f1 þ f2 ¼ 2.

We also note that the conditional probability of fixing to-

gether can be interpreted as the relative error introduced by

modeling sites as independent if we treat the linked-sites

model as the “true” model. This is applicable for regions of

low recombination, where mutations which occur in the same

lineage remain linked. We show that in this instance, the in-

dependent sites model always underestimates the probability

that multiple mutations on the same branch will eventually fix.

This would seem to imply consistent overestimation of the

fitnesses of amino acids associated with substitutions, regard-

less of whether a mutation is subject to hitchhiking or back-

ground selection. Even if the subsequent mutation is

deleterious, the preceding one is nonetheless given an extra

opportunity to fix which is not accounted for when assuming

that each mutation must fix or become extinct before the

next. The caveat is that in practice mutation is usually assumed

to be weak, effectively giving each mutation an infinite period

over which it can become fixed (or extinct) prior to any sub-

sequent mutation, which leads to overestimation of the prob-

ability of independent fixation. While its unlikely in any

instance to be the case that these two competing biases can-

cel, this is the mechanism by which hitchhiking can lead to

increased fitness estimates for the beneficiary while back-

ground selection can lead to decreased estimates when as-

suming independent sites.

Given a known substitution history (often called a muta-

tional path (Bollback et al. 2007; Monit and Goldstein 2018))

for each site over a fixed tree, estimating fitness parameters

under the model described here is straight-forward in princi-

ple. Supposing that we know that substitutions occurred at

K sites over a particular branch, the likelihood of a set of

relative fitnesses f ¼ ½f1; f2; . . . ; fK � (relative fitnesses being

the fitness of the substituted character divided by the fitness

of the character at the beginning of the branch at that site) is

given by

Lðf Þ ¼
X
H2H

PðHÞ; (37)

where H is the set of fixation histories which can account for

the substitution history. Fixation histories are distinct from

substitution histories in the sense that they account for which

mutations fix together. It is possible then to use maximum

likelihood estimation to estimate fitness parameters which

account for the possibility of sites being linked for fixed trees

and substitution histories. It is also possible to implement a

Bayesian procedure, for example, treating the tree and sub-

stitution histories as nuisance parameters and sampling from

the distribution of fitnesses, or (mutatis mutandis) implement-

ing the model in phylogenetic inference, etc. In practice, this

would be highly computationally expensive, and we have not

done any such inference here, focusing instead on theoretical

results pertaining to the model itself. In order to make such

inferences practicable, further consideration of the computa-

tional approach, or the application of some approximations to

the fixation probabilities of the k-allele processes would be

necessary.

As models that capture the generative process for amino

acid substitution, integrating population genetics, evolution-

ary biology, and protein biophysics move to maturity, multiple

layers of complexity need to be integrated (Teufel et al. 2018).

The danger in not doing so is model mis-specification leading

to incorrect inference (Liberles et al. 2013). In the context of

mutation–selection models, this includes accounting for link-

age, accounting for the structural and functional interaction

of sites, accounting for the inherently nonequilibrium nature

of the evolutionary process (which is necessary for inferring

positive directional selection (Spielman and Wilke 2015;

Ritchie et al. 2021)), accounting for selection on synonymous

sites, and perhaps other processes. The development of these

various pieces is an ongoing process and the work here

presents the development of the linkage component for this

modeling framework. With all of this, we will have more

powerful computational inference frameworks for detecting

which proteins have changed function between closely re-

lated species, a grand challenge problem in comparative

genomics.

Future Directions

The work presented here represents our first steps towards

developing a procedure by which amino acid fitness profiles

estimated from independent-sites substitution models can be

adjusted to account for the effects of genetic linkage.

The results described in this article could in principle be

applied to assess the effect of linkage on inferences made

from some arbitrary amino acid substitution model which

has been fit to a phylogenetic data set. If a reconstructed
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substitution history has been obtained over the tree, then

equation (35) can be evaluated over fixation histories which

are compatible with the estimated substitution history. The

probability mass associated with fixation histories including

linked fixation events then gives an indication of the extent

to which linkage effects are present, and hence the extent to

which an independent sites substitution model is likely to be

misspecified. This in turn can indicate whether selective

effects obtained from the substitution model are likely to be

underestimated owing to the model not having accounted for

the Hill–Robertson effect (Hill and Robertson 1966).

However, there remains a large gap between the theoret-

ical results described here and a practical methodology for re-

estimating selective effects to account for linkage. Notably,

the results presented in this article are intractable for large

populations, and for branches with many substitutions. The

first of these problems could be addressed by applying a dif-

fusion model in place of the k-allele Moran models discussed

above. The other component of this gap lies in the problem of

mapping from the probability of linked substitutions devel-

oped above to an actual re-estimation of the fitness effects.

Although it is widely understood that linkage dampens the

effects of selection, the extent of this effect in the context of

many substitutions with associated probabilities of linkage

needs to be quantified. In principle, updates to fitnesses esti-

mated from an independent sites model could be obtained by

estimating fitnesses with a linked sites model on those

branches upon which linkage is identified by considering

the probability that substitutions fix together. These could

then be averaged in some way with the estimates obtained

from fitting an independent sites model over the whole tree.

Alternatively, a framework could be developed where a linked

sites model is fit on appropriate branches, while an indepen-

dent sites model is fit to the remaining branches, and param-

eters are estimated over the tree taking both cases into

account simultaneously.

Lastly, some nonindependent sites will interact functionally

leading to nonadditive interactions. While these can in princi-

ple be treated with expanded parameterization associated

with standard statistical genetics models for epistasis, a mech-

anistic opportunity exists to explicitly treat the underlying bio-

physical processes associated with protein folding and protein

interaction to account for selective effects in a distinct model-

ing trajectory. With all of these pieces, the field is encroaching

on biological realism in its treatment of selection in protein

evolution as part of the ongoing search for positive directional

selection that makes species distinct.
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