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Abstract
The SIR (susceptible-infectious-recovered) model is a well knownmethod for predict-
ing the number of people (or animals) in a population who become infected by and
then recover from a disease. Modifications can include categories such people who
have been exposed to the disease but are not yet infectious or those who die from the
disease. However, the model has nearly always been applied to the entire population
of a country or state but there is considerable observational evidence that diseases can
spread at different rates in densely populated urban regions and sparsely populated
rural areas. This work presents a new approach that applies a SIR type model to a
country or state that has been divided into a number of geographical regions, and uses
different infection rates in each region which depend on the population density in that
region. Further, the model contains a simple matrix based method for simulating the
movement of people between different regions. The model is applied to the spread of
disease in the United Kingdom and the state of Rio Grande do Sul in Brazil.
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1 Introduction

The global spread of infections with the recently emerging coronavirus SARS-CoV-
2, henceforth denoted COVID-19, was declared a pandemic by the World Health
Organisation on March 11, 2020. The risk of infection is strongly dependent on indi-
vidual behaviour and canbe reducedby following simple rules such as distance keeping
recommendations, hygiene with alcohol gel and wearing of a face mask. In addition
to the rules there are some factors that play a further role in the spread of the infection
such as the regional population density distribution and circumstances such as liv-
ing conditions. Contact with other individuals, both in the private sphere with family
members and friends, and in the professional environment can lead to an increased risk
of transmission of the infection both in- and outdoors, even over a distance larger than
1 m. Depending on the country, national and/or regional political decisions for limiting
the spread of COVID-19 were based on risk assessments obtained by considering the
number of and trends in reported cases and in accordance with the appropriate national
Infection Protection Acts. A further source of information for decision making came
from monitoring the proportions of the populations with mild, severe and fatal out-
come after becoming infected with the disease and evaluating long-term consequences
of the pandemic.

Statistics and findings frommodel calculations provided some information relevant
for the spread of the disease, such as the incubation time being between 0 and 14 days
and that the transmission time was found to be in an interval between 5 and 7 days.
However, a method for determining what are the conditions for a mild or severe
outcome of the infection has remained elusive (Famulare 2020; Ikejezie 2019). One
of the criteria for measuring the spread of the disease established in the literature is
the number of people infected by a previously infected person, known as the base
reproduction number R. This estimates how fast the disease spreads and whether
political decisions andmeasures are sufficient to limit its growth of the disease (Coburn
et al. 2009; Delamater et al. 2019; Egger et al. 2017; Ferguson et al. 2006; Guerra
Fiona et al. 2017; Kucharski et al. 2015; Qun et al. 2020; Lipsitch et al. 2003; Milligan
and Barrett 2015; Nishiura and Chowell 2014; Julien et al. 2020; Steven et al. 2020;
Thompson et al. 2019; Truelove et al. 2020; Wallinga and Teunis 2004; Wu et al.
2020). For R > 1 the situation turns supercritical and the total number of infected
individuals rises exponentially and without control. In order to be able to predict
the time evolution of the pandemic we can make use of mathematical models that
were developed for other epidemics, and the following describes some of the more
common models. The SI model considers the spread of a contagion without recovery,
the SIS model takes into account the spread of an infectious disease without a build-up
of immunity, the SIR model considers the spread of the infectious disease together
with immunity response and the SEIR model simulates the spread of the contagious
disease an immunity response and an initial period where infected people are not
immediately infectious. It is noteworthy that most models are simply based on the
number of individual who are infected, are immune or have died without considering
further details such as differences in transmission probabilities within the regions due
to different population densities in different regions, or the movement of individuals
between regions.
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The model presented in this paper addresses these issues by developing a mathe-
matical model of how a disease spreads through a population which is distributed over
multiple geographical regions and with a different population density in each region.
There is evidence in the literature that the population density influences how quickly a
disease can spread through a population. Alirol et al. (2011) discuss how urbanisation
affects the spread of an infectious disease as the global population becomes more
concentrated in large cities. Carl-Johan (2015) discussed the challenges presented by
the more rapid spread of infectious diseases as the global population becomes more
urbanised and are further discussed by Reyes et al. (2013). These, and more recent
studies, indicate that anymodel of an infectious disease through a populationmust take
the differences in population density between urban and rural regions into account.

Mathematicalmodels for simulating the spread of a disease through apopulation in a
single geographical region have been developed since the early 20th century (Kermack
et al. 1927). Most of these have been based on the SIR (susceptible-infectious-
recovered) models which utilise a system of differential equations to describe the
number of individuals in each SIR category. Variations of the SIR model can simulate
phenomena such as deaths from the disease, or the number of people who are exposed
to the disease but not yet infectious (See Busenberg and Vandendriessche 1990; Allen
1994; Cha et al. 1998; Earn et al. 2000; Greenhalgh et al. 2016; Zhang and Zhou 2019
for example). A summary of the SIR model and its variations is given in Hethcote
Herbert (2000).

Models of the spread of a disease through a country or state divided into a number of
different regions have been developed in recent years. Liang and Bian (2010) present
a statistical model of the spread of the influenza virus through an urban environment
which accounted for the way in which individuals move through the urban area con-
sidered. Rakowski et al. (2010) presents an individual based statistical model of the
spread of influenza in Poland. Lau et al. (2017) present a spacial-temporal model for
simulating the spread of the Ebola virus in West Africa, and critically compare their
model to an SEIR (susceptible-exposed-infectious-recovered) model. However, none
of these models are based on an SIR differential equation model of the spread of a
disease.

Yin et al. (2020) present a SIR model which includes the movement of people
between a number of cities and which includes the spread of disease from one city to
another. However, this paper only considers movement of people between different
cities which have high population densities but does not include the surrounding rural
areas which have low population densities, and there is observational evidence that
a disease will spread faster in dense urban population when compared to the spread
though a sparse rural population. A stochastic SIRS (susceptible-infectious-recovered-
susceptible) model which includes the mobility of the population has been developed
by Wanduku (2017).

This paper presents a mathematical model for simulating the spread of a disease
through a country or state that is divided into a number of geographical regions. We
derive a system of differential equations that can be solved for the number of people in
each category in each region where the infection rate is inversely proportional to the
area of each region. This means a region with a small area will have a larger infection
rate than one with a large area, but if both regions initially have approximately the
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same number of susceptible and infectious people then the disease will spread quicker
in the smaller region due to its larger population density. The model will also simulate
the movement of people between the different regions by including a matrix term in
the differential equations which will account for the proportion of the population in
one region which move to each of the other regions. This matrix can be set up such
that the total population of each region remains the same, and that the proportion of
people who move to an adjacent region is much greater than the proportion who move
to a region which is further away.

2 Mathematical modelling

2.1 Population kinetics model

Consider a single region when an individual within the population can be classified
as susceptible (never had the disease), infected with the disease, recovered from the
disease (and who is assumed to be immune) or having died from the disease. Let S, I,
R, and D to denote the total number individuals in the population who are susceptible,
infected, recovered or who have died respectively, then Heathcote (2000)

dS

dt
= −λSI

d I

dt
= λSI − μI R I − μI D I

dR

dt
= μI R I

dD

dt
= μI D I

(1)

where λ is the infection rate, μI R is the rate at which infectious people recover and
μI D is the rate at which infectious people die. We note that the sum of the right-hand
sides of the differential equations in (1) is zero, indicating that there will be no change
in the size of the population.

However, this model is not applicable to diseases where people may be infected
with the disease but have no symptoms and so are unaware that they are infected.
Here, we will refer to these people as carriers. Hence, the spread of a disease may be
more rapid and widespread in a population than is indicated by the number of infected
people. This can be incorporated into the basic SIRD model with the inclusion of an
additional class, C , of carriers who are either infected with the disease but do not have
any symptoms orwho have verymild symptoms and so do not get tested for the disease.
It is important to note and emphasize here that both infected individuals and carriers
can infect other people as both are infected with the disease and the only difference is
that carriers are unaware that they are infected. Including the carrier category leads to
the modified system of differential equations

dS

dt
= −λS(I + C)
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d I

dt
= λβS(I + C) − μI R I − μI D I

dC

dt
= λ(1 − β)S(I + C) − μCRC − μCDC

dR

dt
= μI R I + μCRC

dD

dt
= μI D I + μCDC (2)

where μCR is the rate at which the carriers recover from the disease and cease to be
infectious, μCD is the death rate for carriers and β is the proportion of the population
who become infectedwith the disease, have symptoms and are diagnosed as having the
disease. It follows 1−β is the proportion of the population who become infected with
the disease but who are not diagnosed as having the disease, either because they do not
have symptoms, they havemild symptoms andmistake the disease under consideration
for another disease, or they simply refuse to get a diagnosis.

Systems of differential equations, such as (1) and (2) can be applied to model the
evolution of a disease through an entire population.However, thesemodels do notmake
distinction between rural and urban areas which can have widely differing population
densities and which may in turn affect how quickly the disease is transmitted. A
disease which is spread by person-to-person contact will spread much more quickly
in an urban area as each individual in an urban area will come into close contact with
many more other people than someone who is living in a sparsely populated rural area
(see Alirol et al. 2011; Reyes et al. 2013; Carl-Johan 2015 for example). In order to
consider this aspect we propose a new model which describes the spread of a disease
through different geographical regions of a country. An example which shows the
importance of considering population density rather than just the population is given
in Sect. 3 which discusses the numerical results.

2.2 Regional kinetics model

A large population may be divided into a number of smaller populations according
to the geographical region in which the people live. In this case it is likely that the
rates at which people recover or die from a disease is the same in every region but the
infection rate λ may be different in each region and may depend on quantities such as
population density.

The model will also need to include the effect of people moving between the
different regions. Here we will assume that the movement of the people does not
produce any change in the population of any one region. That is, the number of people
who leave region A will be the same as the number of people who enter region A.

Assume that the country or state under consideration is divided into N geographical
regions,where it is also assumed that if the country is divided into small enough regions
any inhomogeneities in the population distributionwithin each region can be neglected.
Let Si , Ii , Ci , Ri and Di denote the number of people who are susceptible, infected,
carriers, recovered or who have died in the i th region respectively; and let S, I, C, R
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and D denote the vectors which list the values of the corresponding category in each
region. For simplicity of notation, introduce the vector valued function F defined by

Fi = Si (Ii + Ci ) .

The differential equations (2) for a single region can be extended to the multi-region
case and can be expressed as

dS
dt

= −λF + TS

dI
dt

= λβF − μI RI − μI DI + T I

dC
dt

= λ(1 − β)F − μCRC − μCDC + TC

dR
dt

= μI RI + μCRC + TR

dD
dt

= μI DI + μCDC

(3)

where T is a matrix which models how the population moves between the different
regions. Note that since the people who have died cannot move between regions there
is no transport term in the last equation.

In the model presented here the matrix T is constructed so that the total population
of living people in each region remains the same, and the total number of people in
each category is not changed by the transport terms. LetM be a symmetric matrix with
zeros on the diagonal and where the off diagonal element Mi j gives the proportion of
people who move from region i to region j . In the work presented here

Mi j = αmax

(
1 − di j

dmax
, 0

)
i �= j (4)

where di j is the geographical distance between regions i and j ; dmax is the maximum
distance that people move from their original location and α is a scaling parameter.
However, there are some exceptions to this as there can be large numbers of people
moving between cities which are a long way apart. In such cases we can simulate the
greater movement of people by setting the distance between the appropriate regions
to be smaller than the geographical distance. The converse is also true. There can
be parts of a country where fewer people move between the different regions. For
example, there may be islands which are not served by a ferry every day and which
have no airport or landing strip. In these cases we can reduce the simulated movement
of people by setting the distance between the appropriate regions to be bigger than
the geographical distance. We note that generally only moderate values of α should
be used in (4). In most countries and states only a small proportion of the population
of a region moves into an adjoining region and even fewer move to regions that are
further away.
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Let P be the diagonal matrix

Pii = Si + Ii + Ci + Ri∑N
i=1 (Si + Ii + Ci + Ri )

.

Then the matrix T appearing in the differential equations (3) is defined as

Ti j =

⎧⎪⎪⎨
⎪⎪⎩

(PM)i j i �= j

−
N∑

k=1,k �=i

(PM)ki i = j

where the notation (PM)i j denotes the (i, j) element of the matrix product PM and
the normalisation is the sum over the N regions. It is important to note at this point
that the matrix T is not constant in time since it is formed from the matrix P which
will change as the number of people in each category change.

However, a problem with the system of differential equations (3) is when two
regions have similar populations but significantly different areas. For example, if a
state has two regions with the same population where one region is twice the area of
the other we would expect the disease to spread more rapidly in the region with the
smaller area as the population density is bigger. A better approach to modelling the
spread of a disease in a multi-region state is to consider the population densities rather
than the populations.

Let Ai be the area of the i th region and let

S̃i = Si
Ai

Ĩi = Ii
Ai

C̃i = Ci

Ai
R̃i = Ri

Ai
D̃i = Di

Ai

be the densities of the people who are susceptible, infected, carriers, recovered and
who have died in each of the N regions. Assume that the population densities rather
than the actual populations will satisfy a system of differential equations similar to
(3). That is

dS̃
dt

= −λF̃ + A−1T AS̃

d Ĩ
dt

= λβF̃ − μI R Ĩ − μI D Ĩ + A−1T AĨ

dC̃
dt

= λ(1 − β)F̃ − μCRC̃ − μCDC̃ + A−1T AC̃

dR̃
dt

= μI R Ĩ + μCRC̃ + A−1T AR̃

dD̃
dt

= μI D Ĩ + μCDC̃

(5)
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where A is the N × N diagonal matrix with areas of the regions on the diagonal and
F̃i = Ũi ( Ĩi + C̃i ). Replacing S̃ by A−1S, Ĩ by A−1I and so on in (5) gives

A−1 dS
dt

= −λ(A−1)2F + A−1T AA−1S

A−1 dI
dt

= λβ(A−1)2F − μI R A
−1I − μI D A−1I + A−1T AA−1I

A−1 dC
dt

= λ(1 − β)(A−1)2F − μCR A
−1C − μCD A−1C + A−1T AA−1C

A−1 dR
dt

= μI R A
−1I + μCR A

−1C + A−1T AA−1R

A−1 dD
dt

= μI D A−1I + μCD A−1C.

(6)

Multiplying both sides of the equations in (6) by A gives

dS
dt

= −λA−1F + TS

dI
dt

= λβA−1F − μI RI − μI DI + T I

dC
dt

= λ(1 − β)A−1F − μCRC − μCDC + TC

dR
dt

= μI RI + μCRC + TR

dD
dt

= μI DI + μCDC

(7)

It is worth noting that the system of equations (7) is the same as the system (3) except
that the infection rate in each region is now inversely proportional to the area of the
region. Hence the spread of the infection will be slower in a region with a smaller
population density.

2.3 Time integration

The system of ordinary differential equations (7) have to be integrated through time
using a numerical method. Let Sn , In , Cn , Fn , Rn and Dn denote the quantities at
the nth time-step. We will assume that the initial values of the quantities (denoted by
subscript 0) are known, although the exact values will depend on the country under
consideration and the scenario for how the spread of the disease starts.

Here we apply the (Crank and Nicholson, 1947) to solve the system of differential
equations (7) which uses the known quantities at the current time step (which have
subscript n) to calculate the unknown quantities at the new time-step (which have
subscript n + 1). However, this leads to an implicit set of equations and so we adopt
the iterative predictor-corrector scheme

S[0]
n+1 = Sn I[0]n+1 = In C[0]

n+1 = Cn R[0]
n+1 = Rn D[0]

n+1 = Dn
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S[i+1]
n+1 = Sn +h

2

[
−λA−1Fn − λA−1F[i]

n+1 + TnSn + T [i]
n+1S

[i]
n+1

]

I[i+1]
n+1 = In +h

2

[
λβA−1Fn − μI RIn − μI DIn

+λβA−1F [i]
n+1 − μI RI

[i]
n+1 − μI DI

[i]
n+1

+
(
TnIn + T [i]

n+1I
[i]
n+1

)]

C[i+1]
n+1 = Cn +h

2

[
λ(1 − β)A−1Fn − μCRCn − μCDCn

+λ(1 − β)A−1F [i]
n+1 − μCRC

[i]
n+1 − μCDC

[i]
n+1

+TnCn + T [i]
n+1C

[i]
n+1

]

R[i+1]
n+1 = Rn +h

2

[
μI RIn + μCRCn + μI RI

[i]
n+1 + μCRC

[i]
n+1

+TnRn + T [i]
n+1R

[i]
n+1

]

D[i+1]
n+1 = Dn +h

2

[
μI DIn + μCDCn + μI DI

[i]
n+1 + μCDC

[i]
n+1

]

where h is the time-step and the superscript [i] on the unknown quantities denotes the
corrector iteration.

The iterative process is stopped when

max(‖ΔSn+1‖, ‖ΔIn+1‖, ‖ΔCn+1‖, ‖ΔRn+1‖, ‖ΔDn+1‖)
max(‖S[i+1]

n+1 ‖, ‖I[i+1]
n+1 ‖, ‖C[i+1]

n+1 ‖, ‖R[i+1]
n+1 ‖, ‖D[i+1]

n+1 ‖) ≤ τc (8)

where

ΔSn+1 = S[i+1]
n+1 − S[i]

n+1

(and the other terms on the numerator of (8) are similarly defined) and τc is some
predetermined accuracy level. Additionally, the iterations will also be stopped when
the maximum number of iterations is reached. The choice of norm to use in (8) is not
significant and in the the results presented here we have used the uniform or ∞-norm
with τc = 10−10. For further details of predictor-corrector schemes see any text on
numerical methods, such as (Atkinson 1989).

The accuracy of the calculated solution is further controlled by using an error
checking time-stepping algorithm. The solution at each new time-step is calculated
using a sequence of time-steps h0 > h1 > h2 > · · · until the solutions calculated
using two consecutive values of h agree to a predetermined accuracy. In the examples
presented in this work we use h0 = 1/24 (giving an initial time-step that is equivalent
to one hour) and hi+1 = hi/2. The difference in the solution using two different
time-steps is measured using (8) where the index i in (8) is now the same index as the
one used to denote the different values of h and when considering the differences in
the solution for different values of h we used τ = 10−8 as the stopping criteria.

The initial conditions used here are that on day 0 the total population and the number
of infected people in each region are known, and that initially no one has recovered
or died from the disease. The initial number of carriers is computed from the initial
number of infected people using
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Table 1 Example regions for illustrating the importance of considering population density

Initial Population
Region Population Infected Area (km2) Density (km−2)

A 1,000,000 10 1000 1000

B 2,000,000 20 1000 2000

C 2,000,000 20 2000 1000

D 1,000,000 10 2000 500

C0 = nint

(
1 − β

β
I0

)
(9)

where nint denotes the nearest integer. The initial number of susceptible can then be
calculation in each region using

S0 = P − C0 − I0

where P is the vector of the total population in each region.

3 Numerical results

In this section we present the results of using our model to simulate the spread of a
disease through country or region. Most of the results are for the United Kingdom
and the state of Rio Grande do Sul in Brazil, although the first example is an artificial
case which illustrates the importance of using the population density in the equations
rather than just the population. In all of the numerical results presented here we have
assumed that μI R = μCR and that μCD = 0.

3.1 Initial example

This first example considered here illustrates the importance of using the population
density in the modelling process. Consider the spread of a disease through the four
unconnected regions detailed in Table 1. As the regions are unconnected the matrix
T in (7) is the zero matrix meaning that there is no movement of people between the
regions. If we only consider the size of the population in the model then results for
Regions A and D (and Regions B and C) would be identical as they have the same
population. Figure 1 shows that the percentage of people infected with the disease over
time in each region if the population density is considered instead of the population.
In this case, the results for Regions A and C are the same as these have the same
population densities. Region B has an earlier and higher peak number of infections
as the population density of this region is higher although the population is the same
as for Region C. The peak number of infections for Region D is smaller and the peak
occurs later as this region has a smaller population density.
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Fig. 1 The percentage of the population infected with a disease in each of the regions. Note that the results
for Regions A and C are superimposed

3.2 United Kingdom

The first location considered in this work is the United Kingdom (UK) excluding
Northern Ireland. The UK is divided into 143 regions which represent the local gov-
ernment authorities except in the large cites (such as London, Manchester and the
West Midlands for example) where the small local authorities have been merged to
form single metropolitan areas. For the UK we assumed that the initial conditions are
that there are two people infected with the disease and they are located in London.

The first set of results explore how varying the parameters α, β and λ affects the
number of infections and number of deaths and the results are summarised in Table
2. When considering the UK we used μI R = μCR = 0.0714, which corresponds
to it taking 14 days for an individual to recover from the disease, and μI D = 0.01
corresponding to a death rate of 1% of those who are infected. Finally, for the UK
we used dmax = 500 in equation (4) for determining the proportion of people moving
between the different regions.

The results in Table 2 shows that as λ increases the peak in the number of people
infected and the number of people who have died from the disease after 400 days also
increases. This is as expected as λ is the infection rate and so increasing λ should
produce an increase in the number of infections. We can also see that increasing λ

without changing any of the the other parameters causes the day on which the peak in
the number of people who are infected to become earlier in the epidemic.
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The results in Table 2 also show that as β increase so does the peak in the number
of infected people and the long-term number of deaths. This is to be expected as
increasing β means that a larger proportion of the population is being diagnosed as
being infectedwith the disease rather than being just an undiagnosed carrier. Increasing
β delays the day on which the number of people who are infected reaches its peak.

These results show that when α, which controls the proportion of the population
of one region which moves to another region, is zero then the number of deaths after
400 days from the disease is greatly reduced although the reduction in the maximum
number of infected people is not so large. However, the results also show that the
biggest change in the number of deaths is when α is increased from 0 to 0.05 and that
further increases in α does not produce such large changes in the number of deaths,
and in some cases the number of deaths after 400 days decreases as α increases.

The percentage of the population in each regionwho are infected or who are carriers
on the day on which the number of people who are infected or are carriers reaches its
peak is shown in Fig. 2 for different values of α when λ = 6 × 10−5 and β = 0.1.
The day refers to the day on which the number of people who are infected or who are
carriers reaches its maximum value. As expected, when α = 0 (Fig. 2a) London is the
only region with infected people (or carriers) since in this case none of the population
moves between the different regions. When α = 0.05 (Fig. 2b) the infection spreads
to the other metropolitan area since these have good transport links with each other
and it was assumed that a proportionally large number of people travel between these
regions compared to the more rural areas. As we further increase α (Fig. 2c, d) the
infection spreads more into the rural areas. It is worth noting that in these cases the
proportion of the population who are infected or who are carriers in the urban areas
decreases as α increases.

3.3 Rio Grande do Sul, Brazil

The other geographical location considered in this paper is the State of Rio Grande
do Sul in Brazil. For the simulations the state is divided into its 35 microregions. The
initial conditions were that there were 3 cases in Porto Alegre, and depending on the
value of β the corresponding number of carriers in Porto Alegre has been calculated
using (9). It is assumed that both the number of cases and the number of carriers
are zero for all the other microregions in Rio Grande do Sul. When considering Rio
Grande do Sul we used dmax = 1000 in equation (4) for determining the proportion
of people moving between the different regions.

The first set of results that we present investigates how the parameter β, which gives
the proportion of infected peoplewho have been diagnosed as havingCovid-19, affects
the values of the other parameterswhen approximately fitting themodel to the observed
data. Table 3 gives the values of the parameters in the different cases considered where
we usedα = 0.5 in (4) to simulate a large proportion of the populationmoving between
the different microregions. Figure 3 compares the predicted number of cases for each
value of β with the observed number of cases in Rio Grande do Sul, and Fig. 4 gives
the corresponding comparison for the number of deaths. These figures show that the
results of the simulation are broadly the same as the observed data.
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Table 2 The simulated maximum number of infected people and total deaths for the United Kingdom using
different values of the parameters

β α λ Peak Day of peak Died
Infected Infected Day 400

0.05 0.00 4 × 10−5 132,676 84 52,352

6 × 10−5 194,554 51 54,556

8 × 10−5 234,478 37 54,951

0.05 4 × 10−5 190,778 112 213,851

6 × 10−5 294,870 69 271,762

8 × 10−5 375,682 53 301,174

0.10 4 × 10−5 218,424 136 221,022

6 × 10−5 367,931 76 280,718

8 × 10−5 470,074 55 309,754

0.25 4 × 10−5 174,314 235 197,634

6 × 10−5 435,442 99 288,841

8 × 10−5 602,362 65 324,306

0.10 0.00 4 × 10−5 264,309 89 104,583

6 × 10−5 388,158 53 109,081

8 × 10−5 467,941 39 109,894

0.05 4 × 10−5 379,269 117 422,326

6 × 10−5 587,626 72 539,801

8 × 10−5 749,180 55 599,518

0.10 4 × 10−5 433,199 143 437,479

6 × 10−5 732,748 79 558,295

8 × 10−5 937,288 58 617,102

0.25 4 × 10−5 343,042 249 388,073

6 × 10−5 865,607 103 574,721

8 × 10−5 1,200,474 67 646,436

0.25 0.00 4 × 10−5 653,825 95 260,510

6 × 10−5 966,603 57 272,458

8 × 10−5 1,169,077 41 274,672

0.05 4 × 10−5 930,723 125 1,020,882

6 × 10−5 1,453,214 75 1,323,300

8 × 10−5 1,856,550 58 1,478,300

0.10 4 × 10−5 1,055,557 154 1,061,052

6 × 10−5 1,807,695 83 1,371,879

8 × 10−5 2,321,189 60 1,524,244

0.25 4 × 10−5 815,705 271 919,957

6 × 10−5 2,125,866 110 1,414,053

8 × 10−5 2,968,683 71 1,599,267

123



32 Page 14 of 20 P. J. Harris, B. E. J. Bodmann

Fig. 2 The percentage of people in each region who are infected or who are carriers on the day when the
number of people who are infected or who are carriers reaches its maximum for each value of α. Here
β = 0.1 and λ = 6 × 10−5
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Table 3 Values of the fitted
parameters for different values
of β

Parameter β = 0.001 β = 0.01 β = 0.1

λ 3.50 × 10−4 6.30 × 10−4 1.52 × 10−3

μI R = μCR 0.020 0.190 0.742

μI D 0.0017 0.0020 0.0020

Fig. 3 The observed and simulated number of cases for Rio Grande do Sul using different values of the
parameter β

It can be seen that as the parameter β increases, both the infection rate given by
λ and the recovery rate given by μI R and μCR also increase. There is observational
evidence that says that the recovery time for Covid-19 is around 14 days, which would
give a recovery rate of 0.0714. Clearly the values of β which do this are between 0.01
and 0.001. This is implying that less than one percent of people who have Covid-19
are actually being diagnosed with the disease.

The second set of results investigates how the spread of the disease is affected by
the mobility of people between the different microregions. The proportion of people
who move between different microregions is proportional to the parameter α in (4).
Here β = 0.001 has been used since the results discussed above demonstrate that the
simulated numbers of infections and deaths are closest to the observed values for this
β. The other parameters that were use are λ = 3.5 × 10−4, μI R = μCR = 0.02,
μI D = 0.0017 and μCD = 0.

Figure 5 shows thepercentageof thepopulation in eachmicroregion that are infected
on days 45, 90, 135 and 180 for different values of α. These results clearly show that as
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Fig. 4 The observed and simulated number of deaths for Rio Grande do Sul using different values of the
parameter β

the proportion of people who move between microregions increases then the disease
is spread over a larger geographical area, as expected. The results also show that
increasing the mobility of the people can delay when the maximum occurs. The first
column of maps in Fig. 5 show how the geographical spread of the disease is slower
when the population moves around less. The results in the first column of Fig. 5 show
that the microregion Campanha Ocidental (the most westerly microregion), which is
a rural region with the 6th lowest population density in Rio Grande du Sol, has only a
small percentage of infections and carriers showing that the disease is slow to spread
in regions with a low population density, as expected.

4 Conclusions

Motivated by the actual pandemic, in the present work we have developed a new
mathematical model to simulate the spread of a disease taking into account realistic
geographical domains with subdomains and their associated population densities. The
work presented here is different from most existing models which describe members
of a population as being divided into four groups (susceptible, infected, recovered or
dead) andwhich cover the whole country or state. The present approach is based on the
population being divided into local regional populations, and each of these are further
divided into five local groups, namely the numbers of susceptible, infected, recovered,
carriers and dead in each local region. Further, unlike previous models which have
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Fig. 5 The simulated percentage of people who are infected or who are carriers in each microregion on
days 45, 90, 135 and 180
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used a single infection rate for the whole country or state, this present model uses
a different infection rate in each local region that depends on the geographical area
of that local region. In each local region the infection statistics are computed using
kinetics, whereas the spread of the disease between regions was implemented by a
detailed balance diffusive transport matrix, with a mobility parameter which controls
the number of individuals traveling between regions and a distance rule defining the
probability of an individual traveling between two regions. One academic example
was analysed in order to justify our reasoning with respect to the model structure, two
realistic scenarios were simulated, the first one for the UK and the second one for the
southernmost Brazilian state Rio Grande do Sul.

The results for the small example with four isolated regions show that it is important
to use the population densities in the calculations rather than just the populations. If
there are two regionswith the same size of population then the diseasewill spreadmore
slowly through the region with the larger area, whereas using a model based purely
on population size would predict that the same rate would happen in both regions.
Further, if one of the regions becomes big enough then the disease will simply decline
in that region since the interactions between the susceptible and infected populations
becomes small. Further, the results for both the UK and Rio Grande du Sol show that
the population density does play a significant role in how rapidly a disease spreads
through a population. The results for the UK shown in Fig. 2 show that on the day
when the number of people who are infected or carriers peaks the largest percentages
of infected people and carriers are in the large cities, such as London, Birmingham and
Manchester, whilst the percentages are much lower in the more sparsely populated
rural areas. The results for Rio Grand du Sol given in Fig. 5 show that the disease
spreads quickly though the densely populated region around Porto Alegre with a large
percentage of the population becoming infected or carriers whilst the percentage of
infected people is much lower in the more rural areas.

The results for both the UK and Rio-Grande do Sul show that the key parameter that
affects the magnitude of both the number of people who are infected and the number
of deaths is the proportion of infected people that are diagnosed with the disease,
although we have made the assumption that no carriers die and that they all recover.
Increasing the infection rate λ causes themaximum number of people who are infected
to increase and also the number of long term deaths to increase. Also, as the infection
rate increases the day on which the number infected people reaches its peak becomes
earlier. As the parameter α (which determines the proportion of the population in each
region who travel to another region) increases then generally the peak in the number
of people who are infected increases and the day on which the maximum number of
infected people occurs is later.
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