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Abstract

Infections by influenza A viruses (IAV) are a major health burden to mankind. The current antiviral arsenal against IAV is
limited and novel drugs are urgently required. Medicinal plants are known as an abundant source for bioactive compounds,
including antiviral agents. The aim of the present study was to characterize the anti-IAV potential of a proanthocyanidin-
enriched extract derived from the aerial parts of Rumex acetosa (RA), and to identify active compounds of RA, their mode of
action, and structural features conferring anti-IAV activity. In a modified MTT (MTTIAV) assay, RA was shown to inhibit growth
of the IAV strain PR8 (H1N1) and a clinical isolate of IAV(H1N1)pdm09 with a half-maximal inhibitory concentration (IC50) of
2.5 mg/mL and 2.2 mg/mL, and a selectivity index (SI) (half-maximal cytotoxic concentration (CC50)/IC50)) of 32 and 36,
respectively. At RA concentrations.1 mg/mL plaque formation of IAV(H1N1)pdm09 was abrogated. RA was also active
against an oseltamivir-resistant isolate of IAV(H1N1)pdm09. TNF-a and EGF-induced signal transduction in A549 cells was
not affected by RA. The dimeric proanthocyanidin epicatechin-3-O-gallate-(4bR8)-epicatechin-39-O-gallate (procyanidin B2-
di-gallate) was identified as the main active principle of RA (IC50 approx. 15 mM, SI$13). RA and procyanidin B2-di-gallate
blocked attachment of IAV and interfered with viral penetration at higher concentrations. Galloylation of the procyanidin
core structure was shown to be a prerequisite for anti-IAV activity; o-trihydroxylation in the B-ring increased the anti-IAV
activity. In silico docking studies indicated that procyanidin B2-di-gallate is able to interact with the receptor binding site of
IAV(H1N1)pdm09 hemagglutinin (HA). In conclusion, the proanthocyanidin-enriched extract RA and its main active
constituent procyanidin B2-di-gallate protect cells from IAV infection by inhibiting viral entry into the host cell. RA and
procyanidin B2-di-gallate appear to be a promising expansion of the currently available anti-influenza agents.
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Introduction

Influenza A and B viruses (IAV, IBV) circulating in the human

population are responsible for seasonal epidemics of varying

extent. At present, the global annual disease burden of seasonal

influenza is estimated to be 1 billion infections, 3 to 5 million of

severe infections, and 300 000 to 500 000 fatalities. Without

doubt, vaccination remains the most important strategy for

prophylaxis and control of seasonal influenza [1]. Although

predominantly associated with mild symptoms of upper respira-

tory tract infection, the first pandemic of the 21st century caused

by IAV(H1N1)pdm09 impressively demonstrated the global health

risks associated with IAV. Ongoing zoonotic infections with avian

IAV(H5N1) and (H7N9) in the human population underscore the

permanent threat of pandemic outbreaks, of which the ‘‘Spanish

flu’’ pandemic of 1918–19 with an estimated number of 50 million

deaths world-wide has been the most devastating [2].

Two classes of antiviral drugs have been licensed for the

treatment and prophylaxis of influenza [3]. Matrix protein

inhibitors, such as amantadine and rimantadine, inhibit viral

uncoating. They are ineffective against IBV and are currently not

recommended for the treatment of IAV infections due to high

levels of resistance [4]. Neuraminidase inhibitors (NAI), such as

oseltamivir and zanamivir, inhibit the release of virus progeny

from infected cells and viral spread, are effective against IAV and

IBV and have been licensed for first-line therapy of influenza.

Although the vast majority of currently circulating IAV(H3N2)

and (H1N1)pdm09 is sensitive to oseltamivir, the wide-spread use

of oseltamivir has led to a high level of IAV(H1N1) resistance in

2008–9 [3,5]. In IAV(H1N1)pdm09 resistance against oseltamivir

is almost exclusively caused by a single amino acid exchange

(H275Y) in the neuraminidase [6]. Recently, two novel NAIs have

been approved for the treatment of influenza, peramivir and

laninamivir octanoate, the latter being effective also against

oseltamivir-resistant influenza virus strains [3,7]. Since monother-

apy with each of the NAIs currently licensed may eventually lead

to the selection of resistant virus, drug combinations directed

against different molecular targets of influenza virus may be a

promising strategy to delay the development of resistance and to
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achieve synergistic effects. Thus, novel viral targets, antiviral

agents and therapeutic strategies such as inhibitors of the viral

RNA polymerase complex and broadly neutralizing antibodies

should be developed and utilized for the treatment and

prophylaxis of influenza [8,9].

Medicinal plant extracts with anti-IAV activity have been

described in many publications [10–12]. Although in most plant-

derived preparations active compounds and structure-activity

relationships remain to be elucidated, polyphenols have been

frequently identified to be the antiviral principle in plant extracts

[13]. In particular, the broad antiviral and antimicrobial activity of

green tea and its components has received much attention [14,15].

In green tea and a number of other polyphenol-rich plant extracts,

catechins and proanthocyanidins, a subgroup of polyphenols

derived from oligomerized flavan-3-ols, were found to exert

antiviral effects against influenza viruses and other enveloped and

non-enveloped viruses [16–20]. Recently, we have shown inhibi-

tion of viral attachment of herpes simplex virus type-1 by

proanthocyanidin-enriched extracts from Rumex acetosa L.

(Polygonaceae) and Myrothamnus flabellifolia Welw. [21,22].

Extracts from R. acetosa are a component of modern phytother-

apeutical preparations with nationally registered drug status in

Europe, and are used in the treatment of acute and chronic

respiratory viral infections [23].

Aim of the present study was to investigate the anti-IAV activity

of the R. acetosa extract (RA) in vitro, to identify relevant

compounds and structural requirements for anti-IAV activity and

to characterize their mode of action. Our results show that RA

strongly inhibits growth of IAV by blocking viral entry. The

dimeric, digalloylated procyanidin epicatechin-3-O-gallate-

(4bR8)-epicatechin-39-O-gallate (syn. procyanidin B2-di-gallate)

was identified as main active principle in RA. Galloylation of the

procyanidin backbone was found to be a prerequisite for anti-IAV

activity.

Materials and Methods

Plant material, extract and isolated compounds of Rumex
acetosa

Starting materials and preparation of the Rumex acetosa L.

extract RA have been described recently [21]. Isolation and

analytical characterization of proanthocyanidins from RA have

been reported by Bicker et al. (2009) [24]. Structural features,

sources and purity of flavan-3-ols, oligomeric proanthocyanidins,

hydrolyzable tannins, depsides and building blocks of tannins used

for antiviral bioassays used in this study are given in Figure 1 and

Table 1. Sodium heparin (100,000 IU/g) was purchased from

Roth (Karlsruhe, Germany).

Cells and viruses
MDCK II cells (canine kidney cells) were propagated in

minimal essential medium (MEM; Biochrom, Berlin, Germany)

supplemented with 5% fetal calf serum (FCS; Biochrom), 2 mM L-

glutamine (Sigma-Aldrich), non-essential amino acids (16) and

100 mg/mL penicillin/streptomycin (Biochrom). A549 cells (hu-

man lung epithelial cells) were grown in DMEM (PAA Labora-

tories, Pasching, Austria), supplemented with 10% FCS and

100 mg/mL penicillin/streptomycin. Cytotoxicity, antiviral and

penetration assays (see below) were performed using serum-free

media.

The influenza A virus laboratory strain A/Puerto Rico/8/34

(PR8), and three clinical isolates of IAV(H1N1)pdm09, i.e., A/

Nordrhein-Westfalen/172/09 (NRW172), A/Nordrhein-Westfa-

len/173/09 (NRW173) [25] and isolate 1/09 (I1) obtained at the

Institute of Medical Microbiology – Clinical Virology, University

Hospital Münster, were propagated in embryonated chicken eggs.

Viral stocks were prepared as described elsewhere [26].

The number of infectious particles in viral stocks was assessed by

plaque titration. MDCK II cells were infected with serial dilutions

of IAV in PBS containing 0.21% bovine albumin (MP Biochem-

icals, Eschwege, Germany), 100 U/mL penicillin (Biochrom),

100 mg/mL streptomycin (Biochrom), 230 mmol/L MgCl2 (Roth)

and 514 mmol/L CaCl2 (Roth) for 30 min. at 37uC (500 mL/well).

After discarding the inoculum, cells were washed with PBS and

covered with 2 mL of overlay medium (MEM [Gibco, Life

Technologies, Darmstadt, Germany] containing 100 U/mL pen-

icillin, 100 mg/mL streptomycin, 0.21% NaHCO3 [Gibco], 0.01%

DEAE-dextran hydrochloride [Sigma-Aldrich], 0.21% bovine

albumin, 232 mmol/L MgCl2, 518 mmol/L CaCl2, 0.00061 %
trypsin/829 nmol/L EDTA [Biochrom] and 0.62% Avicel type

RC-591 NF [FMC BioPolymer, Philadelphia, PA, USA]). After

48 h of incubation at 37uC, overlay medium was discarded, cells

were washed with PBS, fixed with 3.7% formaldehyde for 10 min.

and stained with 0.1% crystal violet for 15 min. Subsequently,

virus plaques were counted and the infectious titer (pfu/mL) was

calculated.

Cytotoxicity assay, antiviral assays
Cytotoxicity assay. The effect of RA and its components on

the proliferation of MDCK II cells was determined in 96-well

plates (TPP, Trasadingen, Switzerland) using the MTT assay [27]

essentially as described by Gescher et al. (2011) [21] with the

exception that samples were incubated at 37uC for 1 h prior to

addition to cells and remained on the cells for 48 h. The cytotoxic

concentration of RA or its components which reduced the cells’

viability by 50% (IC50) was determined from dose-response curves.

The untreated control was arbitrarily set as 100%.

MTTIAV assay. The inhibitory effects of RA and other test

compounds on the cytopathic effect induced by IAV replication

was determined in a MDCK II cell-based assay measuring cell

viability by MTT stain (MTTIAV assay) [28]. An inoculum of

16104 pfu IAV/well (corresponding to a multi plicity of infection

of 0.1) was used to infect 96-well plates. All incubation steps were

performed with serum-free MEM. In the elementary assay, IAV

was pre-incubated with test compounds for 1 h at 37uC and

subsequently MDCK II cells were incubated with this RA/IAV

mixture for 48 h. In modified assays, either the test compound/

IAV mixture was removed from the cells after 60 min., or cells

were pre-incubated with test compounds alone for 1 h prior to

infection with IAV, or test compounds were added to the cells

following a 1 h infection period with IAV.

The antiviral activity was calculated according to the following

formula [29]:

antiviral activity (%)~
(ODT )IAV {(ODC)IAV

(ODC)mock{(ODC)IAV

x100

(ODT)IAV represents the optical density of cells, which were

infected by IAV (index: IAV) and treated with RA. (ODC)IAV

corresponds to the optical density measured for the untreated

IAV-infected cells and (ODC)mock is the optical density of

untreated, mock-infected cells. The antiviral dose of RA which

protected the cells by 50% was defined as the 50% inhibitory

concentration (IC50).

Plaque reduction assay. IAV was incubated with antiviral

compounds for 1 h at 37uC, both diluted in PBS containing

100 U/mL penicillin, 100 mg/mL streptomycin, 230 mmol/L
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MgCl2 and 514 mmol/L CaCl2. MDCK II cells, cultivated in 12-

well culture plates (Greiner Bio-One, Frickenhausen, Germany),

were washed with PBS and infected with 300 mL/well IAV/RA-

suspension (100 pfu/well). After 30 min. of incubation, the

inoculum was removed, 1 mL of overlay-medium without bovine

albumin was added and the plates were cultivated for 72 h at

37uC. Subsequently, cells were stained as described above, virus

plaques were counted and antiviral activity was calculated by the

following formula [21]:

Figure 1. Structural features of flavan-3-ols, oligomeric proanthocyanidins, hydrolyzable tannins, depsides and building blocks of
tannins tested for antiviral activity; compounds isolated from Rumex acetosa extract RA are marked by asterisk.
doi:10.1371/journal.pone.0110089.g001
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antiviral activity (%)~1{
plaque number (assay)

plaque number (control )

x100

Penetration assay. The effect of extract RA and antiviral

compounds on viral penetration was determined by a modified

plaque reduction assay. In contrast to the basic assay, cells were

treated with RA after virus attachment to the cell surface.

Penetration of IAV during the attachment and treatment phase

was prevented by strictly performing all steps at 4uC.

MDCK II cells, cultivated to 95% confluence in 12-well culture

plates, were pre-cooled to 4uC for 15 min. and washed with PBS.

600 pfu IAV, diluted in PBS (400 mL/well) containing 100 U/mL

penicillin, 100 mg/mL streptomycin, 230 mmol/L MgCl2 and

514 mmol/L CaCl2, were allowed to attach to the cells. After

20 min. the inoculum was removed, cells were washed with PBS,

PBS containing a 2-fold serial dilution of RA was added and cells

were incubated for another 30 min. at 4uC. Before shifting culture

plates to 37uC for initiation of viral penetration, cells were washed

with PBS and covered with serum-free cultivation medium (see

above). Following 30 min. incubation at 37uC, medium was

removed and cells were treated with low pH citrate buffer

(135 mM NaCl, 10 mM KCl, 40 mM citric acid, pH 3.0) for 15 s

to stop penetration and inactivate attached, non-penetrated

virions. Low pH buffer was removed by washing twice with

PBS, and overlay medium was added. Further cultivation and

quantitation of plaques was performed as described above. Mock-

treatment of attached virus and inactivation of attached mock-

treated virus by low pH citrate buffer immediately prior to the

37uC shift served as controls.

Hemagglutination inhibition test (HIT)
Twofold serial dilutions (25 mL) of test compounds in PBS and 4

hemagglutinating units (HU) of IAV (25 ml) were mixed carefully

in 96-well plates with U-shaped bottom (Thermo Fisher Scientific

Nunc, Schwerte, Germany). Plates were shaken for 5 min. and

incubated for 25 min. at room temperature (RT). 50 mL of a 1.5%

suspension of newborn chicken erythrocytes (RBC) in PBS (Labor

Dr. Merk & Kollegen, Ochsenhausen, Germany) were added, and

plates shaken again. Assays were read following a 2 h incubation

period at RT, and the minimum inhibitory concentration (MIC),

defined as the highest test compound dilution showing complete

inhibition of the agglutination of erythrocytes, was determined. In

every assay, a test compound control (compound plus RBC

without addition of IAV), and erythrocyte controls (A: IAV plus

RBC, without addition of test compound; B: RBC, without

addition of test compound or IAV) were included. Test results

were accepted if the back titration of IAV revealed 4 HU and the

controls yielded correct results.

Immunoblotting
The effect of RA or test compounds on IAV envelope proteins

was analyzed using recombinant purified HA (20 or 50 mg/mL) of

influenza virus A/California/07/2009 (H1N1) (Sino Biological,

Beijing, China). SDS-PAGE and blotting was performed essen-

tially as described earlier [21]. To detect IAV HA, membranes

were incubated with Anti-IAV H1N1 (Swine Flu 2009)

HA antibody (dilution 1: 1000; Sino Biological) or QIAexpress

Table 1. Flavan-3-ols, oligomeric proanthocyanidins, hydrolyzable tannins, depsides and building blocks of tannins tested for
antiviral activity.

no. compound source purity1 reference

1 (+)-catechin monohydrate Sigma-Aldrich, Steinheim, Germany $98%

2 (2)-epicatechin Sigma-Aldrich, Steinheim, Germany $90%

3 gallocatechin IPBP2, Münster, Germany 99% [51]

4 epigallocatechin IPBP, Münster, Germany $80% [51]

5 epicatechin-3-O-gallate IPBP, Münster, Germany $95% [24]

6 epigallocatechin-3-O-gallate Chengdu Biopurify Phytochemicals Ltd,
Chengdu, China

$95%

7 epicatechin-(4bR8)-epicatechin (procyanidin B2) IPBP, Münster, Germany 97% [24]

8 epicatechin-3-O-gallate-(4bR8)-epicatechin-39-O-gallate
(procyanidin B2-di-gallate)

IPBP, Münster, Germany 91% [24]

9 epicatechin-(4bR6)-epicatechin (procyanidin B5) IPBP, Münster, Germany 99% [24]

10 epicatechin-(4bR8)-epicatechin-(4bR8)-epicatechin (procyanidin C1) IPBP, Münster, Germany 97% [24]

11 epicatechin-(4bR8)-epicatechin-(4bR8)-epicatechin-(4bR8)-
epicatechin (procyanidin D1)

IPBP, Münster, Germany 100% [24]

12 1,2,3,4,6-penta-O-galloyl-b-D-glucose (PGG) IPBP, Münster, Germany $95% [37]

13 geraniin IPBP, Münster, Germany $95% [38]

14 corilagin IPBP, Münster, Germany $95% [38]

15 ellagic acid Roth, Karlsruhe, Germany $95%

16 rosmarinic acid Sigma-Aldrich, Steinheim, Germany 97%

17 gallic acid monohydrate Roth, Karlsruhe, Germany $97%

18 pyrogallol Merck, Darmstadt, Germany $95%

1purity was determined by quantitative HPLC (area %),
2IPBP: Institute of Pharmaceutical Biology and Phytochemistry.
doi:10.1371/journal.pone.0110089.t001
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Penta-His Antibody (dilution 1: 500; Qiagen, Hilden, Germany)

overnight.

Signal transduction assay
90–100% confluent A549 cells in 6-well culture plates were

washed with PBS and pretreated with 100 mg/mL RA for 1 h at

37uC, or left untreated. Subsequently, cells were stimulated with

EGF (30 ng/mL, 10 min.; R&D Systems, Minneapolis, MN,

USA) or TNF-a (20 ng/mL, 30 min.; Sigma-Aldrich) in the

presence of RA, or left untreated. Cells were washed with PBS

twice and lysed with radioimmunoprecipitation assay buffer

(25 mM Tris-HCl [pH 8; Roth], 137 mM NaCl [Merck], 10%

glycerol [MP Biomedicals, Illkirch, France], 0.1% SDS [Roth],

0.5% DOC [Roth], 1% octylphenoxypolyethoxyethanol [IGE-

PAL; Sigma-Aldrich], 2 mM EDTA [pH 8; Roth], 50 mM

sodium glycerophosphate [Merck Millipore, Billerica, MA,

USA], 20 mM TSPP [Roth], plus 1 tablet cOmplete mini [Roche

Diagnostics, Mannheim, Germany] per 10 mL buffer) for 45–

60 min. at 4uC. Lysates were cleared by centrifugation, and

protein content was quantified by the Bradford method. Briefly,

1 mL of 1: 5 diluted protein assay dye reagent concentrate (Bio-

Rad Laboratories, Hercules, CA, USA) was added to 5 mL

supernatant, absorption at 600 nm was determined and protein

contents were adjusted to identical levels. Protein expression was

analyzed by SDS-PAGE and immunoblot as described above. For

protein detection Anti-ERK1/2 (pT202/pY204) antibody (dilu-

tion 1: 1000; BD, Franklin Lakes, NJ, USA) or Phospho-NF-kB

p65 (Ser536)(93H1) antibody (dilution 1: 1000; Cell Signaling

Technology, Danvers, MA, USA) was employed. Loading controls

were performed with Anti-a-Tubulin (Clone DM 1A, dilution 1:

500; Sigma-Aldrich) or Anti-b-Actin (Clone AC-15, dilution 1:

1000; Sigma-Aldrich).

Statistical analysis
Data represent the means 6SD of at least three independent

experiments. Statistical significance was evaluated by a two-tailed

one sample t-test. A P value of ,0.05 indicated a statistically

significant difference.

In silico protein-ligand docking
For in silico analyses the HA of influenza virus A/California/

04/2009 (H1N1) [30] (protein data base ID 3LZG) was used. HA

of A/California/04/2009 (H1N1) is closely related to HA of the

vaccine strain A/California/07/2009 (H1N1) and HAs of

IAV(H1N1)pdm09 strains circulating in the post-pandemic era

in Europe and Asia [31,32]. Epicatechin (2), epigallocatechin-3-O-

gallate (EGCG) (6), procyanidin B2 (7) and procyanidin B2-di-

gallate (8) were docked to the HA of influenza virus in silico by the

software Molecular Operating Environment (MOE) version

2011.10 (Chemical Computing Group, Montreal, Canada). After

identifying potential binding sites at HA with the MOE module

‘‘Site Finder’’, the test compounds were docked into the 30 cavities

with the best PLB (propensity for ligand binding) score using the

MMFF946 force field as implemented in MOE. The flexible

docking method (induced fit, i.e. both the ligand and the protein

binding site were treated as flexible) was applied. The best score of

each cavity-compound pair was compared to the best score of the

remaining 29 cavities for each of the four compounds. The

docking pose represents the best geometry (lowest score) of all

investigated orientations of all compounds with respect to all

cavities taken into account.

Results and Discussion

Rumex acetosa extract RA specifically inhibits
IAV-infection in cell culture

Extract RA and its constituents were screened for anti-IAV-

activity by single cycle, MDCK II cell-based MTTIAV assay.

Depending on the IAV isolate, the screening window coefficient Z9

of the MTTIAV assay ranged from approx. 0.6 to 0.63, indicating

that this assay is well suited to detect inhibitors of IAV entry and

replication [28,33]. Extract RA exhibited 100% antiviral activity

against IAV PR8 at concentrations.5 mg/mL with an IC50 of

2.5 mg/mL. At extract concentrations$25 mg/mL a dose-depen-

dent, increasing reduction of cell vitality was observed. The CC50

of extract RA was determined to be approximately 80 mg/mL

which corresponds to a selectivity index (SI = CC50/IC50) of 32

(Figure 2A). Almost identical data were found for the clinical

isolate I1 of IAV(H1N1)pdm09 with an IC50 of 2.2 mg/mL, and a

SI of 36 (Figure 2B). The results obtained by MTTIAV assay were

corroborated by plaque reduction assay. At a concentration of

100 ng/mL extract RA reduced plaque formation of

IAV(H1N1)pdm09 I1 in a highly significant manner by 67%, at

1 mg/mL by 100% (Figure 3).

The antiviral effect of extract RA was tested in two additional

clinical isolates of IAV(H1N1)pdm09 obtained in consecutive

samples of a patient with acute respiratory distress syndrome. The

oseltamivir-sensitive isolate NRW172 was obtained early after

hospitalization, the oseltamivir-resistant isolate NRW173 was

isolated after completion of oseltamivir therapy. Extract RA

inhibited growth of NRW172 and NRW173 with similar

efficiency. The IC50 values determined for NRW172 (19 mg/

mL) and NRW173 (37 mg/mL) in MTTIAV assay were approx-

imately 10-fold higher as observed in IAV PR8 and IAV I1

(Figure 2C, D). Previous work indicated that a high protein load of

samples may reduce the antiviral activity of extract RA [22]. Since

stocks of IAV NRW172 (6.66106 pfu/mL) and NRW173

(8.36106 pfu/mL) contained significantly lower virus titers than

stocks of IAV PR8 (3.26108 pfu/mL) and I1 (3.46107 pfu/mL),

inhibitory effects of residual allantoic fluid on the anti-IAV activity

of extract RA were studied. Retesting IAV I1 diluted to

6.66106 pfu/mL in allantoic fluid of a noninfected egg led to an

approx. four-fold increase in the IC50 of extract RA (8.2 mg/mL)

(Figure S1). Thus, inhibitory effects of residual allantoic fluid on

the anti-IAV activity of extract RA appear to account for the

differences in IC50 values observed in MTTIAV assay. Accordingly,

the consistently lower IC50 values observed in plaque reduction

assay are most likely due to higher dilution of virus stocks during

incubation with extract RA. Whether strain specific factors also

determine the susceptibility of IAV to extract RA as observed for a

polyphenolic extract of Pelargonium sidoides DC [34] remains to

be clarified.

Structure-activity relationship: epicatechin-3-O-gallate-
(4bR8)-epicatechin-39-O-gallate (procyanidin
B2-di-gallate) (8) is responsible for the antiviral activity of
RA

The lead compounds in extract RA have been recently

described to be flavan-3-ols and oligomeric proanthocyanidins

[24]. To pinpoint the plant secondary products responsible for the

antiviral effect of the extract, the dominant proanthocyanidins

isolated from extract RA were tested for antiviral effects against

IAV I1 and cytotoxicity (Table 2) (for numbering of compounds

compare Table 1) at concentrations of 2, 20 and 200 mM,

respectively, by MTTIAV and cytotoxicity assay. Additionally

Procyanidins from Rumex acetosa Inhibit Attachment of Influenza Virus

PLOS ONE | www.plosone.org 5 October 2014 | Volume 9 | Issue 10 | e110089



EGCG (6), a known inhibitor of IAV replication from extracts of

green tea which is not present in extract RA [17,24] was included

(Table 2).

The monomeric flavan-3-ols catechin (1) and epicatechin (2) did

not show antiviral activity. Trihydroxylation of the B-ring in

gallocatechin (3) and epigallocatechin (4) led to a slightly increased

cytotoxicity. Esterification with gallic acid also increased cytotox-

icity. Epicatechin-3-O-gallate (5) did not show antiviral activity,

while EGCG (6) exhibited strong activity at concentrations of

about 20 mM (estimated SI$17). These results indicated that an o-

trihydroxylation in the B-ring and galloylation at position O-3 is

responsible for the antiviral effects of flavan-3-ols detected by

MTTIAV assay.

Strong antiviral activity was determined for the oligomeric

proanthocyanidins in the cases where the epicatechin building

blocks are galloylated. While the dimeric epicatechin-(4bR8)-

epicatechin (procyanidin B2) (7) was inactive, the corresponding

di-galloylated procyanidin epicatechin-3-O-gallate-(4bR8)-epica-

techin-39-O-gallate (procyanidin B2-di-gallate) (8) exhibited a

prominent antiviral activity (IC50 of approx. 15 mM) with an SI

of about $13. It should be noted that the increasing cytotoxicity of

active compounds such as procyanidin B2-digallate (8) and EGCG

(6) at high concentrations reduces the extent of cytoprotection

against influenza virus detectable by MTTIAV assay. Using the

formula given in Materials and Methods to calculate the results of

Figure 2. Antiviral and cytotoxic activity of RA on MDCK II cells. 16104 pfu IAV/well in serum-free medium (antiviral activity, black bars) or
serum-free medium (cytotoxic activity, white bars) were incubated with RA at different concentrations indicated for 1 h at 37uC. 48 h after adding the
reaction mixtures to 96-well plates, the antiviral activity and cell vitality were determined by MTTIAV assay and cytotoxicity assay, respectively. The
following IAV laboratory strains and isolates were used: (A) laboratory strain PR8 [A/Puerto Rico/8/34], (B) clinical isolate I1 [A(H1N1)pdm09], (C)
clinical isolate NRW172 [A(H1N1)pdm09], (D) clinical isolate NRW173 [A(H1N1)pdm09]. Values represent mean 6SD of $3 independent experiments.
* p,0.05, ** p,0.01 (two-tailed, unpaired Student’s t-test). Statistical significance of antiviral activity was calculated for nontoxic concentrations only
(A: 1 to 10 mg/mL, B: 1 to 7.5 mg/mL, C: 1 to 25 mg/mL, D: 1 to 10 mg/mL).
doi:10.1371/journal.pone.0110089.g002
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MTTIAV assay, this seemingly reduces the antiviral activity of

active compounds at cytotoxic concentrations (200 mM) (Table 2).

Other non-galloylated di- and oligomeric procyanidins from RA

with different structural features were inactive. Compared to the

epicatechin-(4bR8)-epicatechin (procyanidin B2) (7), dimeric

epicatechin procyanidins with 4bR6-interflavan linkage such as

epicatechin-(4bR6)-epicatechin (procyanidin B5) (9) did not show

an altered antiviral profile. However, the 4bR6-linked compound

(9) exerted higher cytotoxicity compared to (7) indicating that

changes in the planarity of the molecules may significantly

influence the effects on cell physiology. The trimeric and

tetrameric procyanidins epicatechin-(4bR8)-epicatechin-(4bR8)-

epicatechin (procyanidin C1) (10) and epicatechin-(4bR8)-epica-

techin-(4bR8)-epicatechin-(4bR8)-epicatechin (procyanidin D1)

(11), respectively, offered no relevant antiviral activity but showed

weak cytotoxic effects.

Thus, within the complex mixture of extract RA dominated by

flavan-3-ols and proanthocyanidins with different degrees of

polymerization and galloylation, the antiviral activity is mostly

mediated by galloylated oligomers. The dimeric compound

procyanidin B2-di-gallate (8) was assessed as the main principle

of antiviral activity in extract RA. The content of procyanidin B2-

di-gallate (8) in extract RA was determined by UHPLC to be

0.96%. The strong antiviral effect of procyanidin B2-di-gallate (8)

was confirmed by plaque reduction assay (Figure 3). Purified

galloylated higher oligomers present in extract RA were not

available for antiviral testing, however, most likely are also active

against influenza virus. Generally, a higher number of pyrogalloyl

moieties, an increased degree of polymerization and a 4bR8

interflavan linkage amplify the anti-IAV activity of polyphenols

from extract RA. These findings are in accordance with the results

published by De Bruyne et al. (1999) [35] describing similar

structural requirements of polyphenols active against HSV and

HIV. In addition, trihydroxylation of the B-ring of non-galloylated

oligomeric proanthocyanidins has been reported to mediate anti-

influenza virus activity [34].

An insignificant anti-influenza activity of the monomeric flavan-

3-ols catechin (1) and epicatechin (2) has been reported earlier

Figure 3. Reduction of IAV plaque formation by the Rumex acetosa extract RA (A), epigallocatechin-3-O-gallate (6) (B) and
procyanidin B2-digallate (8) (C). IAV and test compounds were co-incubated for 1 h at 37uC prior to the addition to MDCK II cells. Heparin served
as positive control (D). Values (% of plaque reduction) 6SD relate to the respective mock-treated controls ( = 100%). * p,0.05, ** p,0.01 (two-tailed,
unpaired Student’s t-test).
doi:10.1371/journal.pone.0110089.g003
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[16,19]. Interestingly, Song et al. (2005) [19] showed that ECG (5)

a main constituent from green tea strongly inhibited anti-IAV and

IBV in cell culture whereas EGC (4) exhibited little antiviral

activity. Yang et al. (2014) [16] found that procyanidin B2 (7)

significantly inhibited growth of IAV. This is in contrast to our

findings where ECG (5) and procyanidin B2 (7) were screened

negative for anti-IAV activity at noncytotoxic concentrations.

Most likely, this reflects differences in the test format used, e.g.

MTTIAV assay vs. plaque reduction assay and cytopathic effect

inhibition assay, respectively. In particular, the assays used by

Song et al. (2005) [19] and Yang et al. (2014) [16] imply multi-

cycle replication of IAV and thus should also detect inhibitory

effects of compounds on late steps of the viral replication cycle,

such as assembly, maturation and release as reviewed by Beyleveld

et al. (2013) [28]. Accordingly, Song et al. (2005) [19] detected a

direct inhibition of the viral neuraminidase activity by ECG (5),

however, not by EGC (4).

A prominent virucidal activity of EGCG (6) from green tea has

been first reported by Nakayama et al. (1993) [17]. As reported for

ECG (5), EGCG (6) also directly inhibits the viral neuraminidase.

In addition to anti-influenza activity, EGCG offers broad anti-

infective properties against various viral, bacterial and fungal

pathogens as reviewed by Steinmann et al. (2012) [15].

After oral application, proanthocyanidins exhibit a very limited

bioavailability as reviewed by Zumdick et al. (2012) [36]. Thus, the

oral application of active compounds such as procyanidin B2-di-

gallate (8) for the systemic treatment of influenza virus infection

appears to be inappropriate. As an alternative, the local

application of procyanidins in the upper respiratory tract, either

by lozenges, chewing gums etc. or by inhaling devices allows the

active compounds to directly contact the virus and should be

preferred.

Because proanthocyanidins are known to have tannin-like

effects it might be assumed that these polyphenols from extract RA

nonspecifically inactivate essential viral structural proteins. There-

fore we included other polyphenols not being part of extracts from

R. acetosa, but with known strong astringent activity (Table 1).

Pentagalloyl-glucose (PGG) (12), a well characterized hydrolyzable

tannin [37], showed moderate antiviral activity, however, signif-

icant cell toxicity in the MTTIAV assay (Table 2). Also the

ellagitannins geraniin (13), corilagin (14) [38] and ellagic acid (15)

were inactive at the highest concentration tested (200 mM)

(Table 2). When added at concentrations in the millimolar range,

ellagic acid (15) has been reported to exhibit broad anti-influenza

activity in vitro and in vivo [39]. The depside rosmarinic acid (16),

known as tannin-like compound, was also inactive. Keeping in

mind that also oligomeric procyanidins such as procyanidin B2,

C1 or D1 (7, 10, 11) are known to interact strongly with proteins

in a tannin-like manner, nonspecific denaturing effects do not

appear to account for most of the antiviral activity observed for

procyanidin B2-di-gallate (8). Otherwise, a more potent activity of

the hydrolyzable tannins geraniin (13) and corilagin (14) should

have been observed. An exception appears to be PGG (12), which

exhibited moderate anti-IAV activity in MTTIAV assay with an

IC50 of 22 mM. This might be due to its flexible structure. In

contrast to geraniin (13), PGG (12) owns the capacity to rotate its

galloyl moieties relatively to the glucose. As a result PGG (12) may

be able to bind more strongly to proteins. In accordance with our

results, PGG (12) has been recently reported to possess anti-IAV

activity at micromolar concentrations and to inhibit viral entry,

budding and release [40].

Since only the galloylated compounds (6) and (8) exhibited

prominent antiviral activity, we tested the effect of free gallic acid

(17) and pyrogallol (18), mimicking a trihydroxylated phenyl

system. Both compounds, however, showed only moderate

antiviral activity yet relevant cytotoxicity at a concentration of

200 mM. Theissen et al. (2014) [41] recently reported that gallic

acid (17) inhibits reporter gene expression of the recombinant

IAV laboratory strain A/Puerto Rico/8/34-NS116-GFP in a

multi-cycle assay with an EC50 of approx. 50 mM and a SI of

approx. 15. Similar to our findings, however, preincubation of

IAV(H1N1)pdm09 particles for 2 h with 50 mg/mL (correspond-

ing to 265 mM) gallic acid (17) had only little effect on virus

replication in A549 cells. Furthermore, gallic acid (17) poorly

inhibited IAV neuraminidase with an IC50 of.500 mM. Thus, the

inhibitory mechanism of gallic acid (17) on IAV replication

remains to be clarified.

Extract RA affects viral attachment
To identify steps in the viral life cycle that were affected by

extract RA, virus and cells were treated with extract RA at

different times pre and post infection. If pre-treated IAV was

added to cells for 1 h, viral replication was inhibited completely at

concentrations of extract RA.10 mg/mL. In contrast, if cells were

infected with IAV and extract RA was added after 1 h, no

antiviral effect was observed at #10 mg/mL, indicating that

extract RA does not operate in the post-entry phase (data not

shown).

To determine whether extract RA interacts with target

molecules of the host cells or of the virus, MDCK II cells were

incubated with extract RA for 1 h and subsequently infected with

IAV. At concentrations of #10 mg/mL this preincubation of the

host cells did not result in any antiviral effects (data not shown).

This suggests that the anti-IAV activity of extract RA is caused by

direct interaction with IAV particles and inhibition of viral entry

as shown for a number of polyphenol and tannin-rich plant

extracts in earlier reports [17–19,39,41–44].

To reconnoiter the effect of extract RA to inhibit penetration of

IAV particles already attached to the cell surface we used a

penetration assay. Cells were infected at 4uC, unbound viral

particles were removed by washing, extract RA was added at 4uC
for 30 min., and penetration was allowed to occur by a

temperature shift to 37uC (30 min.) followed by washing with

pH 3.0 citrate buffer to inactivate non-penetrated virus. As shown

in Figure 4, extract RA also blocks viral penetration. However, in

comparison to incubation of IAV with extract RA prior to entry,

significantly higher concentrations of extract RA were needed to

achieve comparable antiviral effects. Washing of cells with pH 3.0

citrate buffer at 4uC immediately after the adsorption period and

prior to shifting the temperature to 37uC completely abrogated

plaque formation. These observations suggested that RA affects

virus entry primarily by inhibiting viral attachment. Similar results

were also obtained with EGCG (6) and procyanidin B2-di-gallate

(8) (Figure 4). As discussed above, the relatively high protein load

due to the presence of cells and culture media components may

increase the concentration of RA and its active constituents

needed to inhibit penetration of IAV already attached to the cell

surface. When added after the infection of MDCK cells, high

concentrations of green tea extract and EGC (4) have been

reported to affect the early phase of influenza virus infection,

possibly by interference of the polyphenolic compounds with the

acidification of endosomes [18].

RA and galloylated oligomeric procyanidins interact with
IAV hemagglutinin

Data presented above suggested that extract RA, EGCG (6) and

procyanidin B2-di gallate (8) may interfere with the sialic acid

receptor binding function of the viral HA. Therefore, effects on

Procyanidins from Rumex acetosa Inhibit Attachment of Influenza Virus
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HA-mediated attachment of IAV to the cell surface were further

investigated in a hemagglutination inhibition assay. Using four

hemagglutinating units of IAV(H1N1)pdm09 I1 in allantoic fluid

(5.56107 pfu/mL) to agglutinate chicken erythrocytes, pretreat-

ment of the IAV suspension with extract RA inhibited erythrocyte

agglutination at a minimum inhibitory concentration of 156 mg/

mL (Table 3). At higher concentrations, hemagglutination reap-

peared due to direct agglutination of erythrocytes by extract RA.

By serial dilution of extract RA in PBS the minimal concentration

needed to agglutinate erythrocytes in the absence of IAV was

determined to be 156 mg/mL. Thus, treatment of IAV with

extract RA appears to directly interfere with the cell surface

receptor-binding function of IAV HA. Procyanidin B2-di-gallate

(8) did not inhibit IAV-mediated hemagglutination, however, was

able to directly agglutinate erythrocytes at a concentration$

39 mM. In accordance to Theissen et al. (2014) [41] EGCG (6)

showed no inhibitory effect on IAV-mediated hemagglutination,

however, directly agglutinated erythrocytes (Table 3). None of the

test compounds induced hemolysis (data not shown). Strong,

IAV-strain specific differences in the concentrations of EGCG

(6) needed to inhibit hemagglutination have been reported

earlier [19], and may account for the failure to detect inhibitory

effects of procyanidin B2-di-gallate (8) and EGCG (6) on

IAV(H1N1)pdm09 induced hemagglutination.

In addition, the physical interaction of extract RA and its active

compounds with recombinant, soluble HA was studied by SDS-

PAGE and immunoblotting. Incubation of HA with high

concentrations of extract RA, i.e. 2.5 to 10 mg/mL, for 1 h led

to the almost complete disappearance of the 75 – 85 kDa HA-

specific band in SDS-PAGE (Figure 5) and abrogated reactivity of

HA with an HA-specific monoclonal antibody in immunoblotting

(data not shown). Extract RA-treated HA appeared to be retained

in the gel pockets, most likely due to the formation of large,

electrophoretically immobile complexes. At lower concentrations,

i.e. 1 to 0.1 mg/mL, extract RA had no effect on the

electrophoretic mobility and immunoreactivity of HA, respective-

ly. Taking into consideration that the IAV-specific IC50 value of

extract RA in MTT and plaque reduction assay is approximately

100 to 1,000-fold lower, this finding supports the conclusion that

most of the anti-IAV activity of extract RA is not due to non-

specific tannin-like effects on viral proteins.

Incubation of HA with high concentrations of procyanidin B2-

di-gallate (8) (1.13 mM) and EGCG (6) (2.18 mM) led to a time

dependent slight reduction of the monomeric HA band and the

appearance of HA aggregates being visible in Coomassie-stained

gels as a broad 75 to.200 kDa ‘‘smear’’ (Figure 6A, C). After

incubation of HA with EGCG (6) for 4 h to 24 h a faint band

corresponding to HA dimers became visible (Figure 6A). Higher

oligomers of HA could not be detected. As compared to mock

treated HA, incubation with the galloylated oligomeric proantho-

cyanidins (6) and (8) only led to a moderate decrease in the

intensity of the band corresponding to monomeric HA in

Coomassie-stained gels (Figure 6A, C). Both compounds, however,

reduced the strength of the HA monomer-specific signal in

immunoblot (Figure 6B, D). The decrease in immunoreactivity of

HA appeared to be more pronounced for (6).

Thus, (6) and (8) exhibit tannin-like astringent effects on HA

when applied for prolonged times at high concentrations, i.e., at

concentrations approx. 100 to 10,000-fold higher than the

respective IC50 values in MTTIAV assay and plaque reduction

Figure 4. Effect of Rumex acetosa extract RA (A), epigallocatechin-3-O-gallate (6) (B) and procyanidin B2-digallate (8) (C) on the
penetration of IAV. Effects on the penetration of IAV were determined by a modified plaque reduction assay. Test compounds were added for
30 min. after attachment of IAV to MDCK II cells at 4uC. Values (% of plaque reduction) 6SD relate to the respective mock-treated controls ( = 100%)
and represent $3 independent experiments. * p,0.05, ** p,0.01 (two-tailed, unpaired Student’s t-test).
doi:10.1371/journal.pone.0110089.g004

Table 3. Effect of Rumex acetosa extract RA and single compounds on IAV-mediated hemagglutination.

compound1 MIC direct agglutination highest concentration tested

Rumex acetosa extract 156 mg/mL 156 mg/mL 10 mg/mL

epigallocatechin-3-O-gallate (6) n.d.2 156 mM 5 mM

procyanidin B2-di-gallate (8) n.d. 39 mM 5 mM

1compounds are numbered as given in Table 1,
2n.d.: not detectable.
doi:10.1371/journal.pone.0110089.t003
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assay, respectively. The observed ‘‘smear’’ in SDS-PAGE and

immunoblots may stem from HA literally coated with various

amounts of (6) and (8). This may also account for the reduced

reactivity of the His-tag-specific monoclonal antibody used to

detect recombinant soluble HA. Similar effects were observed with

an HA-specific monoclonal antibody (data not shown). The effects

of high concentrations of extract RA and its active compounds on

HA are in good accordance with the model suggested by Haslam

(1996) [45] by describing the aggregation of proteins by

polyphenols, and confirms earlier findings in HSV-1 [21]. On

the other hand, antiviral effects of (6) and (8) are detectable at

much lower concentrations. Therefore, similar to what was

observed for RA, tannin-like astringent effects are unlikely to

mediate most of the antiviral activity of these compounds.

Procyanidin B2-di-gallate (8) is predicted in silico to
interact with the sialic acid binding site of viral
hemagglutinin

To visualize the binding of components from RA to the viral

surface proteins, four selected compounds were docked to HA of

influenza virus A/California/04/2009 (H1N1) [30] in silico by

means of the software package MOE. Exemplary for the docking

results of all investigated cavities of HA, the score of the docking at

the sialic acid binding site [46] was -6.29 for procyanidin B2-di-

gallate (8), 25.55 for procyanidin B2 (7), 25.89 for EGCG (6),

and 25.28 for epicatechin (2), with (8) showing the best score. The

data demonstrated a better score of galloylated compounds in

comparison to the respective ungalloylated molecules. Addition-

ally, inspection of the best docking pose revealed the binding of (8)

(Figure 7) with both galloyl moieties and the B-ring of the second

epicatechin gallate unit deep inside the sialic acid binding pocket,

suggesting a notably stronger anchorage of galloylated molecules

in contrast to ungalloylated compounds and offering a straight-

forward explanation for the strong activity of this digalloylated

dimer. Aside from this, the investigated dimers (7) and (8) yielded a

better docking score than the monomeric (6) and (2). These results

further corroborate the observation depicted in the functional

bioassays: An increase in the degree of polymerization and

galloylation enhances the binding of proanthocyanidins to HA. As

discussed already above, these results are in contrast to a model

favoring the unspecific ‘‘coating’’ of HA by polyphenols. The

strong anchoring of the galloylated compounds (6) and (8) in the

sialic acid binding pocket of HA disclosed by in silico visualization

may block the receptor binding site of HA and consequently

specifically inhibit the viral adsorption process.

EGCG (6) blocks binding of HIV gp120 to its cellular receptor

CD4, and it has been suggested that there is an appropriate

binding site of EGCG (6) in the region of CD4 interacting with

gp120. The galloyl ring D of EGCG (6) appears to stack against

aromatic and basic amino acid side chains within the gp120

binding site of CD4, e.g., Phe 43, Arg 59, Trp62 of CD4, thereby

abrogating interaction of gp120 with CD4 [47]. Notably, crystal

structure analyses revealed that a subgroup of neutralizing

antibodies interferes with receptor binding of HA by targeting

the highly conserved Tyr98 and Trp153 at the hydrophobic cavity

base of the sialic acid binding site with an aromatic side chain

[48,49]. It is therefore worth mentioning that in our docking

model, the galloyl moiety of the second epicatechin gallate unit of

procyanidin B2-di-gallate (8) is close to the aromatic side chain of

Trp153 in the sialic acid binding pocket of HA, where it might

interact in terms of a T-shaped p-p interaction. Furthermore, the

B-ring of the second subunit is in a position where its phenolic

oxygens might form hydrogen bonds with the hydroxyl proton of

Tyr98 (both distances O…H,3 Å; see Figure 7B).

RA does not interfere with cellular responses to TNF-a
and EGF

While the extract RA showed little cytotoxic effect over a wide

range of concentrations it might still elicit or interfere with

intracellular responses in treated cells. Thus, the effect of the

addition of high concentrations of RA (100 mg/mL) close to the

calculated CC50 for 1 h at 37uC on TNF-a and EGF induced

signal transduction was studied. As shown in Figure 8A stimula-

Figure 6. Effect of EGCG (6) (A, B) and procyanidin B2-di-
gallate (8) (C, D) on electrophoretic mobility and detection of
HA by immunoblotting. Recombinant soluble HA was either mock-
treated (lanes 1), incubated with EGCG (6) (2.18 mM) or procyanidin B2-
di-gallate (8) (1.13 mM) dissolved in PBS for the times indicated (lanes 3
to 9) or incubated with PBS only (lanes 10 to 13); EGCG (6) (2.18 mM)
and procyanidin B2-di-gallate (8) (1.13 mM) incubated in the absence of
HA served as control (lanes 2). Figure 6A, C: Coomassie-stained SDS-
PAGE. Figure 6B, D: Detection of HA by immunoblot using a penta-His-
specific monoclonal antibody. The expected position of monomeric
(approx. 75 kDa) and dimeric HA (approx. 150 kDa) is indicated.
Required parameters are missing or incorrect.
doi:10.1371/journal.pone.0110089.g006

Figure 5. Effect of RA on the electrophoretic mobility of
recombinant soluble HA. Mock-treated HA (lane 1), RA (10 mg/mL)
(lane 2), and HA treated with RA (0.1 to 10 mg/mL) as indicated for 1 h
(lanes 3 to 9) were loaded onto 10% bis-tris SDS-PAGE gels and
analyzed by Coomassie-staining. The positions of molecular weight
marker (mwm) and HA are indicated. HA conglomerates in the gel
pockets are marked by arrowhead.
doi:10.1371/journal.pone.0110089.g005
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tion of A549 cells by TNF-a led to similar increases in

phosphorylated NF-kB (pNF-kB) in RA-treated or mock-treated

cells, respectively. In the absence of TNF-a, neither RA nor mock-

treatment led to a significant induction of pNF-kB. Potential

effects of RA on Raf/MEK/ERK-signaling were investigated by

stimulation of A549 cells by EGF (Figure 8B). While non-EGF-

stimulated cells did not express pERK1/2, regardless if pretreated

with RA or not (lanes 1 and 3), EGF treatment activated its

expression (lane 2). Pretreatment of the cells with RA, followed by

stimulation with EGF did not result in a significant decrease in

pERK1/2 expression. It was thus concluded that even high

concentrations of RA close to the CC50 are unlikely to significantly

elicit or interfere with TNF-a and EGF-induced signal transduc-

tion. This is in accordance to recent results showing that cells are

inert to LADANIA067, a polyphenol-rich extract of Ribes nigrum
folium inhibiting entry of IAV [50].

Conclusions

The proanthocyanidin-enriched extract RA and its main active

constituent epicatechin-3-O-gallate-(4bR8)-epicatechin-39-O-gal-

late (procyanidin B2-di-gallate) protect cells from IAV infection by

blocking IAV adsorption and interfering with penetration at

higher concentrations. Anti-IAV-activity is dependent on galloyla-

tion of the procyanidin backbone. At effective concentrations, cells

are unaffected by RA and procyanidin B2-di-gallat. Regarding the

need for new and abundantly available anti-influenza therapeutics,

RA and procyanidin B2-di-gallate appear to be a promising

expansion of the currently available anti-influenza agents.

Supporting Information

Figure S1 Inhibitory effect of residual allantoic fluid on the

antiviral activity of RA. To demonstrate that titres of viral stocks

prepared from allantoic fluid of infected eggs have an impact on

the outcome of the MTTIAV assay, stocks of isolate I1

(H1N1)pdm09 were approx. 50-fold prediluted in allantoic fluid

(from 3.26108 pfu/mL to 6.66106 pfu/mL). Subsequently, virus

was diluted to 16104 pfu IAV/well in serum-free medium and the

antiviral activity and cell vitality were determined by MTTIAV

assay and cytotoxicity assay, respectively (compare Figure 2).

Values represent mean 6SD of $3 independent experiments,

* p,0.05, ** p,0.01 (two-tailed, unpaired Student’s t-test).

Statistical significance of antiviral activity was calculated for

nontoxic concentrations only (1 to 5 mg/mL).

(TIF)

Figure 7. Protein-ligand docking of epicatechin-3-O-gallate-
(4bR8)-epicatechin-39-O-gallate (8) into the sialic acid binding
cavity of hemagglutinin. (A) 3D model; protein: green: hydrophobic,
purple: polar, red: exposed; ligand: yellow: carbon, light grey: hydrogen,
red: oxygen, blue: nitrogen; (B) Interactions of Tyr98 and Trp153; (C) 2D.
doi:10.1371/journal.pone.0110089.g007

Figure 8. Influence of extract RA on TNF-a (A) and EGF (B)
induced signal transduction in A549 cells. Lanes 1 and 2 represent
cells preincubated for 1 h with medium, lanes 3 and 4 with RA (100 mg/
mL). (A) Stimulation of cells with TNF-a (20 ng/mL, 30 min.) (lane 2, 4),
and detection of phosphorylated NF-kB; loading control b-actin; (B)
stimulation of cells with EGF (30 ng/mL, 10 min.) (lane 2, 4), and
detection of phosphorylated ERK1/2; loading control a-tubulin.
doi:10.1371/journal.pone.0110089.g008
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