
ORGAN DEVELOPMENT

Tips from the embryonic lung
A new source of progenitor cells can now be used to study hidden

aspects of human lung development and pediatric lung disease.

AVINASH WAGHRAY AND JAYARAJ RAJAGOPAL

M
ost of our knowledge about the

development of the lung comes from

elegant experiments using mice

(Hogan et al., 2014; Tata and Rajagopal,

2017). Despite the usefulness of mouse models,

human and mouse lungs are distinct in many

ways – including their size, the distribution of

cell types, and the time they take to

develop (Morrisey and Hogan, 2010;

Wansleeben et al., 2013). Now, in eLife, Emma

Rawlins and colleagues – including Marko Nikolić

as first author – report that mouse and human

embryonic lungs also express the same tran-

scription factors in different patterns during

development (Nikolić et al., 2017).

In both humans and mice, the lungs originate

from a groove and a bud. The laryngotracheal

groove becomes the future larynx and trachea,

while the bud divides to become the origin of

most of the branching airways and the gas-

exchanging alveoli. Both bud and groove

emerge from the primitive embryonic gut tube,

whose epithelial layer is referred to as the

embryonic anterior foregut endoderm

(Figure 1A) since it originates from one of the

three definitive germ layers of the embryo: the

endoderm. As the embryonic lung develops, the

epithelial cells at the tip of the embryonic lung

proliferate most rapidly, dividing over and over

to ultimately generate the beautiful branching

structure of the adult organ.

Many groups in the last decade have created

in vitro models to study human embryonic lung

development and lung disease. Early studies

focused on the stepwise differentiation of

induced pluripotent stem cells (iPSCs): iPSCs

were first differentiated into endoderm cells and

then into the lung progenitor cells that give rise

to the various different epithelial cell types of

the mature airway and the alveoli (Figure 1B;

McCauley et al., 2017; Snoeck, 2015). Other

approaches have focused on generating an

expandable source of adult airway and alveolar

cells directly from adult tissues (Figure 1C;

Gotoh et al., 2014; Mou et al., 2016).

In humans, for obvious reasons, it has been

impossible to dissect the mechanisms that

underlie how lungs and other organs develop in

embryos. However, we know that in mice, the

transcription factor Sox2 is essential for the initi-

ation of lung development from the gut tube,

and is later expressed exclusively in the epithe-

lial cells of the ‘stalk’ that in turn give rise to the

epithelium of the airway. By contrast, tip epithe-

lial cells express a related transcription factor,

Sox9, that is necessary for the maintenance of

tip cells themselves (Hogan et al., 2014;

Rockich et al., 2013).

By generating an alternate and renewable

source of progenitor cells from the human

embryonic lung, Nikolić et al. – who are based

at the University of Cambridge and University

College London – now demonstrate that, unlike

in the mouse, human embryonic lung tip cells

produce both SOX2 and SOX9. After dissecting

human embryonic tips and stalks, global gene

expression analysis of the epithelium was used
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to identify genes specific to each cell type. By

determining which growth factor-related genes

were present in each of these cells, Nikolić et al.

fashioned a chemically defined medium to grow

tip cells as organoids. They were further able to

expand, freeze and differentiate these tip-

derived cells (Figure 1D).

Interestingly, the human stalk epithelial cells

that produced SOX2 but did not produce SOX9

showed remarkable plasticity, and were able to

give rise to “SOX2+SOX9+” tip progenitor cells.

This plasticity harkens back to a classical finding

from experiments performed on mice, in which

tip mesenchyme cells (these are cells adjacent to

the tip epithelial cells that presumably serve as a

source of the growth factors that are necessary

to maintain the epithelial tip cells) were grafted

onto the tracheal epithelium. This grafting

resulted in the formation of buds on the trachea

which then started branching (Alescio and Cas-

sini, 1962) and this phenomenon was later

shown to reflect the conversion of Sox2+
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Figure 1. A new method to study human embryonic lung development. (A) The lung originates from a region of the embryonic gut, the epithelium of

which is called the anterior foregut endoderm (gray shading, left tube); the numbers underneath give the age of the embryo (in days for mouse

embryos and weeks for human embryos). The lung bud epithelium (gray shading, middle tube) emerges from the anterior foregut endoderm and

undergoes branching morphogenesis (right tube) to give rise to stalk regions that will become the proximal airways, and a distal tip region that

iteratively divides to give rise to more branching airways and eventually to alveoli (enlarged in dashed boxes). The stalk and tip regions have different

expression patterns of the Sox2 and Sox9 transcription factors in humans and mice. (B) Induced pluripotent stem cells (iPSCs) can be differentiated in a

stepwise fashion into definitive endoderm cells, then into anterior foregut endoderm and, finally, into airway and alveolar epithelial cells. (C) Epithelial

stem cells from the airway and the alveolar compartments of the adult human lung can be manipulated in vitro to form adult airway epithelial cells (via

conversion into adult basal cells) and adult alveolar organoids. (D) Nikolić et al. micro-dissected human lung bud tips and stalks (top) and analyzed

them using global gene expression analysis (right) to identify signaling and transcriptional regulators that are expressed specifically in tip progenitor

cells. This analysis was used to establish a chemically defined medium (CDM) in which human SOX2+SOX9+ cells self-renew over many passages. The

SOX2+SOX9+ cells can be readily frozen and differentiated into airway and alveolar cell types for in vitro modeling and for engraftment experiments.

Furthermore, the human SOX2-SOX9+/SOX2lowSOX9+ tips, characteristic of later developmental stages (greater than 17 weeks post-conception), and

SOX2+SOX9 stalks (present at any stage of embryonic organ development before 21 weeks post-conception) convert into a SOX2+SOX9+ state in

CDM cultures. This presumably reflects a reversion to an earlier tip progenitor state.
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tracheal epithelial cells into Sox9+ bud cells

(Hogan et al., 2014). This, however, only

occurred during the very early stages of lung

development. Perhaps, under the right condi-

tions, early and late stage mouse stalk cells

could exhibit plasticity that mirrors the findings

of Nikolić et al. in the human case, but perhaps

not.

Notably, the cultured human SOX2+SOX9+

tip cells differentiate into both airway and alveo-

lar cells when grown in vitro or in mice. Whether

the differentiated cells fully mature and become

fully functional remains to be seen, but the

results are promising.

The hitherto unknown facets of human

embryonic lung development that Nikolić et al.

reveal can now be mechanistically scrutinized.

The human SOX2+SOX9+ cells they cultured

could potentially be used to model pediatric

lung diseases (such as bronchopulmonary dys-

plasia), which are thought to originate during

lung development. Indeed, because human

SOX2+SOX9+ cells are derived from embryonic

lungs, they are likely to more faithfully reflect

the epigenetic features of the embryonic cells

that contribute to pediatric lung disease than

cells derived from adult lung epithelial cells or

iPSCs. For example, iPSC-derived lung cells

could possess abnormal epigenetic marks and/

or the epigenetic and genetic state of cells

derived from adult lungs may reflect environ-

mental assaults encountered in the course of

adulthood that are not relevant for fetal and

postnatal lung disease. Thus the availability of

embryonic lung epithelial cells is likely to open

up whole new fields of important inquiry.
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