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TMZ resistance remains one of the main reasons why treatment of glioblastoma (GBM) fails. In order to investigate the underlying
proteins and pathways associated with TMZ resistance, we conducted a cytoplasmic proteome research of U87 cells treated
with TMZ for 1 week, followed by differentially expressed proteins (DEPs) screening, KEGG pathway analysis, protein–protein
interaction (PPI) network construction, and validation of key candidate proteins in TCGA dataset. A total of 161 DEPs including 65
upregulated proteins and 96 downregulated proteins were identified. Upregulated DEPs were mainly related to regulation in actin
cytoskeleton, focal adhesion, and phagosome and PI3K-AKT signaling pathways which were consistent with our previous studies.
Further, themost significantmodule consisted of 28 downregulated proteins that were filtered from the PPI network, and 9 proteins
(DHX9, HNRNPR, RPL3, HNRNPA3, SF1, DDX5, EIF5B, BTF3, and RPL8) among them were identified as the key candidate
proteins, which were significantly associated with prognosis of GBM patients and mainly involved in ribosome and spliceosome
pathway. Taking the above into consideration, we firstly identified candidate proteins and pathways associated with TMZ resistance
in GBMusing proteomics and bioinformatic analysis, and these proteins could be potential biomarkers for prevention or prediction
of TMZ resistance in the future.

1. Introduction

Glioblastoma (GBM) remains one of the most lethal cancers
for human beings and the prognosis of GBM is still pes-
simistic [1, 2]. The treatment of GBM includes gross total
resection of tumor tissues, followed by adjuvant chemo-
and radiotherapy. Temozolomide (TMZ) is the first-line

chemotherapy agent and has improved the prognosis of
GBM patients significantly [3, 4]. However, development
of TMZ resistance during therapy period is so common
among clinical GBM patients, which is also one of the main
causes why treatment fails. The most popular mechanism
of TMZ resistance is the expression of O6-methylguanine-
DNAmethyltransferase (MGMT) which protects the cellular
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genome from the damage of alkylating agents [5]. However,
for the acquiredTMZresistance ofGBMcells, themechanism
still remains unclear.

Over the past years, extensive genomics and proteomics
studies have been conducted and also greatly advanced our
understanding of the molecular mechanism which underlies
the pathogenesis of GBM. However, most of these studies
mainly focus on thewhole proteome and genome. Subcellular
distribution of proteins under different conditions is a major
challenge in cell biology indeed; thus subcellular proteome
has been developed to address this issue reliably [6]. Simul-
taneously, using bioinformatic analysis such as gene ontology
(GO), pathway enrichment information, and network-based
approaches can also help us to identify the exact molecular
mechanism.

Our previous researches indicated that TMZ treatment
for 1 week could induce the reconstruction of cytoskeleton
[7] and activate epithelial-to-mesenchymal transition (EMT)
and autophagy process of GBM cells [8]. And phosphoinosi-
tide 3-kinase (PI3K) signaling pathway also contributed to
the acquired TMZ resistance of GBM cells [9]. In order
to explore key candidate proteins and pathways which may
play important roles in acquired TMZ resistance, and in
consideration of all the biological processes identified in our
previous studies occurring in cytoplasma, then we conducted
a cytoplasmic proteome research of U87 GBM cells treated
with TMZ for 1 week. Further we performed KEGG path-
way enrichment analysis, protein–protein interaction (PPI)
network and subnetwork analysis, and validation of key
candidate proteins in TCGA-GBM dataset. Finally 9 impor-
tant proteins were identified as the key candidate proteins,
which may serve as reliable biomarkers for the prediction or
prevention of acquired TMZ resistance of GBM in the future.

2. Materials and Methods

2.1. Cell Culture and Protein Extraction. The human glioblas-
toma U87 cell line was purchased from the American type
culture collection (ATCC, USA) and cultivated in Dulbecco’s
modified Eagle’s medium (DMEM;Gibco, Grand Island, NY)
supplemented with 10% FBS and cultured at 37∘C in a humid-
ified atmosphere of 5% CO2. TMZ was purchased from
Sigma-Aldrich (St. Louis, MO, USA) and diluted in dimethyl
sulfoxide (DMSO) (Solarbio Inc., Beijing, China) to a stock
solution of 200mM TMZ. Immediately before use in cell
culture, the stock was diluted in media to a concentration of
200𝜇M.The same concentration of DMSO was added to the
control group.

The method of trypan blue staining was described in our
previous study [7]. Nuclear and cytoplasmic fractions were
generated according to the protocol as follows: 2 × 107 cells
were collected and suspended in 300–500 𝜇l RLN lysis buffer
(Qiagen,Germany)with 1%PMSF, kept on ice for 20min, and
centrifuged for 10min at 3000×g, 4∘C; the clear supernatant
was the cytoplasmic extractions; the nucleus precipitate was
washedwith RLN lysis buffer 3 times and the supernatant was
discarded; the nucleus precipitate was suspended in 100 𝜇l
RIPA lysis buffer (Cell Signaling Technology, USA) with 1%
PMSF, with sonication on ice for 1min; the suspension was

centrifuged at 12000×g for 20min at 4∘C; the clear super-
natant was the nuclear extractions. The validation of purity
of the extractions was indicated for western blots probed
with antibodies against two fractionation controls (Histone
H3 for nucleus extraction, Beyotime, China; dilution 1 : 1000;
GAPDH for cytoplasma extraction, Jetway Biotech Co., Ltd.,
China; dilution 1 : 2000).

2.2. Protein Digestion and Liquid Chromatography–Elec-
trospray Ionization–Tandem Mass Spectrometry (LC–ESI–
MS/MS). Digestion of protein (250 𝜇g for each sample) was
performed according to the FASP procedure described by
Wisniewski [10]. The resultant peptides of trypsin digestion
were desalted by solid phase extraction usingC

18
Empore disc

cartridges (Supelco/Sigma-Aldrich, Taufkirchen, Germany)
[11] and then concentrated by vacuum centrifugation and
reconstituted in 40 𝜇l of 0.1% trifluoroacetic acid. MS exper-
iments were performed on a Q Exactive mass spectrometer
that was coupled to Easy nLC (Proxeon Biosystems, Thermo
Fisher Scientific, Bremen, Germany). 5𝜇g peptide was loaded
onto a the C

18
-reversed phase column (Thermo Scientific,

Easy Column, 10 cm long, 75𝜇m inner diameter, and 3 𝜇m
resin) in buffer A (2% acetonitrile and 0.1% formic acid) and
separated with a linear gradient of buffer B (80% acetonitrile
and 0.1% formic acid) at a flow rate of 250 nL/min controlled
by IntelliFlow technology over 120min.MSdatawas acquired
using a data-dependent top-10method dynamically choosing
the most abundant precursor ions from the survey scan
(300–1800 m/z) for HCD fragmentation. Determination of
the target value is based on predictive Automatic Gain Con-
trol (pAGC). Dynamic exclusion duration was 25 s. Survey
scans were acquired at a resolution of 70,000 at m/z 200 and
resolution for HCD spectra was set to 17,500 at m/z 200.
Normalized collision energywas 30 eV and the underfill ratio,
which specifies the minimum percentage of the target value
likely to be reached at maximum fill time, was defined as
0.1%.The instrument was run with peptide recognitionmode
enabled. MS experiments were performed triply for three
biologic repetitions.

2.3. Protein Identification. The raw MS/MS spectra search
was carried out using a freely available software suite,
MaxQuant (version. 1.3.0.5). MS data were searched through
the UniProtKB database [12]. An initial search was set at a
precursor mass window of 6 ppm. The search followed an
enzymatic cleavage rule of trypsin and allowed maximal two
missed cleavage sites and amass tolerance of 20 ppm for frag-
ment ions. Carbamidomethylation of cysteineswas defined as
fixed modification, while protein N-terminal acetylation and
methionine oxidation were defined as variable modifications
for database searching. The cutoff of global false discovery
rate (FDR) for peptide and protein identification was set to
0.01. The MaxLFQ label-free quantification method, a reten-
tion time alignment and identification transfer protocol
(“match-between-runs” feature in MaxQuant) described in
[13], was applied and a novel algorithmwas used to extract the
maximumpossible quantification information. Protein abun-
dance was calculated on the basis of the normalized spectral
protein intensity (LFQ intensity). The mass spectrometry
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Table 1: List of 161 DEPs identified in the proteome analysis, including 65 upregulated proteins and 96 downregulated proteins in cytoplasma
of U87 GBM cells treated with TMZ compared to the control group treated with DMSO.

DEPs Protein name

Upregulated

CCDC25, HIST1H1E, KIF5C, SNAPIN, VAMP5, SLC33A1, GOLT1B, IL1B, PCNP, MINOS1,
ZW10, UPP1, CTTN, FDXR, TOP1, RRM2B, ANXA4, PSMD10, ITGB, CKAP4, S100A13, LPP,

ATP5I, TCEA1, TRG14, SLC2A1, TUBA4A, GNG12, hCG, CTSB, MYO1C, SIGMAR1,
MAPK1IP1L, MGST1, SEC22B, ITGB1, P4HA2, FTH1, CSTB, ITGAV, GLRX, BAX, PRDX3,

PLOD2, DNAJC3, PSAP, S100A11, LEPRE1, GALM, TMSB4X, SOD2, P4HA1, TMSB10, PATL1,
TGM2, GNB2, MCFD2, CMBL, TNKS1BP1, GSN, MARCKS, S100A6, FKBP10, FHL2, HRSP12

Downregulated

SEC63, DPH5, NONO, MATR3, DDX5, KIAA1524, MYLK, NHP2L1, RPL29, RPL35, HNRNPR,
HSD17B11, CCDC134, HSBP1, MSH2, ACTR1B, PITHD1, EEF1A1, SETD3, PRKDC, DHX9,
ELAVL1, RPL14, MPDU1, TBC1D23, RPL21, TAGLN3, TOLLIP, TBC1D13, HLA-A, MYO5A,

SACS, UCC1, SF1, ENOPH1, KATNAL2, FBXO7, PPP6C, EIF5B, IFI35, FAM213A, PSME3, RPL8,
PMVK, NMD3, EFTUD2, SFPQ, HNRPA1, RPS15, VPS4B, CSNK2A2, SDCBP, PPID, GAPD,
IPO9, EIF4A1, ARL1, EIF3M, RPS24, FAU, AHNAK2, HNRNPA3, SAR1A, NDUFAB1, PRSS1,
CUL4B, TRIM28, MYO18A, ITGB6, SCAMP3, EIF5, BTF3, HDLBP, SYNCRIP, RPL9, KPNA2,
G3BP2, MIF, RPL3, FASN, MCM7, AKR1C3, RPS23, PFDN4, SURF4, EEF1B2, RPL14, DDX39A,

ANP32A, AHNAK, RPS25, ABCF2, NME2P1, NAP1L1, RRM1, DDX3X
DEPs: differentially expressed proteins.

proteomics data have been deposited to the ProteomeX-
change Consortium via the PRIDE partner repository with
the dataset identifier PXD007759.

2.4. Identification of Significantly Differently Expressed Pro-
teins (DEPs), Gene Ontology, and Pathway Enrichment Anal-
ysis. The raw data of cytoplasmic proteome expression was
analyzed. Differently expressed proteins (DEPs) were iden-
tified with classic Student’s 𝑡-test, and the log

2
fold change

(log
2
FC) was also calculated. |log

2
FC| ≥ 1 and 𝑃 value

< 0.05 were considered as the cutoff values for DEPs
screening. We did not apply adjusting for multiple hypoth-
esis testing for DEPs screening. Candidate DEPs func-
tions and pathways enrichment were analyzed using online
databases. The Database for Annotation, Visualization, and
Integrated Discovery (DAVID) was a comprehensive set
of functional annotation tools. We performed GO and
KEGGpathway enrichment analyses using theDAVIDonline
tool (https://david.ncifcrf.gov/) and KEGG pathway tool
(http://www.genome.jp/kegg). 𝑃 value < 0.05 was set as the
cutoff criterion.

2.5. Protein–Protein Interaction (PPI) Network Construction,
Modular Analysis, and Significant Candidate Proteins and
Pathway Identification. Online database Search Tool for
the Retrieval of Interacting Genes (STRING, https://string-
db.org) [14] was applied to analyze the protein–protein inter-
action (PPI) network. Cytoscape software [15] was utilized to
construct protein interaction relationship network and ana-
lyze the interaction relationship of the candidate DEPs. Each
node represented a protein and the edges represented the
interactions between proteins.TheNetworkAnalyzer plug-in
was used to calculate node degree, which means the numbers
of interconnections, and to filter the key candidate proteins
of PPI with degree ≥12. These proteins might be the core
proteins and may have important physiological regulatory
functions.

For validation of the significant candidate DEPs, The
Cancer Genome Atlas (TCGA) Glioblastoma dataset was
analyzed using R2: Genomics Analysis and Visualization
Platform (http://hgserver1.amc.nl/cgi-bin/r2/main.cgi). The
TCGA Glioblastoma dataset included 540 samples.

3. Results

3.1. Global Profiling of Cytoplasmic Proteins in U87 Cells
by Label-Free Quantitative Proteomics. We treated U87 cells
with 200𝜇M TMZ for 1 week; only 20% of the cells survived
and showed great phenotypic changes (Figure 1(a)). Then we
extracted the cytoplasmic lysates as the proteome samples;
the flowchart was shown in Figure 1(b). The purity and
efficiency of nucleus and cytoplasma extraction were verified
through western blot (Figure 1(c)). Protein identification and
label-free quantification were carried out by analyzing MS
raw data using the MaxQuant-Andromeda software suite.
Finally, it revealed a total of 1999 nonredundant proteins
based on the identification of one or more unique peptides.
The mass spectrometry proteomics data have been deposited
to the ProteomeXchange Consortium via the PRIDE partner
repository with the dataset identifier PXD007759.

3.2. Identification of Differentially Expressed Proteins (DEPs).
A total of 161 proteins displayedmore than 2-fold quantitative
alterations with 𝑃 value < 0.05 in the proteome compari-
son between TMZ-treated group and DMSO-treated group,
including 65 upregulated proteins (1 protein identified as Bos
taurus species was excluded) and 96 downregulated proteins
(Figures 1(d) and 1(e) and Table 1).

3.3. Gene Ontology Analysis and Signaling Pathway Enrich-
ment Analysis. Proteins were subjected to signaling pathway
enrichment analyses; the pathways enriched by downreg-
ulated DEPs were mainly related to ribosome and RNA
transport (Figure 2(b) andTable 2).Thepathways enriched by
upregulated DEPs were mainly related to regulation in actin

https://david.ncifcrf.gov/
http://www.genome.jp/kegg
https://string-db.org
https://string-db.org
http://hgserver1.amc.nl/cgi-bin/r2/main.cgi
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Figure 1: Cytoplasmic proteome research of U87 GBM cells treated with TMZ for 1 week. (a) Morphology and viability change of U87 cells
after temozolomide treatment for 1 week; (b) outline of the experimental workflow; (c) verification of the purity of nucleus and cytoplasma
extractions; (d) volcano figure of all identified proteins. Red plots mean upregulated proteins in cytoplasma after TMZ treatment, and purple
plots mean downregulated proteins. | log 2FC| ⩾ 1 and 𝑃 value < 0.05 were considered as the cutoff values for DEPs screening; (e) Heat map
of the significant DEPs.
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Figure 2: Signaling pathway enrichment analysis of DEPs identified in this research. Significantly enriched KEGG terms of upregulated DEPs
(a) and downregulated DEPs (b), identified bar represented the percentage of DEPs enriched in specific KEGG term, and the referenced bar
represented the percentage of all identified proteins enriched in this KEGG term, which act as a control.

cytoskeleton, pathways in cancer, focal adhesion, and phago-
some and PI3K-AKT signaling pathway (Figure 2(a) and
Table 2).

3.4. Key Candidate Proteins Identification with Protein–
Protein Interaction (PPI) Network and Subnetwork Analysis.
Using the STRING online database (https://string-db.org)
(Figure 3) and Cytoscape software, the PPI network was
constructed (Figure 4(a)). A total of 161 DEPs (65 upregulated
and 96 downregulated proteins) were included in the PPI
network; there existed 2 subgroups: proteins with strong
connections with others (the pink region shown in Figure 3)
and separated proteins. So we conducted subnetwork anal-
ysis among these proteins which have strong interactions
with each other. As shown in Figure 4(a), the subnetwork
contained 114 nodes (44 upregulated and 70 downregulated
proteins) and 822 edges. In order to identify key candidate
proteins related to TMZ therapy, we selected 28 hub proteins

with the filtering of degree ≥12 criteria (i.e., each node had
more than 12 connections/interactions) (Figures 4(a) and
4(b)); all these 28 proteins were downregulated proteins and
mainly associated with ribosome pathway and spliceosome
pathway.

3.5. Validation of the Key Candidate Proteins in TCGA
Database. To validate the reliability of the 28 key candidate
proteins, we used R2 Platform to confirm the predictive capa-
bility for overall survival or progress-free survival probability
in TCGA 540 GBM dataset. We found that all the 28 key
candidate proteins (Figure 4(b)) were significantly related
to the prognosis of GBM patients (either OS or PFS),
suggesting our results of the identified candidate proteins
were reliable (data not shown). Among the 28 key can-
didate proteins, we also found 9 special proteins (DHX9,
HNRNPR, RPL3, HNRNPA3, SF1, DDX5, EIF5B, BTF3, and
RPL8) (Figure 4(c)), which were downregulated after TMZ

https://string-db.org
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Table 2: Signaling pathway enrichment analyses of down- and upregulated DEPs.

Pathway ID Name Count 𝑃 value
Upregulated

ko04810 Regulation of actin cytoskeleton 6 9.37𝐸 − 04

ko05410 Hypertrophic cardiomyopathy (HCM) 3 2.28𝐸 − 03

ko05412 Arrhythmogenic right ventricular cardiomyopathy (ARVC) 3 2.28𝐸 − 03

ko04512 ECM-receptor interaction 3 2.28𝐸 − 03

ko05414 Dilated cardiomyopathy 3 2.28𝐸 − 03

ko05200 Pathways in cancer 6 2.63𝐸 − 03

ko05205 Proteoglycans in cancer 5 2.94𝐸 − 03

ko04151 PI3K-Akt signaling pathway 5 3.30𝐸 − 03

ko04380 Osteoclast differentiation 3 6.79𝐸 − 03

ko05032 Morphine addiction 2 6.81𝐸 − 03

ko04640 Hematopoietic cell lineage 2 6.81𝐸 − 03

ko04919 Thyroid hormone signaling pathway 3 9.72𝐸 − 03

ko05020 Prion diseases 2 1.01𝐸 − 02

ko04727 GABAergic synapse 2 1.20𝐸 − 02

ko04728 Dopaminergic synapse 3 1.42𝐸 − 02

ko04145 Phagosome 4 1.43𝐸 − 02

ko00361 Chlorocyclohexane and chlorobenzene degradation 1 1.46𝐸 − 02

ko00364 Fluorobenzoate degradation 1 1.46𝐸 − 02

ko00623 Toluene degradation 1 1.46𝐸 − 02

ko04510 Focal adhesion 4 1.64𝐸 − 02

ko05100 Bacterial invasion of epithelial cells 3 2.07𝐸 − 02

ko04723 Retrograde endocannabinoid signaling 2 2.55𝐸 − 02

ko04713 Circadian entrainment 2 2.55𝐸 − 02

ko04130 SNARE interactions in vesicular transport 2 2.81𝐸 − 02

ko05140 Leishmaniasis 2 2.81𝐸 − 02

ko04724 Glutamatergic synapse 2 2.81𝐸 − 02

ko04115 p53 signaling pathway 2 3.07𝐸 − 02

ko04514 Cell adhesion molecules (CAMs) 2 3.07𝐸 − 02

ko05133 Pertussis 2 3.63𝐸 − 02

ko05222 Small cell lung cancer 2 3.63𝐸 − 02

ko04726 Serotonergic synapse 2 3.63𝐸 − 02

ko04725 Cholinergic synapse 2 3.63𝐸 − 02

ko04211 Longevity regulating pathway, mammal 2 3.92𝐸 − 02

ko05134 Legionellosis 2 4.22𝐸 − 02

Downregulated
ko03010 Ribosome 13 2.02𝐸 − 07

ko03008 Ribosome biogenesis in eukaryotes 3 3.27𝐸 − 02

ko03013 RNA transport 5 4.52𝐸 − 02

treatment, and lower expression indicated worse prognosis of
GBM patients (both OS and PFS) (Figure 5). Among them,
RPL3, RPL8, BTF3, and EIF5Bwere associated with ribosome
signaling pathway and the other 5 proteins were related to
spliceosome signaling pathway.

4. Discussion

Although the use of TMZ has improved the OS of GBM
patients from 12.6 to 14.6months [1], the development of drug

resistance is still one of the main causes of treatment failure,
and the molecular mechanism of this drug resistance phe-
nomenon still remains unclear. In this study, we conducted a
cytoplasmic proteome research ofU87GBMcells treatedwith
TMZ for 1 week, utilized bioinformatic methods to analyze
the raw data deeply, and identified 161 significant DEPs
including 65 upregulated and 96 downregulated proteins.

TheupregulatedDEPsweremainly enriched in regulation
of actin cytoskeleton, pathways in cancer, PI3K-Akt pathway,
and phagosome and focal adhesion signaling pathways.
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Figure 3: Protein–protein interaction (PPI) network analysis of DEPs. Based on STRING online database, a total of 161 DEPs constructed
the PPI network.The nodes included in the pink region had strong interactions with other nodes, which indicated significant importance for
the screening of key candidate proteins.

Consistent with our previous researches, we have already
found that treatment of TMZ in U87 GBM cells could induce
reconstruction of cytoskeleton [7], EMT-like changes, and
activation of autophagy process [8], whichwould protect cells
from the nucleus damage induced by TMZ. Further, we have
also found that PI3K-Akt pathway was activated in acquired
TMZ-resistant U87 cells, which may contribute to the
chemoresistance [9]. The downregulated DEPs were mainly
enriched in ribosome and RNA transport pathway.

In order to screen the key candidate proteins responsible
for TMZ resistance, we conducted PPI-network analysis, and
28 DEPs were identified finally. Interestingly, all these 28 pro-
teins were downregulated DEPs, and all of them were related
to the prognosis of GBM patients (either OS or PFS). After
further investigating and validating TCGA-GBM dataset, a
total of 9 proteins (DHX9, HNRNPR, RPL3, HNRNPA3, SF1,
DDX5, EIF5B, BTF3, and RPL8) among them were identified
as the key candidate proteins which were related to TMZ
therapy. All these 9 proteins were downregulated in the

cytoplasma of TMZ-treated U87 cells, and lower expression
of these proteins indicated worse prognosis of GBM patients
(both OS and PFS) after analyzing the TCGA-GBM-540
database. For the survival analysis, the results could be more
robust if we have done a survival analysis of subgroup only
including GBM cases treated with TMZ. All these 9 proteins
identified in this study were significantly associated with
ribosome and spliceosome signaling pathways.

Ribosome, consisting of nucleic acids and proteins, cat-
alyzes protein synthesis according to the genetic instructions
in all organisms [16], and ribosomal associated proteins
interconnect ribosome with diverse cellular processes, pro-
viding an additional layer of regulatory potential to protein
expression [17]. EIF5B, a conserved eukaryotic translation
initiation factor, is an identified key protein in this study.
Factors EIF1A and EIF5B interact on the ribosome to position
the initiation methionine tRNA on the start codon of the
mRNA translation so that translation initiates accurately [18].
BTF3 as the basic transcription factor is also required for
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Figure 4: Protein–protein interaction (PPI) network analysis of DEPs. (a) Subnetwork analysis of DEPs for key candidate proteins
identification; (b) a total of 28 key candidate proteins whose degree ⩾12 were identified in this study, and this module consisted of 28 nodes
and 452 edges; (c) this module consisted of 9 special key candidate proteins with significant relation with prognosis of GBM patients, which
were mainly associated with ribosome and spliceosome signaling pathway. Red nodes represented the upregulated DEPs and pink nodes
represented downregulated DEPs, the size of each node was determined by the significance of 𝑃 value (larger size means more significant),
the color of outer circle represented the numbers of degrees (the largest was 27 and the smallest was 1), and the deeper color of the edge
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Figure 5: Continued.
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Figure 5: Validation of the key candidate proteins in TCGA-GBM-540 dataset (a total of 504 patients; 36 patients lacking survival data were
omitted from the analysis). Nine special proteins (DHX9, HNRNPR, RPL3, HNRNPA3, SF1, DDX5, EIF5B, BTF3, and RPL8), which were
downregulated after TMZ treatment and related to both overall survival (a) and progress-free survival (b) probability of GBM patients.
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transcriptional initiation [19], and previous research has also
revealed that BTF3 was downregulated in GBMwhich is con-
sistent with our study [20]. In our study, RPL3 and RPL8were
identified as dysregulated ribosomal associated proteins of
U87 cells. RPL8, a component of the 60S subunit of ribosome,
is involved in protein synthesis and RPL8 antigen may
represent a relevant vaccine target for patients with glioma
[21]. Besides, the restoration of RPL3 protein may resensitize
the resistant cells to the drug by regulating the reactive oxygen
species (ROS) levels in lung cancer cells [22]. The nucleolus
is the site of ribosome biogenesis and ribosomal proteins also
play an important role in the response to nucleolar stress,
as TMZ can induce DNA damage seriously [23]. Recently,
Fancello and colleagues have identified inactivating muta-
tions and deletions in RPL5 in 10% of GBM cases and showed
that these lesions are associated with worse outcome in GBM
[24]. Due to the stoichiometry of the ribosome, expression of
ribosomal proteins is tightly connected and loss of expression
of one component can reduce expression of the entire
ribosome. One suppositional mechanism may be that the
lesions of RPL5 downregulate the other components of the
ribosome observed in this study (RPL3 and RPL8). However,
this needs to be confirmed in the future.

Alternative splicing of mRNA precursors enables one
gene to produce multiple protein isoforms with differing
functions, and aberrant splicing of mRNA precursors leads
to production of aberrant proteins that contribute to tumori-
genesis [25, 26]. Another pathway enriched in these key
candidate proteins was spliceosome signaling pathway.These
proteins were as follows: SF-1 which is a nuclear pre-mRNA
splicing factor [27], DDX5 which is involved in nuclear
and mitochondrial splicing and ribosome and spliceosome
assembly [28], HNRNPR which is a member of the spliceo-
some C complex and function in pre-mRNA processing and
transport [29], andHNRNPA3which is found to interactwith
SOX2 and HNRNPR and play a possible role in posttran-
scriptional regulation [30]. Notably, there exists alternative
splicing process in the synthesis of DHX9. For DHX9,
treatment with chemotherapeutic drugs such as etoposide
could elicit DHX9 splicing, and the new isoform of the RNA
helicase DHX9 has great impacts on the regulation of cell
responses to DNA damage [31, 32].Thus, the dysregulation of
these spliceosome related proteins may jointly contribute to
a disorder of the synthesis of DHX9 and result in the TMZ
resistance of GBM ultimately. However, the mechanism still
needs verification of further researches and experiments.

5. Conclusion

We have identified 161 DEPs related to TMZ therapy in GBM
through cytoplasmic proteome research and finally found 9
mostly changed hub proteins which were significantly
enriched in ribosome and spliceosome signaling pathway
after performing further bioinformatics analysis. These find-
ings of our study may contribute to the understanding of the
underlying molecular mechanisms of TMZ resistance in
GBM cells, and the candidate proteins and pathways can be
used as potential biomarkers for the prevention or prediction
of TMZ resistance in the future.
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and M. J. Muñoz, “Alternative splicing: a pivotal step between
eukaryotic transcription and translation,” Nature Reviews
Molecular Cell Biology, vol. 14, no. 3, pp. 153–165, 2013.

[26] J. Zhang and J. L. Manley, “Misregulation of pre-mRNA alter-
native splicing in cancer,” Cancer Discovery, vol. 3, no. 11, pp.
1228–1237, 2013.

[27] C. Heintz, T. K. Doktor, A. Lanjuin et al., “Splicing factor 1
modulates dietary restriction and TORC1 pathway longevity in
C. elegans,” Nature, vol. 541, no. 7635, pp. 102–106, 2017.

[28] C.M.Nefzger and J.M. Polo, “DEAD-BoxRNAbinding protein
DDX5: not a black-box during reprogramming,” Cell Stem Cell,
vol. 20, no. 4, pp. 419-420, 2017.

[29] A. Fukuda, T. Nakadai, M. Shimada, and K. Hisatake, “Hetero-
geneous nuclear ribonucleoprotein R enhances transcription
from the naturally configured c-fos promoter in Vitro,” The
Journal of Biological Chemistry, vol. 284, no. 35, pp. 23472–
23480, 2009.

[30] X. Fang, J.-G. Yoon, L. Li et al., “Landscape of the SOX2 protein-
protein interactome,” Proteomics, vol. 11, no. 5, pp. 921–934, 2011.

[31] T. Lee and J. Pelletier, “The biology of its potential as a
therapeutic target,” Oncotarget, vol. 7, no. 27, pp. 42716–42739,
2016.

[32] M. Fidaleo, F. Svetoni, E. Volpe, B. Miñana, D. Caporossi, and
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