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Scleroderma (systemic sclerosis, SSc) is a highly heterogeneous rheumatic disease,

and uncontrolled fibrosis in visceral organs is the major cause of death in patients.

The transforming growth factor-β (TGF-β) and WNT/β-catenin signaling pathways,

along with signal transducer and activator of transcription 3 (STAT3), play crucial roles

in this fibrotic process. Currently, no therapy is available that effectively arrests or

reverses the progression of fibrosis in patients with SSc. Ubiquitination is an important

post-translational modification that controls many critical cellular functions. Dysregulated

ubiquitination events have been observed in patients with systemic lupus erythematosus,

rheumatoid arthritis and fibrotic diseases. Inhibitors targeting the ubiquitination pathway

have considerable potential for the treatment of rheumatic diseases. However, very few

studies have examined the role and mechanism of ubiquitination in patients with SSc.

In this review, we will summarize the molecular mechanisms of ubiquitination in patients

with SSc and explore the potential targets for treatment.
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INTRODUCTION

Scleroderma (systemic sclerosis, SSc) is a complicated heterogeneous rheumatic disease that is
characterized by progressive fibrosis in the skin andmultiple other organs. Both environmental and
genetic factors contribute to the etiology of SSc and trigger a chronic self-amplifying inflammatory
process, leading to vascular alterations, autoimmunity and fibrosis (1). Many molecules and
signaling pathways participate in the progression of fibrosis, such as the transforming growth
factor-β (TGF-β) and WNT/β-catenin signaling pathways, signal transducer and activator of
transcription 3 (STAT3), platelet-derived growth factor (PDGF), endothelin 1, interleukin 6,
interleukin 13, autoantibodies, and numerous biologically active substances. Among these
pathways, the TGF-β and WNT/β-catenin signaling pathways and STAT3 play key roles. Based
on accumulating evidence, post-translational modifications have important regulatory roles in
these pathways, such as acetylation, phosphorylation and ubiquitination, suggesting that these
modifications are potential targets for the treatment of fibrosis (2–4).

Ubiquitin is a highly evolutionarily conserved protein that modifies other proteins for
degradation. Ubiquitination is a process by which target protein is covalently bound to ubiquitin
through an enzymatic cascade that is orchestrated sequentially by activating (E1), conjugating (E2)
and ligating (E3) enzymes (5). E1 enzymes activate ubiquitin and transfer it onto the E2 conjugating
enzyme, and then E3 ligases interact with the ubiquitin-loaded E2 enzyme and substrate protein to
mediate the formation of polyubiquitin chains. Subsequently, the polyubiquitin chain is recognized
by the 26S proteasome complex and degraded into individual amino acids.
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The human genome contains two E1 enzymes, approximately
forty E2 enzymes and >600 E3 ligases. The diverse E3 ligases
have important roles in the selective recognition of each targeted
protein. Additionally, >100 deubiquitinating enzymes (DUBs)
have been identified that remove ubiquitin from the substrate
proteins (6).

Ubiquitination plays important roles in the proteasomal
degradation of proteins, inflammatory signaling, immune
responses, autophagy, and T cell activation and differentiation
(7). Dysregulation of ubiquitination has been observed in many
autoimmune diseases, such as systemic lupus erythematous (8),
rheumatoid arthritis (RA) (9) and fibrotic diseases (10). Anti-
ubiquitin antibodies are present in 42% of patients with SSc and
are associated with anti-histone antibodies. The latter might be
positively correlated with the severity of pulmonary fibrosis in
patients with SSc (11). According to results from whole-exome
sequencing, an E3 ubiquitin ligase-related gene was associated
with a higher risk of SSc. Therefore, ubiquitination might
play an important role in SSc (12). However, little is known
about ubiquitination in the pathology of SSc. Herein, we will
summarize the role of ubiquitination in SSc and then discuss the
future perspectives for SSc therapy.

MUTATIONS IN
UBIQUITINATION-RELATED ENZYMES IN
PATIENTS WITH SSC

Many susceptibility regions have been identified in patients with
SSc by genome-wide association studies (GWAS), and the most
common and confirmed susceptibility locus is the HLA locus.
Recently, non-HLA susceptibility genes have also been identified,
and most are correlated with inflammation, T cell differentiation
and autoantibodies (13).

The susceptibility genes TNF-α-induced protein 3
(TNFAIP3), TNF receptor-interacting protein (TNIP1), ankyrin
repeat and SOCS box-containing 10 (ASB10), and autophagy-
related 5 (ATG5) are involved in the ubiquitination-proteasome
system (UPS). TNFAIP3 expression (encodes A20) is rapidly
induced by TNF-α. TNFAIP3 possesses both E3 ubiquitin
ligase and deubiquitinase activities and negatively regulates
the inflammatory response by deubiquitinating proteins in the
NF-κB pathway, such as IKKg/NEMO, RIP1 and RIP2. TNFAIP3
is associated with diffuse cutaneous SSc, anti-topoisomerase I
antibody, lung fibrosis and pulmonary arterial hypertension (14).
TNIP1 interacts with A20 and represses the activity of the TLR-
induced NF-κB signaling pathway, decreasing the production of
proinflammatory cytokines in patients with SSc. Recombinant
TNIP1 downregulates inflammatory cytokine-induced collagen
synthesis (15). ASB10 belongs to the E3 ubiquitin ligase complex
and may be involved in the pathogenesis of SSc and pulmonary
vascular complications (12, 16). The protein encoded by
the ATG5 gene interacts with ATG12 and forms a complex
that functions as an E1-like activating enzyme. ATG5 is also
associated with RA, juvenile idiopathic arthritis and primary
biliary cirrhosis. However, the function of ATG5 in patients with
SSc requires further investigation (17).

UBIQUITIN MODIFICATION OF PROTEINS
IN KEY SIGNALING PATHWAYS INVOLVED
IN SSC

TGF-β Signaling Is Regulated by
Ubiquitination
Definition
The TGF-β superfamily consists of TGF-βs, bone morphogenetic
proteins (BMPs) and activin. These proteins activate TGF-
β signaling by binding to their membrane-anchored
serine/threonine kinase receptors TGF-βRI or TGF-βRII.
The canonical TGF-β signaling pathway is regulated by Smad
proteins. Smad proteins are divided into three types. R-Smads
are receptor-regulated Smads, including TGF-β/activin-specific
Samd2 and Smad3, BMP-specific Smad1, Smad5 and Smad8.
I-Smads are inhibitory Smads and include Smad6 and Smad7.
Co-Smad is the common Smad and is represented by Smad4.
The Smad proteins regulate the transcription of various genes.
Many transcription factors and co-factors are also involved in
this process; transcription factors include Mixer, FoxH1, E2F,
and Runx-related proteins, co-activators include p300 and CBP,
and co-repressors include c-Ski and SnoN (18) (Figure 1A).

The Role of TGF-β Signaling in SSc
TGF-β is commonly viewed as playing a critical role in the
fibrosis process. Dysregulation of the TGF-β signaling pathway
is involved in the pathogenesis of SSc (19). High levels of TGF-β
and its regulated genes have been detected in skin biopsies and
were positively correlated with the severity of SSc (20). The TGF-
β neutralizing antibody fresolimumab exerts anti-fibrotic effects
on patients with SSc, but its use is also accompanied by a high
incidence of keratoacanthomas, which limits its use in long-term
treatment. Therefore, the development of new drugs that target
downstream mediators of TGF-β signaling is important (21, 22).

Ubiquitin Enzymes in TGF-β/SMAD Signaling
Many E3 ligases are involved in TGF-β/SMAD signaling,
including Smurfs (E6-accessory protein C-terminus, HECT),
WWP family (HECT type), NEDD4L (HECT type), Arkadia
(RING-H2 finger domain), CHIP (C-terminus of HSC70-
interacting protein), β-TrCP (Skp1-Cullin-F-box (SCF)-type
ubiquitin ligase), and Fbxw7 (SCF type). TGF-β/SMAD signaling
regulates the transcription of various genes, including negative
regulators, such as I-Smads and Smurfs. When TGF-β signaling
is activated, I-Smads and Smurfs interact in the nucleus and
translocate to the cytoplasm (23, 24). Smad7 recruits WWP1 and
NEDD4L to the active TGF-β receptor complexes and induces
the degradation of the complexes (25, 26). Smurf1 ubiquitinates
Smad1 and Smad5 (27, 28), and Smurf2 ubiquitinates Smad1
and Smad2 under steady-state conditions (29, 30). Arkadia and
NEDD4L ubiquitinate phospho-Smad2/3 (31, 32), whereas CHIP
regulates the abundance of Smad1 and Smad3 (33, 34). Smurfs,
WWP1, NEDD4-2, CHIP, and β-TrCP conjugate polyubiquitin
chains onto Smad4 and mediate its degradation (35). As
mentioned above, E3 ligases mainly function as inhibitors
of TGF-β signaling. However, they have also been shown
to enhance TGF-β signaling. Arkadia degrades the negative
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FIGURE 1 | Ubiquitin modifications in the TGF-β pathway. (A) Schematic showing the Smad-dependent and Smad-independent TGF-β signaling pathways. (B)

Ubiquitinating enzymes, DUBs and target proteins in the TGF-β pathway. Red square nodes represent enzymes, green circles represent target proteins.

regulators of TGF-β signaling, such as Smad7, c-Ski, and SnoN
(36). Smad7 is also ubiquitinated by WWP-C and WWP2-
FL (37). Phosphorylated TGIF1 (TGF-β-induced factor 1) is a
transcriptional repressor of TGF-β signaling that is degraded by
the ubiquitin ligase complex containing Fbxw7 (38).

Ubiquitin Enzymes in Smad-Independent TGF-β

Signaling
Ubiquitination also plays important roles in Smad-independent
TGF-β pathways. TGF-β induces the ubiquitination and

degradation of KLF4 (Krüppel-like factor 4), which is important
for TGF-β-mediated regulation of transcription (39). The
TGF-β/RhoA pathway is required for the progression of the
epithelial-mesenchymal transition (EMT). Smurf1 targets RhoA
for degradation (40). In TGF-β-induced anti-inflammatory
signaling, Smurf1 ubiquitinates TRAFs (TNF receptor-associated
factors), and Smurf2 interacts with TRAF2 and ubiquitinates
TNF receptor 2, thereby inhibiting downstream signaling (41).
In fibroblasts from patients with SSc, Smurf2 is upregulated after
stimulation with TGF-β (42), and the Smad7-Smurf-mediated
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inhibitory effect is impaired (43). Ubiquitination also promotes
Smad2/3 signaling and increases collagen I accumulation by
stabilizing Ha-Ras, which is independent of TGF-β activation.
All of these mechanisms eventually contribute to collagen
overproduction. The dysregulation of E3 ubiquitin ligases
involved in TGF-β signaling has also been observed in patients
with other fibrotic diseases and in animal models. The levels of
MDM2 (RING-type) and FIEL1 (HECT-Type E3) are increased
in lung tissues from patients with idiopathic pulmonary fibrosis
(IPF) (44, 45). Smurf2 is upregulated in the fibroblasts present
in hypertrophic scars (46). Smurf1, Smurf2, Arkadia and Hrd1
(Synoviolin, RING-type) levels are increased in animals with
unilateral ureteral obstruction-induced renal fibrosis (47–49).
Smurf2 and Synoviolin are upregulated in a liver fibrosis
model (50–52). NEDD4 and Pellino1 (RING-type) expression
are increased in keloid fibroblasts (53) and cardiac fibroblasts,
respectively (54). These E3 ubiquitin ligases not only directly
mediate the degradation of components of the TGF-β signaling
pathway but also participate in inducing the transition of
epithelial cells to mesenchymal cells, enhancing fibroblast
proliferation and invasiveness, and increasing TGF-β production.

DUBs
DUBs have also been implicated in TGF-β signaling. UCH37 and
USP11 were shown to deubiquitinate TβRI or TβRII, which is
important for early steps in the TGF-β signaling pathway (55–
57). High levels of USP11 have been detected in lung tissues
from patients with IPF and bleomycin-induced mice, whereas
inhibition of USP11 expression attenuates TGF-β signaling (57).
CYLD deubiquitinates Smad7 and inhibits TGF-β signaling (58).
In mice with liver fibrosis, CYLD ameliorates hepatocellular
damage and liver fibrogenesis (59). USP15 deubiquitinates
mono-ubiquitinated R-Smads and is required for proper TGF-β
signaling. Other DUBs, such as AMSH (the associated molecule
with the Src homology 3 domain of the signal-transducing
adaptor molecule) and AMSH-like protein cleave K63-linked
ubiquitin chains, which are associated with I-Smads and inhibit
their functions (60–62) (Figure 1B).

The WNT/β-Catenin Pathway Is Regulated
by Ubiquitination
Definition
The canonical WNT pathway is closely related to the regulation
of β-catenin and its potential to modulate transcription. When
WNT signaling is inactivated, β-catenin is phosphorylated (pβ-
catenin) in the cytoplasm by a multiprotein complex (Axin/APC
complex) composed of Axin, APC, CK1 and GSKβ. The pβ-
catenin protein is immediately degraded by the UPS and is
rarely detected in normal cells. Upon stimulation, WNT binds
to the receptor Frizzled (Fz) and the coreceptors LRP5/6,
recruits the cytoplasmic effector protein Disheveled (Dvl) and
inhibits the Axin/APC complex. Consequently, the high levels of
cytosolic β-catenin are translocated to the nucleus and regulate
the transcription of target genes via β-catenin/TCF complexes.
Based on accumulating evidence from recent studies, ubiquitin
modification also plays important roles in regulating the WNT
pathway (63).

The Role of WNT/β-Catenin Pathway in SSc
WNT signaling plays pivotal roles in developmental processes
and tissue homeostasis. The canonical WNT/β-catenin pathway
elicits fibrotic responses both directly and through TGF-β (2).
High levels of activated β-catenin and its regulated gene AXIN2
have been in skin and lung tissues from patients with SSc, as
well as in animal models of fibrosis (64, 65). SSc autoantibodies
and oxidative DNA damage mediate Wnt inhibitor factor 1
(WIF-1) silencing and promote WNT activation and subsequent
fibrosis. Strategies that restore the expression of WIF-1 prevent
collagen accumulation in vivo. Microarray studies have also
revealed the activation of WNT/β-catenin pathways in the skin
tissues from patients with SSc. According to the results from
clinical trials, treatments targeting the WNT/β-catenin pathway
(tankyrase and porcupine inhibitors) are effective, well-tolerated
and safe for long-term application (66). C-82, which targets the
β-catenin/CBP interaction, is now in phase I/II clinical trials for
SSc therapy. Therefore, the molecular mechanisms regulating the
WNT/β-catenin pathway must be completely identified (67, 68).

Ubiquitin Enzymes and DUBs in WNT Signaling
The cell-surface receptor Fz is ubiquitinated by the
transmembrane E3 ligases ZNRF3 and RNF43 and is
deubiquitinated by UBPY/Ub-specific protease 8 (USP8)
for recycling to the plasma membrane (69, 70). LRP6 is retained
in the endoplasmic reticulum due to palmitoylation and
monoubiquitylation, suggesting that an E3 ligase and DUBs
participate in this process; however, the types of ubiquitin chains
remain unknown (71). Dvl proteins (Dvl1, Dvl2 and Dvl3) play
key roles in both canonical and noncanonical WNT signaling.
Multiple E3 ligases that ubiquitinate Dvl negatively regulate
WNT signaling (72). The DUBs CYLD and USP14 remove
the K63-linked polyubiquitin chain from Dvl (73, 74). Axin is
degraded by the E3 ligase RNF146 and Smurf1 and Smurf2,
which interact with LRP5/6 (75–77). HectD1 ubiquitinates APC,
promotes its interaction with Axin and negatively regulates
WNT signaling (78), whereas USP15 protects the APC from
ubiquitin-mediated degradation (79). β-TrCP assembles K48-
linked polyubiquitin chains onto β-catenin and mainly regulates
the nuclear pool of β-catenin (80). The ubiquitin ligase Jade-1
also mediates β-catenin ubiquitination and is responsible for
degrading cytoplasmic β-catenin (81). Unlike β-TrCP and
Jade-1, Rad6B (an E2 ubiquitin-conjugating enzyme) and EDD
(an E3 ubiquitin ligase) ubiquitinate β-catenin and increase its
activity (82, 83) (Figure 2).

STAT3 Regulation by Ubiquitination
STAT3 belongs to the transcription factor family that transduces
cellular signals from a number of soluble growth factors and
cytokines, including PDGF, epidermal growth factor (EGF) and
IL-6 family cytokines. STAT3 plays critical roles in several
biological processes, including cell proliferation, differentiation
and migration. Upon stimulation, cytoplasmic STAT3 is
phosphorylated, dimerizes, and then translocates to the nucleus
to regulate the transcription of target genes. Recently, STAT3
was shown to integrate multiple profibrotic signals and was
identified as a key checkpoint in fibroblast activation. STAT3 is
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FIGURE 2 | Ubiquitin modifications in the WNT/β-catenin pathway. When WNT signaling is inactivated, β-catenin is phosphorylated (pβ-catenin) in the cytoplasm by

the Axin/APC complex and degraded by Jade-1 and β-TrCP. Upon stimulation, WNT binds to the receptor Frizzled and the coreceptors LRP5/6, recruits Dvl and

inhibits the Axin/APC complex, leading to the translocation of high levels of cytosolic β-catenin into the nucleus. Fz is ubiquitinated by ZNRF3 and RNF43 and

deubiquitinated by USP8. Dvl is deubiquitinated by CYLD and USP14. Axin is degraded by RNF146, Smurf2, and Smurf1. APC is ubiquitinated by HectD1 and

deubiquitinated by USP15. Rad6B and EDD ubiquitinate β-catenin; Jade-1 also ubiquitinates β-catenin in the nucleus.

considered a potential target for SSc treatment (4, 84). The STAT3
dimerization inhibitor S3I-201 exerts strong anti-fibrotic effects
on animal models of SSc. STAT3 is ubiquitinated with lysine-
63-linked ubiquitin chains by TRAF6 (tumor necrosis factor
receptor-associated factor 6) (85), which exhibits E3 ubiquitin
ligase activity. STAT3 is also ubiquitinated and degraded by the
E3 ligase COP1 (86).

Treatment of SSc by Strategies Targeting
the UPS
Bortezomib is a reversible 20S proteasome inhibitor and the
first drug approved to treat multiple myeloma. In the UPS,
the proteasome is the final step in protein degradation and
a valuable target for developing potential drugs. Bortezomib
derivatives, such as carfilzomib and marizomib, are in various
phases of clinical trials as potential treatments for several
malignancies (87). In fibroblasts from patients with SSc,
proteasome inhibitors replenish human dermal fibroblasts,
degrade the extracellular matrix and exert anti-fibrotic effects
(88). The proteasome inhibitor MG-132, synthetic lactacystin,
and bortezomib decrease the expression of type I collagen
and tissue inhibitor of metalloproteinase-1 and increase the

production of metalloproteinase-1 in a dose-dependent manner
(89). However, proteasome inhibitors have been reported to
induce resistance and side effects, and a combination of several
UPS inhibitors targeting different components may overcome
this challenge (6).

Studies of E1 enzyme inhibitors are rare due to their lack
of specificity as therapies. Several inhibitors of E2 enzymes are
in preclinical research stages, but their role in SSc has been
poorly investigated. The specificity of the UPS depends mainly
on E3 ubiquitin ligases. The FIEL1 inhibitor BC-1485 ameliorates
lung fibrosis in a mouse model (44). The Synoviolin inhibitor
LS-102 reduces endoplasmic reticulum stress-induced collagen
secretion from lung epithelial cells, suggesting that it might be a
potential treatment for IPF (90). In patients with SSc, the TGF-β
and WNT/β-catenin signaling pathways and STAT3 are mainly
regulated by E3 ligases at multiple levels, which presents the
potential for specific substrates for drug target design. Erioflorin,
which is isolated from Eriophyllum lanatum, has been shown to
block β-TrCP and affect WNT/β-catenin signaling (91). Specific
inhibitors or antagonists of other E3 ligases, such as Smurf1,
Smurf2 and NEDD4, have not yet been discovered.

DUBs deubiquitinate and rescue substrates from proteasomal
degradation, and thus are regarded other potential targets
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for drug development. WP1130 has been shown to suppress
the activity of several DUBs, including UCH37 and USP14,
which regulate both TGF-β and WNT/β-catenin signaling. The
combination of WP1130 and bortezomib exerts pro-apoptosis
and anti-proliferation effects on tumor cells (92). b-AP15 is
a small-molecule inhibitor of USP14 and UCHL5. b-AP15
blocks USP14 in a reversible manner and regulates WNT/β-
catenin signaling (93). UCHL5 levels are elevated in lung tissues
from patients with IPF (80). b-AP15 also reduces the levels
of the fibronectin, type I collagen, and SMAD2/3 proteins in
lung tissues from mice with fibrosis (94). The USP11 inhibitor
mitoxantrone attenuates TGF-β signaling in lung fibroblasts and
has been indicated as a potential antifibrotic drug for subjects
with fibrosis.

In animal models and clinical trials, the UPS has been
validated as a valuable molecular target for the treatment of
cancer, asthma and arthritis, as >1,000 proteins have been
identified in the UPS. These proteins represent substantial
opportunities and challenges for researchers to investigate the
molecular mechanisms underlying the addition of ubiquitin
chains and the main components. The identification and
validation of these components will expand the pool of targets
for drug discovery for fibrosis (95).

CONCLUSIONS AND FUTURE
PERSPECTIVES

In this review, we highlight the mechanisms regulating
ubiquitination in patients with SSc and explore potential

anti-fibrosis drugs. Effective therapies for many fibrotic
manifestations in patients with SSc are currently unavailable.
Considering the central role of TGF-β signaling, WNT/β-catenin
signaling and STAT3 in SSc, the use of UPS inhibitors to
selectively disrupt the formation of receptor or co-receptor
complexes or block intracellular signaling may yield advances
in the development of urgently needed treatments. These
drugs are very powerful and might also induce severe side
effects because of their unselective action that would limit
their widespread use. In the near future, the elucidation
of new, potent and highly specific drugs targeting specific
UPS components is required. Therefore, investigations of
the enzymology of ubiquitination will be of paramount
importance in the next few years. Moreover, more studies are
needed of enzymes involved in ubiquitination that represent
promising drug targets to ameliorate fibrosis in patients with
SSc.
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