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Abstract

In reality, severe water shortage crisis has made bad impact on the sustainable develop-

ment of a region. In addition, uncertainties are inevitable in the irrigation system. Therefore,

a fully fuzzy fractional programming model for optimization allocation of irrigation water

resources, which aimed at not only irrigation water optimization but also improving water

use efficiency. And then the developed model applied to a case study in Minqin County,

Gansu Province, China, which selected maximum economic benefit of per unit water

resources as planning objective. Moreover, surface and underground water are main water

sources for irrigation. Thus, conjunctive use of surface and underground water was taken

under consideration in this study. By solving the developed model, a series of optimal crop

area and planting schemes, which were under different α-cut levels, were offered to the

decision makers. The obtained results could be helpful for decision makers to make decision

on the optimal use of irrigation water resources under multiple uncertainties.

Introduction

Today, water resources scarcity, which has great negative influence on the development of

society and economy, becomes more and more serious [1–3]. Moreover, the demand for water

resources is growing rapidly because of the rapid growth of economy and society [4–6]. Thus,

there is great conflict between the growing demand for water resources and limited water

resources. However, irrigation consumes approximately 70% of the world’s freshwater

resources [7]. Especially in the arid and semi-arid regions of Northwest China, characterized

with high evaporation and low rainfall, approximately 90% of freshwater resources has been

used to irrigation [7–10]. Therefore, optimization allocation of irrigation water resources has

great positive influence on the sustainable development of a region.

Over the past decades, there were a series of studies about optimization allocation of irriga-

tion water resources [11–20]. The above studies were mainly focused on maximizing yield,

maximizing economic benefit, balancing between multi-objectives, or minimizing system

cost. However, the more output (yield, economic benefit) means that more water is need for

irrigation; while there is no more water for irrigation under the severe water resources

PLOS ONE | https://doi.org/10.1371/journal.pone.0217783 June 13, 2019 1 / 17

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPEN ACCESS

Citation: Ren C, Yang J, Zhang H (2019) An

inexact fractional programming model for irrigation

water resources optimal allocation under multiple

uncertainties. PLoS ONE 14(6): e0217783. https://

doi.org/10.1371/journal.pone.0217783

Editor: Baogui Xin, Shandong University of Science

and Technology, CHINA

Received: March 8, 2019

Accepted: May 19, 2019

Published: June 13, 2019

Copyright: © 2019 Ren et al. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: All relevant data are

within the manuscript and its Supporting

Information files.

Funding: This research was supported by the

National Science Foundation of China (51809005,

51409006), Certificate of China Postdoctoral

Science Foundation Grant (2019M650269), the

Technology Foundation for Selected Overseas

Chinese Scholars, Department of Personnel in

Shaanxi Province of China (2017035), the Water

Conservancy Science and Technology Program of

Shaanxi Province of China (2018slkj-11), State Key

https://doi.org/10.1371/journal.pone.0217783
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0217783&domain=pdf&date_stamp=2019-06-13
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0217783&domain=pdf&date_stamp=2019-06-13
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0217783&domain=pdf&date_stamp=2019-06-13
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0217783&domain=pdf&date_stamp=2019-06-13
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0217783&domain=pdf&date_stamp=2019-06-13
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0217783&domain=pdf&date_stamp=2019-06-13
https://doi.org/10.1371/journal.pone.0217783
https://doi.org/10.1371/journal.pone.0217783
http://creativecommons.org/licenses/by/4.0/


shortage situation. Therefore, the core of irrigation water optimization allocation is water use

efficiency, i.e., output of unit water resources. Moreover, in reality, decision-makers are paying

more and more attention to the output of unit water resources, which can be used as an effec-

tive indicator for measuring water resources consumption [21,22]. Fractional programming

can deal with the above problems effectively [23,24]. It can make sure relatively more output

by consuming unit of water resources because the objective function of fractional program-

ming is the ratio of output to input [25]. Moreover, the decision makers can also improve

unreasonable plans based on the optimal schemes under the optimal ratio.

In reality, irrigation system is a relatively complex system, which involves many aspects of

economy and society. Thus, uncertainties are inevitable in the operation of optimizing irriga-

tion water resources, such as random, fuzzy and interval [26–28]. In the past, many studies

have been carried out about optimization allocation of irrigation water resources under cer-

tainty. For example, an inexact stochastic dynamic programming model, which aimed to max-

imize the total economic benefit, was established for water resources management by Gu [29].

Borgomeo et al. [30] presented a risk approach for incorporating nonstationary probabilistic

climate projections into long-term water resources planning. In order to achieve sustainable

development of agriculture, a two-level optimization model was developed, which combined

use of SWAP-EPIC model [31]. Liu et al. [32] presented a Monte Carlo simulation based dual-

interval stochastic programming for optimizing crop planning, which made maximum eco-

nomic benefit as objective. When facing multi-water source for irrigation, an interval two-

stage stochastic robust programming was developed for optimizing crop planning [33].

Although uncertainty was taken under consideration in the above studies, only one parameter

with uncertainty was considered; or one or two kinds of uncertainties was considered. How-

ever, in reality, many parameters involve uncertainties, such as crop area, available surface

water, available groundwater [34]. Furthermore, some parameters may change the characteris-

tics of their uncertainty because of the effects of human activities. For example, runoff has ran-

dom uncertainty under natural conditions; while it may have fuzzy uncertainty instead of

random uncertainty when a lot of water resources is taken away. Therefore, this paper takes

the above problems under consideration.

Therefore, this paper developed a fully fuzzy fractional programming model (FFFPM) for

optimizing irrigation water resources under multiple uncertainties. This paper took food secu-

rity, groundwater exploitation and available surface water under consideration. Then the pre-

sented model was applied to Minqin County, Gansu Province, China, which made maximum

economic benefit of per unit water resources as objective function. Moreover, irrigation water

resources were optimized by conjunctive use of groundwater and surface water simulta-

neously. A range of water resources optimal allocation schemes were provided based on the

result of the established model. The developed model can be used to help decision makers

identify a desired plan for optimizing irrigation water resources by conjunctive use of ground-

water and surface water under multiple uncertainties.

Model formulation

Linear fractional programming

The general form of linear fractional programming is as following:

Max f ðxÞ ¼
Cxþ a
Dxþ b

ð1Þ

Ax � B; x � 0 ð2Þ

Optimization allocation of water resources under multiple uncertainties
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Where, A represents matrix with m row vectors and n column vectors; B and x represent

the column vectors with n and m elements, respectively; C and D represent the row vector

with n elements, respectively; and α and βmeans constant, respectively. Based on the

assumption, Dx + β is constant for all x in the whole feasible region, by Charnels and Coo-

per, the linear fractional programming can be solved by solving the linear programming

model [35].

According to Chadha, if the following can be satisfied: (1) all the x can meet Dx + β> 0; (2)

the objective function is continuously differentiable; (3) the feasible is not empty and bounded,

the linear fractional programming Eqs (1) and (2) can be transformed into Eqs (5)–(9) based

on the Charnes-Cooper method, which introduces Eqs (3) and (4) into Eqs (1) and (2) [36,37].

Z ¼
1

Dxþ b
ð3Þ

Y ¼ Zx ð4Þ

Therefore, the linear fractional programming model transformed into linear programming

model, which presented as following:

Max f ðxÞ ¼ CY þ aZ ð5Þ

AY � BZ ð6Þ

DY þ bZ ¼ 1 ð7Þ

Y � 0 ð8Þ

Z > 0 ð9Þ

Therefore, the above linear fractional programming model Eqs (1) and (2) can be trans-

formed into the linear programming model Eqs (5)–(9) by introducing intermediate variable

Eqs (3) and (4). The linear fractional programming model has great advantage of dealing with

the optimal ratio problem.

Fully fuzzy linear fractional programming

In reality, a large amount of parameter in irrigation system has characteristics of fuzzy uncer-

tainty. And the parameters with fuzzy uncertainty exist not only in constraints but also in

objective functions. The form of FFFPM is as following:

Max~Z ¼

Xn

j¼1

~cj � ~xj þ ~p

Xn

j¼1

~dj � ~xj þ ~q
ð10Þ

Subjective to:

Xn

j¼1

Xm

i¼1

~aij � ~xj �
~bi; i ¼ 1; 2; . . . ;m ð11Þ

~xj � 0; j ¼ 1; 2; . . . ; n ð12Þ

Optimization allocation of water resources under multiple uncertainties

PLOS ONE | https://doi.org/10.1371/journal.pone.0217783 June 13, 2019 3 / 17

https://doi.org/10.1371/journal.pone.0217783


Where, ~aij represents matrix with j row vectors and i column vectors with fuzzy uncertainty. ~cj
and ~dj are row vector with fuzzy uncertainty for each j = 1, . . .,n, respectively. ~xj represents col-

umn vector with fuzzy uncertainty for each j = 1, . . ., n. ~p and ~q means constant with fuzzy

uncertainty, respectively. ~b is row vector with fuzzy uncertainty for each i = 1, 2, . . ., m.

In order to deal with the fuzzy fractional programming, fuzzy set theory was introduced

which assume the parameters with fuzzy uncertainty are triangular fuzzy function as shown in

Fig 1 [38].

The solving steps of FFFPM are as following:

Based on the assumption, ~cj, ~p, ~q, ~dj,
~b, ~aij and ~xj are triangular fuzzy numbers which can

represent as ðc1
j ; c

2
j ; c

3
j Þ, ðp

1
j ; p

2
j ; p

3
j Þ, (q1, q2, q3), ðd1

j ; d
2
j ; d

3
j Þ, ðb

1
i ; b

2
i ; b

3
i Þ, ða

1
ij; a

2
ij; a

3
ijÞ and

ðx1
j ; x

2
j ; x

3
j Þ, respectively.

Then, the FFFPM Eqs (10)–(12) can be written as follows:

Max~Z ¼

Xn

j¼1

ðc1

j ; c
2

j ; c
3

j Þ � ðx
1

j ; x
2

j ; x
3

j Þ þ ðp
1; p2; p3Þ

Xn

j¼1

ðd1

j ; d
2

j ; d
3

j Þ � ðx1
j ; x2

j ; x3
j Þ þ ðq1; q2; q3Þ

ð13Þ

Subject to

Xn

j¼1

Xm

i¼1

ða1

ij; a
2

ij; a
3

ijÞ � ðx
1

j ; x
2

j ; x
3

j Þ � ðb
1

i ; b
2

i ; b
3

i Þ; i ¼ 1; . . . ;m ð14Þ

ðx1

j ; x
2

j ; x
3

j Þ � 0; j ¼ 1; 2; . . . ; n ð15Þ

Fig 1. Triangle membership function.

https://doi.org/10.1371/journal.pone.0217783.g001
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Then, setting different α-cut levels for the parameters among objective function and con-

straints based on the fuzzy set theory. The above Eqs (13)–(15) can be written as follows:

Max~Z ¼

Xm

j¼1

½c1

j þ ðc
2

j � c1

j Þ � a; c
3

j � ðc
3

j � c2

j Þ � a� � ½x
1

j þ ðx
2

j � c1

j Þ � a; x
3

j � ðx
3

j � x2

j Þ � a�

þ½p1
j þ ðp

2
j � p1

j Þ � a; p
3
j � ðp

3
j � p2

j Þ � a�

Xm

j¼1

½d1

j þ ðd
2

j � d1

j Þ � a; d
3

j � ðd
3

j � d2

j Þ � a� � ½x
1

j þ ðx
2

j � x1

j Þ � a; x
3

j � ðx
3

j � x2

j Þ � a�

þ½q1
j þ ðq

2
j � q1

j Þ � a; q
3
j � ðq

3
j � q2

j Þ � a�

ð16Þ

Subjective to:

Xm

j¼1

Xn

i¼1

½a1

ij þ ða
2

ij � a1

ijÞ � g; a
3

ij � ða
3

ij � a2

ijÞ � g� � ½x
1
j þ ðx

2
j � x1

j Þ � g; x
3
j � ðx

3
j � x2

j Þ � g�

� ½b1
j þ ðb

2
j � b1

j Þ � g; b
3
j � ðb

3
j � b2

j Þ � g�; i ¼ 1; 2; . . . ;m

ð17Þ

x2

j � x1

j � 0; x3

j � x2

j � 0; j ¼ 1; 2; . . . ; n ð18Þ

Based on the arithmetic operations on fuzzy numbers [38], the FFFPM can be simplified

into an equivalent bi-objective programming model, which represented as following:

Bi-level fractional programming:

Max~Z ¼

Xm

j¼1

ðc1

j þ ðc
2

j � c1

j Þ � aÞ � ðx
1

j þ ðx
2

j � c1

j Þ � aÞ þ ðp
1
j þ ðp

2
j � p1

j Þ � aÞ

Xm

j¼1

ðd3

j � ðd
3

j � d2

j Þ � aÞ � ðx
3

j � ðx
3

j � x2

j Þ � aÞ þ ðq3
j � ðq3

j � q2
j Þ � aÞ

;

Xm

j¼1

ðc3

j � ðc
3

j � c2

j Þ � aÞ � ðx
3

j � ðx
3

j � x2

j Þ � aÞ þ ðp
3
j � ðp

3
j � p2

j Þ � aÞ

Xm

j¼1

ðd1

j þ ðd
2

j � d1

j Þ � aÞ � ðx
1

j þ ðx
2

j � x1

j Þ � aÞ þ ðq1
j þ ðq2

j � q1
j Þ � aÞ

2

6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
5

ð19Þ

Subjective to:

Xn

j¼1

Xm

i¼1

ða1

ij þ ða
2

ij � a1

ijÞ � gÞ � ðx
1

j þ ðx
2

j � x1

j Þ � gÞ � b1

j þ ðb
2

j � b1

j Þ � g ð20Þ

Xn

j¼1

Xm

i¼1

ða3

ij � ða
3

ij � a2

ijÞ � gÞ � ðx
3

j � ðx
3

j � x2

j Þ � gÞ � b3

j � ðb
3

j � b2

j Þ � g ð21Þ

x2

j � x1

j � 0; x3

j � x2

j � 0; i ¼ 1; 2; . . . ;m; j ¼ 1; 2; . . . ; n: ð22Þ

Obtain the lower bound ZL
a
ðxÞ of the objective value for different α-cut level, belonging to

(0, 1], by formulating the following model.

Optimization allocation of water resources under multiple uncertainties
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Lower level fractional programming:

MaxZL
ar ¼

Xm

j¼1

ðc1

j þ ðc
2

j � c1

j Þ � aÞ � ðx
1

j þ ðx
2

j � c1

j Þ � aÞ þ ðp
1
j þ ðp

2
j � p1

j Þ � aÞ

Xm

j¼1

ðd3

j � ðd
3

j � d2

j Þ � aÞ � ðx
3

j � ðx
3

j � x2

j Þ � aÞ þ ðq3
j � ðq3

j � q2
j Þ � aÞ

ð23Þ

Subjective to

Xn

j¼1

Xm

i¼1

ða1

ij þ ða
2

ij � a1

ijÞ � aÞ � ðx
1

j þ ðx
2

j � x1

j Þ � aÞ � b1

j þ ðb
2

j � b1

j Þ � a ð24Þ

Xn

j¼1

Xm

i¼1

ða3

ij � ða
3

ij � a2

ijÞ � aÞ � ðx
3

j � ðx
3

j � x2

j Þ � aÞ � b3

j � ðb
3

j � b2

j Þ � a ð25Þ

x2

j � x1

j � 0; x3

j � x2

j � 0 i ¼ 1; 2; . . . ;m; j ¼ 1; 2; . . . ; n ð26Þ

Then, obtain the upper bound ZU
a
ðxÞ of the objective value for different α-cut levels by for-

mulating the following model.

Upper level fractional programming:

MaxZU
ar ¼

Xm

j¼1

ðc3

j � ðc
3

j � c2

j Þ � aÞ � ðx
3

j � ðx
3

j � x2

j Þ � aÞ þ ðp
3
j � ðp

3
j � p2

j Þ � aÞ

Xm

j¼1

ðd1

j þ ðd
2

j � d1

j Þ � aÞ � ðx
1

j þ ðx
2

j � x1

j Þ � aÞ þ ðq1
j þ ðq2

j � q1
j Þ � aÞ

ð27Þ

Subject to

Xn

j¼1

Xm

i¼1

ða1

ij þ ða
2

ij � a1

ijÞ � aÞ � ðx
1

j þ ðx
2

j � x1

j Þ � aÞ � b1

j þ ðb
2

j � b1

j Þ � a ð28Þ

Xn

j¼1

Xm

i¼1

ða3

ij � ða
3

ij � a2

ijÞ � aÞ � ðx
3

j � ðx
3

j � x2

j Þ � aÞ � b3

j � ðb
3

j � b2

j Þ � a ð29Þ

x2

j � x1

j � 0; x3

j � x2

j � 0 i ¼ 1; 2; . . . ;m; j ¼ 1; 2; . . . ; n ð30Þ

Solving the above lower level and upper level fractional programming model by the linear

fractional programming method which presented in section 2.1.

And then evaluate LðZÞ ¼ ½ZL
ar�
� 1

and RðZÞ ¼ ½ZU
ar�
� 1

, respectively.

Therefore, the steps of solving the FFFPM are as follows:

1. Build the original FFFPM [Eqs (10)–(12)].

2. Convert the Eqs (10)–(12) into bi-level fractional programming Eqs (19) and 20) based on

the fuzzy set theory.

3. Transform the bi-level fractional programming Eqs (19) and (20) into lower level fractional

programming model Eqs. (23)–(26) and upper level fractional programming model Eqs

(27)–(30), respectively.

Optimization allocation of water resources under multiple uncertainties
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4. Solve the lower and upper level fractional programming model Eqs (23)–(26) and Eqs

(27)–(30) under different α-cut level value by the linear fractional programming method,

respectively.

5. Get the solutions under different α-cut level.

Application

Study area

The study area selected Minqin county (101˚490~104˚120E, 38˚030280N), located in Gansu

Province, which belongs to arid and semi-arid regions of Northwest China (Fig 2) [39]. And

the study area, which is surrounded by Tengger desert and Badain Jaran desert, also located in

downstream of Shiyang river basin and east of Hexi corridor [40]. Minqin is one of the most

arid areas in China whose annual rainfall is about 113 mm, while the annual evapotranspira-

tion is about 2644 mm [41].

The main water supply of Minqin are surface water and groundwater. Recently, the runoff

of Shiyang river is gradually decreasing; while, the water consumption of upstream is gradually

increasing [42]. Therefore, the surface water supply of Minqin has significantly decrease which

aggravated the shortage of water resources. Moreover, due to the above problem, the exploita-

tion of groundwater has increased significantly which caused serious ecological environment

Fig 2. Study area.

https://doi.org/10.1371/journal.pone.0217783.g002

Optimization allocation of water resources under multiple uncertainties
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problems [43]. At present, in order to repair ecological environment, the exploitation of

groundwater is severely restricted by the local government. However, agriculture is the biggest

water consumer which belongs to heavily water consumption industry when facing more and

more serious water scarcity [44]. For example, irrigation is the largest water consumption

which even accounts of 88.28% of the total water consumption of Minqin [15].

Therefore, optimization allocation of irrigation water resources is badly needed for Min-

qin, especially aims to maximum output of unit water resources. The main crops of Minqin

are wheat, corn, cotton and seed watermelon, respectively, which has been selected as study

crops. Moreover, in order to obtain relatively accurate yield of study crops, linear crop pro-

duction functions [45], presented in Table 1, were selected instead of yield per unit area. In

addition, the surface water supply of Minqin has been controlled by Hongyashan reservoir

which built in 1958. As a result, the original random characteristics of runoff has been

destroyed. Based on the analysis, the surface water supply has fuzzy characteristics instead of

random characteristics. Therefore, this paper established a FFFPM by taking the above prob-

lems under consideration and considering the multiple fuzzy uncertainties in the collected

data. The irrigation water can be optimized based on the optimal schemes of the developed f

FFFPM.

Model building

Based on the above analysis, a FFFPM was established for irrigation water resources optimiza-

tion allocation under multiple uncertainties. The objective of the established model was maxi-

mization economic benefit per unit of water resources based on the above analysis.

The formulation of the proposed model is presented below.

Objective function:

Maximization of economic benefit per unit of water resources

max ¼

X4

i¼1

ðYi �
~Ai �

~Pi �
X2

j¼1

Cj�
~Ai �WijÞ

X4

i¼1

X2

j¼1

~Ai �Wij=Z

ð31Þ

Subject to:

Surface water constraint

X4

i¼1

X1

j¼1

~Ai �Wij � Z �
~SW ð32Þ

Table 1. The linear production function of different crops.

Crops Water production function

Wheat Y = -461.78+1.4518ET

Corn Y = -405.14+1.5520ET

Cotton Y = -112.61+0.3720ET

Seed watermelon Y = -1308.5+0.4875ET

Notes: Y: yield of crop per unit area (kg/hm2); ET: water distribution per unit area (m3)

https://doi.org/10.1371/journal.pone.0217783.t001

Optimization allocation of water resources under multiple uncertainties
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Groundwater constraint

X4

i¼1

X2

j¼2

~Ai �Wij � Z �
~GW ð33Þ

Food security constraint

X2

i¼1

Yi �
~Ai � FDP � TPR ð34Þ

Water demand constraint

X2

j¼1

Wij � ETmini ð35Þ

X2

j¼1

Wij � ETmaxi ð36Þ

No-negative constraint

Wij � 0 ð37Þ

Where:

i is the crop index (1 = wheat, 2 = corn, 3 = cotton, 4 = seed watermelon);

j is the water source index (1 = surface water resources, 2 = groundwater resources);

Yi: Linear crop production function of crop i, which has been presented in Table 1 (t/ha);

~Ai: Irrigation area of crop i (104 ha) (Fuzzy parameter);

~Pi: Price of crop i (¥/kg) (Fuzzy parameter);

Cj: Water cost of water source j (¥/m3);

Wij: Water supply for crop i from water sources j (m3);

η: Irrigation water use efficiency of study area;

~SW: Water supply of surface water (104 m3) (Fuzzy parameter);

~GW: Water supply of groundwater (104 m3) (Fuzzy parameter);

FDP: Food demand per capita (t/p);

TPR: Population of the study area (104 p);

ETmini: Minimum water demand of crop i (m3);

ETmaxi: Maximum water demand of crop i (m3);

In the established model, maximum economic benefit of per unit water resources was made

as objective. Moreover, in reality, irrigation system, which involves multiple uncertainties, is a

relatively complex system, such as irrigation area and price of different crops etc. In addition,

the random characteristics of runoff has been destroyed since the Hongyashan reservoir was

built. Thus, in this paper, maximum supply of surface water resources has fuzzy characteristics

instead of random characteristics.

Tables 2 and 3 present the main parameters of the established model. The data in the table

were collected through field investigations, the Water Resources Bulletin of Minqin County

etc.
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Result analysis and discussion

In this paper, eleven α-cut levels were chosen by the developed model, including 0.1, 0.2, 0.3,

0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1. Fig 3 represents the optimized objective value of lower and upper

level under different α-cut levels, respectively. From the Fig 3, the optimized objective value

would vary under multiple uncertainties. As α-cut levels increase, the objective value of upper

level would decrease; while, as α-cut levels increase, the objective value of lower level would

increase. For example, the optimized objective value of upper level would vary from 14.95 (α =

0) to 8.51 (α = 1); while, the optimized value of lower level would vary from 5.91 (α = 0) to 8.51

(α = 1). In addition, it also represents the irrigation water use efficiency would vary as α-cut

level changed because objective function means maximizing the economic benefit of per unit

irrigation water resources.

Fig 4 represents the total economic benefit under different α-cut level. From Fig 4,

when facing the upper level, the upper bound of economic benefit would decrease as α-cut

level increased; while the lower bound of economic benefit would increase as α-cut level

increased. When facing the lower level, they have the same trend as they in upper level. For

example, upper bound of economic benefit would decrease from 61496.59×104 ¥ (α = 0.1)

to 41759.69×104 ¥ (α = 1); while lower bound of economic benefit would increase from

33069.75 ×104 ¥ (α = 0.1) to 41759.69 ×104 ¥ (α = 0.1), when facing the upper level. More-

over, Fig 4 also shows that the upper bound economic benefit in upper level was higher than

it in lower level under different α-cut levels except α = 1; while the upper bound economic

benefit in upper level was lower than it in the lower level.

When it comes to the yield of different crops, the four crop’s yield, presented in Table 4,

have roughly similar trend as total economic benefit trend in Fig 4, especially the trend of cot-

ton yield. Compared the yield among four crops, the yield, lower bound of lower and upper

level, was the same in wheat, corn and seed watermelon; while yield of cotton, lower bound of

lower level, is higher than it in lower bound of upper level, which shows the same trend of total

economic benefit of lower bound in lower level presented in Fig 4. According to the rule of

optimizing irrigation water resources, irrigation water resources should be satisfied the mini-

mum water demand of crops and food security constraint, firstly. And then the rest of irriga-

tion water resources is assigned to the crops, which have relatively high yield or high economic

benefit. Moreover, the developed model has the characteristic of focusing on minima and max-

ima. Therefore, in the lower level, the irrigation water resource was firstly satisfied the mini-

mum water demand of wheat, corn, cotton and seed watermelon. And the rest of water was

assigned to the cotton, which has characteristic of higher economic benefit than other crops.

Table 2. Available water supply and water cost of surface and underground water.

Water Available water resources (104 m3) Water cost (¥/m3)

Surface water (10124, 10537, 16134) 0.12

Underground water (9830, 10750, 12100) 0.20

https://doi.org/10.1371/journal.pone.0217783.t002

Table 3. The rest parameters of the developed model.

Crops Area (104 hm2) Price (¥/kg) MaxET (m3) MinET (m3)

Wheat (3354.75, 3802.05, 4473.00) (2.00, 2.40, 2.70) 5829.00 3900.00

Corn (7235.25, 8199.95, 9647.00) (2.20, 2.50, 3.00) 9304.50 7500.00

Cotton (5664.75, 6420.05, 7553.00) (15.10, 15.60, 16.40) 4303.50 3300.00

Seed watermelon (1740.00, 1972.00, 2320.00) (8.00, 8.50, 9.00) 2883.00 1350.00

https://doi.org/10.1371/journal.pone.0217783.t003
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In addition, because of the characteristic of the developed model, the parameters with interval

characteristic of upper level is higher than the lower level. Thus, the result of upper level pays

more attention to finding the minima and maxima compared with the lower level. Therefore,

the yield of lower bound in the upper level would lower than it in the lower bound. And the

above analysis also explains why the total economic benefit of the lower bound in upper level

is lower than it in the lower level.

Figs 5 and 6 represent the water cost and water resources consumption of surface water

and underground water of lower and upper level under different α-cut levels, respectively.

Fig 3. Optimized objective value under different α-cut levels.

https://doi.org/10.1371/journal.pone.0217783.g003

Fig 4. Total economic benefit under different α-cut levels.

https://doi.org/10.1371/journal.pone.0217783.g004

Optimization allocation of water resources under multiple uncertainties

PLOS ONE | https://doi.org/10.1371/journal.pone.0217783 June 13, 2019 11 / 17

https://doi.org/10.1371/journal.pone.0217783.g003
https://doi.org/10.1371/journal.pone.0217783.g004
https://doi.org/10.1371/journal.pone.0217783


From the Figs 5 and 6, whether water cost and water resources consumption would vary as

the α-cut levels changed. And lower bound of water cost and water resources consumption,

which from both lower and upper level, would increase as α-cut levels increased; while, the

upper bound of water cost and water resources consumption would decrease as α-cut levels

increased. Moreover, the underground water cost was higher than surface water cost under

the same bound of the same α-cut level whether it belongs to upper level or lower level.

Moreover, although the surface water consumption was much higher than underground

water consumption, the underground water cost was still much higher than surface water

consumption at the same bound of the same α-cut level, which indicated that underground

water unit price is the main reason for the above phenomenon. Compared with Figs 5

and 6, it also shows that the underground water consumption is higher than surface water

consumption in the lower level; while, when it comes to the upper level, it represented

just the opposite. The reason is that although the objective is maximization of economic

benefit of per unit water resources, the lower level model, which was generated during the

Table 4. The yield of crops under different α-cut levels.

Wheat (104 kg) Corn (104 kg) Cotton (104 kg) Seed watermelon (104 kg)

Lower level Upper level Lower level Upper level Lower level Upper level Lower level Upper level

0.1 (1766.75, 2289.80) (1766.75,2289.80) (8237.08,10675.70) (8237.08,12131.97) (771.62,1000.07) (640.04,1079.47) (346.76,449.57) (346.76,449.41)

0.2 (1790, 2254.93) (1790, 2254.93) (8345.47,10513.12) (8345.47,11856.22) (771.96, 972.47) (648.46,1035.68) (351.32,442.57) (351.32442.57)

0.3 (1813.24, 2220.06) (1813.24, 2220.06) (8453.85,10350.55) (8453.85,11576.94) (772.68,946.06) (656.88,992.74) (355.88,435.73) (355.88,435.73)

0.4 (1836.49, 2185.19) (1836.49, 2185.19) (8562.23,10187.97) (8562.2311294.13) (773.81,920.74) (665.30,950.65) (360.44,428.88) (360.44428.88)

0.5 (1859.74, 2150.32) (1859.74, 2150.32) (8670.62,10025.40) (8670.62,11007.79) (775.36,896.51) (673.72,909.39) (365.01,422.04) (365.01,422.04)

0.6 (1882.98, 2115.45) (1882.98, 2115.45) (8779.00,9862.83) (8779.00,10517.01) (777.36,873.33) (682.14,868.99) (369.57,415.19) (369.57,478.31)

0.7 (1906.23,2080.58) (1906.23,2080.58) (8887.38,9700.25) (8887.38,10276.33) (779.83,851.16) (690.56,829.43) (374.13,408.35) (374.13,454.90)

0.8 (1929.48, 2045.71) (1929.48, 2061.87) (8995.76,9537.68) (8995.76,10013.18) (782.79,829.94) (698.99,790.72) (378.69,401.51) (378.69,432.02)

0.9 (1952.72, 2010.84) (1952.72, 2119.14) (9104.15,9375.10) (9104.15,9608.80) (786.27,809.67) (720.16,765.98) (383.26,394.66) (383.26,409.66)

1 (1975.97, 1975.97) (1975.97, 1975.97) (9212.53,9153) (9212.53,9212.53) (790.29,790.29) (790.29,790.29) (387.82,387.82) (387.82,387.82)

https://doi.org/10.1371/journal.pone.0217783.t004

Fig 5. Water cost and water resources consumption under different α-cut levels of the lower level.

https://doi.org/10.1371/journal.pone.0217783.g005
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transformation of original model, focused on the lower bound of the original model actually.

That is, the objective of the lower level model has been transformed into aiming at minimi-

zation lower bound value of economic benefit of per unit water resources instead of maximi-

zation of it. Therefore, it would represent the above phenomenon when they compared with

each other.

Fig 7 represents the total water resources consumption of lower and upper level under dif-

ferent α-cut levels. From the Fig 7, the total water resources consumption in lower level was

higher than it in the upper level under each α-cut level whether the upper bound or the lower

bound. When put it with the Fig 4, it could find that the total water resources consumption

has great difference under each α-cut level whether lower bound of lower and upper level or

Fig 6. Water cost and water resources consumption under different α-cut levels of upper level.

https://doi.org/10.1371/journal.pone.0217783.g006

Fig 7. Total water resources consumption under different α-cut levels.

https://doi.org/10.1371/journal.pone.0217783.g007
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upper bound of lower and upper level; while the total economic benefit of upper bound in

upper level is higher than it of upper bound of lower level, and the difference was small when

facing the lower level. And it also represented that why the economic benefit of per unit water

resources in upper level is higher than that in the lower level, which has been represented in

the Fig 4.

In addition, in order to deal with the multiple fuzzy uncertainties, which exists not only

in objective function but also constraints, the FFFPM was established. In this paper, in order

to solve developed model, the fuzzy theory was introduced in which triangular ones was

selected as fuzzy membership functions. Based on the characteristics of the triangular mem-

bership function, the fuzzy possibility of the occurrence of events would increase as the α-

cut increased; while the fuzzification would weakens as α-cut increased. Therefore, the gap

between upper bound and lower bound, of which the optimized objective value, yield, eco-

nomic and so on, was narrow when α = 1, and wide when α = 0. This is also why there are no

difference between upper bound and lower bound when α = 1.

Based on the above analysis, the developed FFFPM has significant and positive influence on

the optimization allocation of irrigation water resources. The developed model can not only

optimize the irrigation water resources but also focus on water use efficiency, which has great

advantage over the previous studies. And it has great positive influences to the sustainable

development of Minqin county by aiming at maximizing water use efficiency, which made

the maximization of economic benefit of unit water resources as objective. From the obtained

results, the optimized results would vary under different α-cut levels. According to the results,

irrigation water resources should be satisfied the minimum water demand of crops and food

security constraint, firstly. And then the rest of irrigation assigned to the crops, which have rel-

atively high yield or high economic benefit, such as cotton. For example, in the lower level, the

irrigation water resources firstly satisfied the minimum water demand of wheat, corn, cotton

and seed watermelon. And the rest of water was assigned to the cotton, which has characteris-

tic of higher economic benefit than other crops. In addition, benefits per unit of irrigation

water resources are also vary as different α-cut levels. Therefore, the decision-makers should

take above aspects under consideration when a sound optimized scheme is made.

Furthermore, in real-world problem, there are multiple fuzzy uncertainties in the irrigation

system, such as crop areas, crops price and so on. In addition, in reality, the random character-

istic of runoff in Minqin has been destroyed, which represented as fuzzy characteristics. The

developed model can deal with multiple fuzzy uncertainties. Therefore, a range of optimal

schemes about optimization allocation of irrigation water resources, under different α-cut lev-

els, was provided by the developed model. Based on the result, as different α-cut levels repre-

sent different possibility level of fuzzy sets, a sound decision schemes can be provided for the

decision makers from all the optimal schemes.

Conclusion

In this paper, a FFFPM was developed to optimization allocation of irrigation water resources

under multiple fuzzy uncertainties, which existed not only in constraints but also in objective

function. The proposed model has the ability to deal with uncertainties expressed as fuzzy sets,

and could offer a range of optimization schemes under different α-cut levels.

The established model was then applied to a real-would case study in Minqin county,

Gansu Province, China. In this application, maximum economic benefit of unit water

resources was made as objective, which presented that it focused on maximum of water use

efficiency. Compared with the previous studies, the developed made has the following advan-

tages: (a) it can not only optimize irrigation water resources but also focus on maximize water

Optimization allocation of water resources under multiple uncertainties
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use efficiency; (b) it has ability to deal with the multiple uncertainties which exist not only con-

straints but also objective function; (c) it can calculate the yield of crops more accurately by

introducing the linear production function instead of yield per unit area. In addition, as differ-

ent α-cut levels represent different levels of possibility of fuzzy sets, the developed model could

provide a range of optimal schemes. A sound optimal scheme, which could meet the demand

of decision makers, could be identified under multiple uncertainties.

Although the developed model provided a range of optimized solutions in this study, there

is still room for research extensions. For example, irrigation system is a very complex system,

which may involve multiple-objectives or objectives from different levels and so on. Moreover,

although a range of parameters, characterized by fuzzy uncertainty, were considered, there are

may be some factors with different kinds of uncertainty which are not take under consider-

ation. Thus, it may be a interesting topic that how to deal with a series of uncertainties or solve

the multi objective under uncertainty and so on. In addition, during the operation of other

optimizing management problems, the developed model can be considered when facing multi-

ple uncertainties such as fuzzy uncertainties.
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