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Abstract: Drowsiness is a risk to human lives in many occupations and activities where full awareness
is essential for the safe operation of systems and vehicles, such as driving a car or flying an airplane.
Although it is one of the main causes of many road accidents, there is still no reliable definition of
drowsiness or a system to reliably detect it. Many researchers have observed correlations between
frequency-domain features of the EEG signal and drowsiness, such as an increase in the spectral
power of the theta band or a decrease in the spectral power of the beta band. In addition, features
calculated as ratio indices between these frequency-domain features show further improvements
in detecting drowsiness compared to frequency-domain features alone. This work aims to develop
novel multichannel ratio indices that take advantage of the diversity of frequency-domain features
from different brain regions. In contrast to the state-of-the-art, we use an evolutionary metaheuristic
algorithm to find the nearly optimal set of features and channels from which the indices are calculated.
Our results show that drowsiness is best described by the powers in delta and alpha bands. Compared
to seven existing single-channel ratio indices, our two novel six-channel indices show improvements
in (1) statistically significant differences observed between wakefulness and drowsiness segments,
(2) precision of drowsiness detection and classification accuracy of the XGBoost algorithm and
(3) model performance by saving time and memory during classification. Our work suggests that
a more precise definition of drowsiness is needed, and that accurate early detection of drowsiness
should be based on multichannel frequency-domain features.

Keywords: drowsiness detection; EEG; frequency-domain features; multicriteria optimization; ma-
chine learning

1. Introduction

Drowsiness is the intermediate state between wakefulness and sleep [1]. Terms such
as sleepiness or tiredness are used synonymously with drowsiness in related studies [2–4].
Although it is intuitively clear what drowsiness is, it is not so easy to determine exactly
whether a person is in a drowsy state or not. The reason for this is the unclear definition
of drowsiness. Some researchers define drowsiness as stage 1 sleep (S1) [5–9], which is
also known as non-rapid eye movement 1 (NREM 1) sleep. Da Silveira et al. [10] used
S1 sleep stage data in their research of drowsiness. Johns [11] claims that the S1 sleep
stage is equivalent to microsleep (episodes of psychomotor insensitivity due to sleep-
related wakefulness loss [12]), while drowsiness is stated to occur before S1 sleep, but it
is not stated when it begins and what characterizes it. Researchers who do not use any
of the aforementioned definitions of drowsiness typically use a subjective assessment of
drowsiness, e.g., the Karolinska sleepiness scale [13]. In this paper, the term drowsiness is
used as a synonym for the S1 sleep stage.

In a drowsy state, people are not able to function at the level required to safely perform
an activity [14], due to the progressive loss of cortical processing efficiency [15]. Drowsiness
is, therefore, a significant risk factor for human lives in many occupations, e.g., for air traffic
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controllers, pilots and regular car drivers [16]. According to the reports from NASA [17]
and the National Transportation Safety Board [18], one of the main factors in road and
air accidents is drowsiness. Gonçalves et al. [19] conducted a study across 19 European
countries and concluded that in the last two years, 17% of drivers fell asleep while driving,
while 7% of them had an accident due to drowsiness. The high frequency and prevalence
of drowsiness-related accidents speak in favor of the development of early drowsiness
detection systems, which is the subject of this paper.

Many researchers are trying to solve the problem of early detection of drowsiness in
drivers. Balandong et al. [20], in their recent review, divided the techniques for detecting
driver drowsiness into six categories: (1) subjective measures, (2) vehicle-based systems,
(3) driver’s behavior-based systems, (4) mathematical models of sleep–wake dynamics,
(5) human physiological signal-based systems and (6) hybrids of one or more of these
techniques. Currently, the most common techniques used in practice are vehicle-based
systems [5], but these systems are mostly unreliable and depend largely on the driver’s
motivation to drive as well as possible [20].

Physiological signals are the promising alternative for reliable drowsiness detec-
tion [21]. The main problem with this approach is that these systems are often not easy
to use and are intrusive to drivers [20]. Nevertheless, many researchers are working on
small, automated and wearable devices [21–24], or on steering wheel devices [25,26] in
order to overcome these obstacles. Techniques for detecting drowsiness based on phys-
iological signals can be further subdivided according to the type of signal used, such
as electroencephalogram (EEG) [27], electrooculogram (EOG) [28] or electrocardiogram
(ECG) [29].

The most studied and applied physiological signal to detect drowsiness is the EEG.
In this paper, frequency-domain features of the EEG signal are analyzed and two novel
multichannel ratio indices for the detection of drowsiness are proposed. Besides the
frequency-domain features, there are also other types of features: (1) nonlinear features [30],
(2) spatiotemporal (functional connectivity) features [31] and (3) entropies [32]. These three
groups of features have a lower frequency of use compared to the frequency-domain
features, so in this paper, we focus only on frequency-domain features. Based on the
recent review [33] of EEG-based drowsiness detection systems, 61% of the included papers
used frequency-domain features, 38% used entropies, 10% used nonlinear features and
10% used spatiotemporal features (some papers used multiple groups of features, so the
sum of the percentages is greater than 100%). This shows the difference in the use of
drowsiness detection systems, and the difference is even greater in the general field of
neurophysiological scientific papers. Although the three feature groups mentioned above
are used less frequently, there are still a certain number of papers that include them,
especially entropies.

Frequency-domain features estimate the power spectral density in a given frequency
band. The bands typically used in the analysis of EEG signals are delta (δ, 0.5–4 Hz), theta (θ,
4–8 Hz), alpha (α, 8–12 Hz), beta (β, 12–30 Hz) and gamma (γ, >30 Hz). An increase in theta
activity [34] and an increase in alpha activity [35] indicate drowsiness. An increase in the
beta activity, however, is a sign of wakefulness and alertness [36]. There are several widely
used frequency-domain ratio indices for detecting drowsiness. Eoh et al. [36] proposed the
θ/α and β/α ratio indices, Jap et al. [37] proposed the (θ + α)/β, θ/β and (θ + α)/(α + β)
ratio indices and da Silveira et al. [10] proposed the γ/δ and (γ + β)/(δ + α) ratio indices.
These ratio indices provide improvement in the detection of drowsiness compared to the
frequency-domain features alone and are shown to correlate with drowsiness.

All these frequency-domain features and ratio indices are calculated from a single EEG
channel, i.e., from a single brain region. In recent research, Wang et al. [38] showed that the
significance of a decrease in delta and an increase in (θ + α)/β indices depends on the brain
region. This significant diversity of the correlation of features with drowsiness in different
brain regions is the motivation for this research. Since all currently used frequency-domain
features and ratio indices are based on a single channel (single brain region), this work aims
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to use the best distinguishing features of each brain region for the detection of drowsiness
and to combine them into a single multichannel ratio index feature.

In our work, we use a computational method based on multicriteria optimization to
extract the multichannel EEG-based frequency-domain ratio index features. This method
allows us to discover new multichannel ratio indices that show improvements in the
detection of drowsiness compared to single-channel ratio indices. Finally, with the use
of machine learning models, we prove that multichannel indices detect drowsiness with
higher accuracy, higher precision, reduced memory and faster computation compared to
single-channel features.

In the Materials and Methods Section, we show the methodology of our work, in-
cluding a description of the dataset, preprocessing and feature extraction methods used.
Novel multichannel ratio indices and the multi-objective optimization method are also
described there. In the Results Section, we present the results of our work, including
statistical analysis, drowsiness prediction and computational properties of the proposed
indices. In the Discussion Section, we discuss in more detail the topics covered in this
paper. Finally, in the last section, we conclude the paper.

2. Materials and Methods
2.1. Dataset, Preprocessing and Feature Extraction

The data used in this paper were obtained from the PhysioNet portal [39], in particular
from the 2018 PhysioNet computing in cardiology challenge [40]. The original dataset
contains data records from 1985 subjects, and each recording includes a six-channel EEG,
an electrooculogram, an electromyogram, a respiration signal from the abdomen and chest,
airflow and oxygen saturation signals and a single-channel electrocardiogram during the
all-night sleep. The records were divided into training and test sets of equal size. The sleep
stages [41] of all subjects were annotated by clinical staff based on the American Academy
of Sleep Medicine (AASM) manual for the scoring of sleep [42]. There are six types of
annotations for different stages: wakefulness (W), stage 1 (S1), stage 2 (S2), stage 3 (S3),
rapid eye movement (REM) and undefined.

In this research, we wanted to use a training set (992 subjects) to detect drowsiness.
The officially provided way of acquiring the data is through torrent download, but we
managed to download only 393 subjects completely, due to a lack of seeders. Of these 393
subjects, EEG signal recordings from 28 subjects were selected, based on the condition that
each recording had at least 300 s of the W stage and, immediately after that, at least 300 s of
the S1 stage. From each recording, a fragment of 600 s (300 s of W stage and 300 s of S1
stage) was used for analysis. In the original dataset, each EEG signal recording consists of
six channels (F3, F4, C3, C4, O1 and O2, based on the International 10/20 System), with a
sampling frequency of 200 Hz. Table 1 shows the identification numbers of all the selected
subjects. The subjects were divided into two groups, one group used for training of the
model (16 subjects) and the other one for the test of the obtained models (12 subjects). The
training set was used to obtain novel ratio indices (with the method described below) and
the test set was used to check these novel indices on the unseen data.

Table 1. The identification numbers of all the selected subjects. The training set is in the upper part
and the test set is in the lower part of the table.

tr03-0092 tr03-0256 tr03-0876 tr03-1389
tr04-0649 tr04-0726 tr05-1434 Tr05-1675
tr07-0168 tr07-0458 tr07-0861 tr08-0021
tr08-0111 tr09-0175 tr10-0872 tr13-0204

tr04-0653 tr07-0127 tr09-0453 tr13-0170
tr05-0028 tr08-0157 tr12-0255 tr13-0508
tr05-0332 tr09-0328 tr12-0441 tr13-0653
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Before feature extraction, the EEG signal must be filtered. For this purpose, the DC
component was removed from the signal and the signal was filtered with a Butterworth
filter to remove high-frequency artifacts and low-frequency drifts. We used the sixth-order
Butterworth filter, the low-cut frequency of 1 Hz and the high-cut frequency of 40 Hz. In
the selected fragments of the recordings, there was an insignificant number of eye-related
artifacts, so we decided not to use the independent component analysis for their removal
in order to prevent potential information loss due to component removal.

The signals were divided into epochs to calculate features. The epochs were five
seconds long with a 50% overlap between them. Frequency-domain features are often used
in EEG signal analysis. These features were extracted from the power spectral density
(PSD) of the signal. To obtain the PSD of the signal, Welch’s method [43] was used. Welch’s
method is used more often than Fast Fourier transform in the field of EEG signal analysis
since it produces PSD with lower variance. The standard frequency-domain features
were calculated, i.e., delta (δ, 0.5–4 Hz), theta (θ, 4–8 Hz), alpha (α, 8–12 Hz) and beta (β,
12–30 Hz) bands. We also calculated the less frequently used frequency-domain features,
i.e., gamma (γ, >30 Hz), sigma (σ, 12–14 Hz), low alpha (α1, 8–10 Hz) and high alpha (α2,
10–12 Hz) bands [44].

2.2. Novel Multichannel Ratio Indices

Ratios between frequency-domain features have often been used as new features in
different areas of EEG signal analysis [10,36]. All these features have a simple mathematical
formulation but often lead to an improvement in detection and reduction of dimensionality
for drowsiness. Moreover, they are calculated based on a single channel only. The idea
behind the novel indices we present in this work is to design the feature formulation in such
a way that frequency-domain features from different channels can be combined. Figure 1
illustrates the difference between these two approaches. For simplicity of visualization,
only four epochs, two channels (F3 and F4) and three features per channel are shown in
Figure 1.

Figure 1. A visualization of tables with features. The green color represents the possibilities for
creating a ratio index, the first table (top) are the possibilities reported in the related work to create a
single-channel ratio index, while the second table (bottom) are the possibilities explored in our novel
multichannel approach.

We define a new index, I, for each epoch, e, which is calculated as a ratio of the feature
values, F(e), for all six channels in the epoch, e. In both the nominator and denominator,
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the feature value of each channel, j, is multiplied with a dedicated coefficient, Cij or Kij
respectively, as indicated in the Equation (1):

I(e) =
∑i= f eatures ∑j=channels CijFij(e)

∑i= f eatures ∑j=channels KijFij(e)
(1)

The purpose of the coefficients is to reduce or even eliminate the influence of certain
channels of frequency-domain features, by setting the value in the range [0, 1〉, or increase
the influence of certain channels of the frequency-domain features by setting the corre-
sponding coefficient to a value in the range [1, ∞〉. There are 48 (6 channels and 8 features
per channel) C coefficients and 48 K coefficients.

The ideal output of I(e) should look like a step function (or an inverse step function),
which would indicate a clear difference between the two stages: W and S1. Figure 2
illustrates the main features of the output. The output can be divided into two parts: the
left one corresponds to stage W and the right one to S1. While the output in each part
should be as smooth as possible, i.e., with minimal oscillations, it is expected that there will
be a transition period between the phases, which may have significant oscillations. This
transition period would ideally be the step function, but in realistic settings, it is expected
that the transition between phases of brain activity will probably last several epochs and
would not be considered as either stage W or S1.

Figure 2. An illustration of all the elements needed for an evaluation of solutions of the multi-
objective optimization in drowsiness detection.

In order to determine the appropriate value of the coefficients that would provide the
output as close as possible to the ideal, at least two criteria must be taken into account: the
absolute difference between the mean values left and right of the transition window and
the quantification of the oscillations in each part. This can be defined as a multi-objective
optimization problem that we want to solve using a metaheuristic multi-objective evolu-
tionary optimization method, as described in the next section. To the best of our knowledge,
this state transition problem has never been approached with evolutionary computation.

2.3. Multi-Objective Optimization

The optimization of a step function that is representative of the problem of flat sur-
faces is generally a challenge for any optimization algorithm because it does not provide
information about which direction is favorable and an algorithm can get stuck on one
of the flat plateaus [45]. To overcome this challenge, instead of optimizing the function
according to one criterion, we define two objectives that we optimize simultaneously:
(1) to maximize the absolute difference between the mean value of I(e) output for the W
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and S1 stages, and (2) to minimize the oscillations of the output value around the mean
value in each stage. According to Figure 2, the left part of the I(e) output occurring before
the transition phase corresponds to the W stage, and the right part, occurring after the
transition phase, corresponds to the S1 stage. Since optimization problems are usually
expressed as minimization problems, where the first objective function, O1, is defined as
the inverse absolute difference between the mean value of I(e) of the left part (avgleft) and
the right part (avgright), Equation (2) is established:

O1 =
1∣∣∣avgright − avgle f t

∣∣∣ (2)

The second objective function, O2, expresses the oscillations in the function and
is defined as the number of times the difference between the output values of I(e) for
two adjacent epochs was greater than a given limit. The exact value of this limit will be
discussed later in this section as it is closely related to the specifics of the optimization
method used. The main goal of the objective function O2 is to minimize the influence of
the biggest flaw in the way that the objective O1 is calculated, i.e., to use the averaging
function. For example, if a possible solution is a completely straight line, except for a large
negative spike in the left part and a large positive spike in the right part, based only on
the objective function O1, this would be a good solution, while the objective function O2
would penalize this solution.

As mentioned above, the transition between two stages will probably take several
epochs and show significant oscillations of the function output values. According to the
annotation made by clinical personnel, the transition phase should be approximately in the
middle of the I(e) output, but it cannot be determined exactly how long it will last. In our
work, which is based on expert knowledge of human behavior in the case of drowsiness,
we assume that it lasts about one minute, which corresponds to about 30 epochs. Within
the transition window, neither one of the two objective functions is calculated, since it is
assumed to belong neither to the W nor to the S1 stages. We also allow it to move around
the center, shifting left and right, due to a possible error of the human observer who marked
the data.

The multi-objective optimization problem can now be expressed as min{O1,O2}, where
O1 and O2 are the conflicting objective functions, as defined above. The evolutionary meta-
heuristic algorithm NSGA-II [46] was applied to solve this multi-objective optimization
problem. The genetic algorithms (GAs) are normally used to solve complex optimization
and search problems [47]. NSGA-II is one of the most popular evolutionary multicriteria
optimization methods due to its versatility and ability to easily adapt to different types
of optimization problems. The strong points of this MO algorithm are: (1) the fast non-
dominated sorting ranking selection method used to emphasize Pareto-optimal solutions,
(2) maintaining the population diversity by using the crowding distance and (3) the elitism
approach, which ensures the preservation of best candidates through generations without
the setting of any new parameters other than the normal genetic algorithm parameters,
such as population size, termination parameter, crossover and mutation probabilities. Ad-
ditionally, it was often used for the elimination of EEG channels with the similar purpose as
in our case-dimensionality reduction [48]. This paper uses the implementation of NSGA-II
provided by the MOEA framework [49] and is based on the guidelines defined in [46,50].

NSGA-II was used with the following configuration. The chromosome was divided
into two parts: in the first part, genes represented the nominator coefficient values (Cij),
and in the second part, genes represented the denominator coefficient values (Kij). In each
part, the genes were grouped by frequency-domain features and channels, as illustrated
in Figure 3. The genes were encoded as real values in the range [0.0, 10.0], and standard
NSGA-II crossover and mutation operators were used to support operation on real values.
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Figure 3. An illustration of a chromosome structure in the proposed optimization problem solution.

Each solution is evaluated based on the values of objectives O1 and O2, as described
in the pseudocode in Algorithm 1. First, the chromosome is decoded (line 1). Then, for each
test fragment, two values are calculated: (1) the inverse absolute difference (IAD) between
the mean index value, I(e), of the left part and the right part, represented by the invAbsDiff
variable in the pseudocode, and (2) the oscillations in the function, represented by the
oscillation variable in the pseudocode (lines 3–5). Finally, the value of each objective O1 for
the given solution is defined as the average value of invAbsDiff for all test fragments, and
the value of objective O2 is defined as the average value of oscillation for all test fragments
(lines 7–8).

Algorithm 1. Evaluation.

1: decode chromosome to get coefficient values
2: for each fragment do
3: indexVals[[] = calculate index value for each epoch
4: invAbsDiff += IADCalc(indexVals[[], windowStart)
5: oscillation += OscillationCalc(indexVals[[], windowStart, winSize)
6: end for
7: objective1 = invAbsDiff/number_of_fragments
8: objective2 = oscillation/number_of_fragments

The algorithm for the IAD calculation is provided in the pseudocode in Algorithm 2.
The calculation of the IAD for each fragment was slightly modified compared to Equation
(1) to allow a faster convergence of the search algorithm. The transition phase was not
in the same position in each fragment but allowed to move more loosely away from the
center because the annotation in the original dataset was performed manually and there
was a possibility of human error in case the observer would register a transition from W
to S1 a little too early or too late. The algorithm allows the transition phase to begin no
earlier than 30 epochs from the fragment start, and end no later than 60 epochs before the
fragment end (line 2). The algorithm assumes the transition phase by looking for a window
of 30 epochs which has the maximum difference of index, I(e), values between the left and
the right part (lines 9–13).

The gradation of the absolute difference between the mean value of the left and the
right parts is also introduced (lines 19–22) to allow easier and faster convergence of the
algorithm. The optimization of the objective O1 can be considered as an optimization
problem with soft constraints that are related to how much O1 deviates from the optimal
value. However, it is quite difficult to determine the optimal value precisely a priori. As
indicated in [51,52], constraints are often treated with penalties in optimization techniques.
The basic idea is to transform a constrained optimization problem into an unconstrained
one by introducing a penalty into the original objective function to penalize violations of
constraints. According to a comprehensive overview in [51], the penalty should be based
on the degree of constraint violation of an individual. In [53], it is also recommended that
instead of having just one fixed penalty coefficient, the penalty coefficient should increase
when higher levels of constraint violation are reached. The greatest challenge, however, is
to determine the exact penalty values. If the penalty is too high or too low, evolutionary
algorithms spend either too much or too little time exploring the infeasible region, so it is
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necessary to find the right trade-off between the objective function and the penalty function
so that the search moves towards the optimum in the feasible space. As the authors have
shown in [54], the choice of penalty boundaries is problem-dependent and difficult to
generalize. Since we cannot strictly determine the optimal value of O1 in our case, we have
chosen several thresholds for the absolute difference value, with the penalty increasing
by a factor of 10 for each new threshold. The exact thresholds were selected based on the
experience gained from the first few trial runs of the algorithm. Based on the observations
from the trial runs, a third modification was also introduced: the difference is calculated
with a relative, instead of absolute, value of I(e). The relative value of I(e) is calculated by
using the lowest I(e) value as a reference point, instead of zero, i.e., the zero is “moved”, as
shown in code lines 16–18 in Algorithm 2.

Algorithm 2. IAD Calculation.

1: function IADCALC(indexVals[[], windowStart)
2: for j between 30 and (indexVals.size-60) do
3: maxAbsDiff = 0
4: left = 0
5: right = 0
6: avgLeft = average value of all Index values before j
7: avgRight = average value of all Index values after j+30
8: diff = ABS(avgRight–avgLeft)
9: if diff ≥maxAbsDiff then
10: maxAbsDiff 0 diff
11: left = avgLeft
12: right = avgRight
13: windowStart = j
14: end if
15: end for
16: lowestVal = GETLOWESTVAL(indexVals)
17: movedZero = lowestVal–0.01*lowestVal
18: absDiff = ABS(right–left)/MIN(left–movedZero, right–movedZero)
19: if absDiff ≥ 5.0 then invAbsDiff = 1/absDiff
20: else if absDiff ≥ 1.0 then invAbsDiff = 10/absDiff
21: else if absDiff ≥ 0.5 then invAbsDiff = 100/absDiff
22: else invAbsDiff = 1000
23: end if
24: return invAbsDiff
25: end function

The pseudocode for calculating the oscillations in the function as the second objective,
O2, is provided in Algorithm 3. Again, the optimization of the oscillations can be considered
a constrained optimization problem, so that, in the same way as in the case of the IAD
calculation discussed previously, a gradation of the difference between the output values
of I(e) for two adjacent epochs is used to penalize the larger differences more severely (lines
7–10 and 15–18). The exact thresholds were chosen based on the experience gained from
the first few trial runs of the algorithm. In order to make the algorithm converge more
easily and quickly, the concept of “moved zero” was used again (lines 2, 3, 6 and 14).
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Algorithm 3. Oscillation Calculation.

1: function OSCILLATIONCALC(indexVals[[], windowStart, winSize)
2: lowestVal = GETLOWESTVAL(indexVals)
3: movedZero = lowestVal–0.01*lowestVal
4: oscillation = 0
5: for i between 1 and windowStart–1 do
6: absDiff = ABS((indexVals[i]-indexVals[i-1])/(indexVals[i-1] -movedZero))
7: if absDiff ≥ 5.0 then oscillation += 1000
8: else if absDiff ≥ 1.0 then oscillation += 100
9: else if absDiff ≥ 0.5 then oscillation += 10
10: else if absDiff ≥ 0.25 then oscillation += 1
11: end if
12: end for
13: for i between windowStart+winSize and indexVals.size()-1 do
14: absDiff = ABS((indexVals[i]-indexVals[i-1])/(indexVals[i-1] -movedZero))
15: if absDiff ≥ 5.0 then oscillation += 1000
16: else if absDiff ≥ 1.0 then oscillation += 100
17: else if absDiff ≥ 0.5 then oscillation += 10
18: else if absDiff ≥ 0.25 then oscillation += 1
19: end if
20: end for
21: return oscillation
22: end function

Finally, to further minimize the oscillations, and help the search algorithm converge
more quickly, the maximum change in the I(e) value between two adjacent epochs is set to
10% of the first of the two epochs. The mathematical formulation of this limit is provided
in Equation (3):

Index(e) =


1.1 ∗ I(e− 1), i f I(e) > 1.1 ∗ I(e− 1)
0.9 ∗ I(e− 1), i f I(e) < 0.9 ∗ I(e− 1)

I(e), else
(3)

3. Results

The optimization algorithm was executed over 107 generations, using 100 randomly
selected chromosomes as a starting point. Ideally, the optimization algorithm would
have many C and K coefficients equal to zero and only a few non-zero coefficients in
order to obtain a simple and easily understandable mathematical formulation of a novel
multichannel ratio index. Unfortunately, even the best solutions of the optimization
algorithm had only up to 20 C and K coefficients equal to zero. Although such a novel
multichannel ratio index showed good behavior in detecting drowsiness, it is impractical
to use a formula with 76 coefficients. We consider anything above 15 coefficients to
be impractical.

In order to reduce the number of coefficients and to simplify the formulation of the
novel multichannel ratio index, some coefficients were manually set to zero. In order
to decide which coefficients have the least influence on the final solution, we counted
how often a large value of the coefficient is fixed to a certain frequency-domain feature.
By analyzing the coefficients of all solutions in the final population of the optimization
algorithm, we concluded that the most frequently selected features were δ, α, α1 and α2.
After manually fixing the coefficients of all other frequency-domain features to zero, the
search range for the optimization algorithm was reduced to half.

Although 48 C and K coefficients remained in the solution at that time, the algorithm
provided equally good results in terms of drowsiness detection, but with a much simpler
mathematical formulation. In addition to the 48 coefficients that were manually set to zero,
the algorithm often set many more coefficients to zero. A decision on the best solution in the
final population was made based on the O1 and O2 values of the optimization algorithm
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in combination with the number of coefficients set to zero after using the floor operator
on the coefficients. The floor operator was used to simplify the equation by removing the
decimal numbers. Preferred solutions are those with a higher number of coefficients set to
zero. Our choice was the solution with 13 non-zero coefficients, as shown in Equation (4):

I1(e) =
αF3 + 4αO2 + 9α1F3 + 3α1C3 + 9α1C4 + α1O2 + 4α2O1 + 8α2O2

δF3 + 3δF4 + 3δC3 + 2δC4 + 9δO2
(4)

All C and K coefficients were rounded to a lower value (floor operator). Here, e repre-
sents the current epoch and all the features on the right side were from that same epoch.

The goal of the second condition of the optimization algorithm was to minimize the
oscillations of the I(e) function. The results were much better with this condition than
without it, but the resulting function still oscillated strongly. In order to additionally
minimize the oscillations, a limitation was performed. The maximum change between any
two adjacent samples was set to 10% of the value of the first sample. Equation (5) shows
the mathematical formulation of this limitation of the maximum change:

Index1(e) =


1.1 ∗ I1(e− 1), i f I1(e) > 1.1 ∗ I1(e− 1)
0.9 ∗ I1(e− 1), i f I1(e) < 0.9 ∗ I1(e− 1)

I1(e), else
(5)

where I1(e) is defined by Equation (4) and e is the current epoch. Limiting the maxi-
mum change of adjacent samples further improves the detection model, and therefore
Equation (5) presents the first novel multichannel ratio index.

We have tried to further simplify the formulation of the multichannel ratio index. This
time, brute force search for the best solution was applied with the following constraints: (1)
encoding of all C and K coefficients was set to integer values of zero or one for the sake of
simplicity, and (2) a maximum of five addends in the equation was allowed. With these
constraints, we obtained Equation (6):

I2(e) =
δF3 + δF4 + δO2

αC3 + α2O2
(6)

Again, similar to the first index, the maximum change was limited, so that the final
equation for the second ratio index was obtained as:

Index2(e) =


1.1 ∗ I2(e− 1), i f I2(e) > 1.1 ∗ I2(e− 1)
0.9 ∗ I2(e− 1), i f I2(e) < 0.9 ∗ I2(e− 1)

I2(e), else
(7)

where I2(e) is defined by Equation (6) and e is the current epoch. After obtaining the
two novel indices, they were normalized to the range [0, 1] for each subject to eliminate
interindividual differences between the subjects.

The two novel multichannel ratio indices defined by Equations (5) and (7) were compared
with the seven existing indices θ/α and β/α [36], (θ + α)/β, θ/β and (θ + α)/(α + β) [37],
and γ/δ and (γ + β)/(δ + α) [10]. The indices γ/δ and (γ + β)/(δ + α) were calculated
based on the wavelet transform, i.e., in the same way as in the original paper. Figure 4
shows a comparison of our novel indices with the best and the worst channel for θ/α and
(θ + α)/β single-channel indices for subject tr08-0111. These two single-channel indices
were selected because they are the best predictors of drowsiness for a given subject among
all single-channel indices.
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Figure 4. The comparison of the two novel multichannel indices with the best and the worst channel for θ/α and (θ + α)/β
single-channel indices for subject tr08-0111. The white part of the diagram represents an awake state, while the yellow part
of the diagram represents stage 1 of sleep, i.e., a drowsiness state.
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3.1. Statistical Analysis

The Wilcoxon signed-rank test [55] was used to analyze the statistical differences
between the awake state and the S1 state. This test was chosen because it refers to data that
do not necessarily follow the normal distribution. Table 2 shows p-values for each subject
in the training set and each index. The significance level α0 = 0.01 was used together with
the Bonferroni correction [55] to reduce the probability of false-positive results, as the test
was repeated 144 times (16 subjects and 9 indices), giving us the final αp = 6.9 × 10−5. For
the existing indices, the p-value was calculated for each channel, but only the p-values of
the best channel (the lowest average of p-value for all subjects) are shown in Table 2.

The two novel indices show p-values lower than αp for most subjects. From this, we
can conclude that, for Index1, 14 of 16 subjects show two different distributions for the W
stage and the S1 stage, while 13 of 16 subjects show significantly different distributions
of the W stage and the S1 stage for Index2. There are only two existing indices where the
p-value is lower than αp in more than ten cases. These are θ/β and (θ + α)/(α + β), both
by Jap et al. [37].

Table 3 shows p-values for each subject in the test set and each index. Again, the two
novel indices, together with the (γ + β)/(δ + α) [10] index, show p-values lower than αp
for most subjects.

3.2. Drowsiness Prediction Analysis

An additional comparison of ratio indices was performed by analyzing the drowsiness
detection accuracy and precision, as obtained with the XGBoost algorithm [56]. Default
parameters were applied: learning rate eta equal to 0.3, gamma equal to 0 and a maximum
depth of a tree equal to 6. For a detailed comparison of the indices, classification accuracy
and precision were calculated for each subject. Namely, each subject has 238 epochs of
the measured signal, with the first half representing the W state and the second half the
S1 state. The algorithm classified the subject’s state for each epoch (238 classifications per
subject), and the accuracy for each subject was calculated based on these classifications.
The leave-one-subject-out cross-validation method was applied on the training set, i.e., the
algorithm was trained on the data of 15 subjects and tested on the subject excluded from
the training set, and this was repeated 16 times to evaluate drowsiness detection on each
subject from the training set. Table 4 shows the classification accuracy achieved on the
training set.

Table 2. Statistical significance p-values were obtained by the Wilcoxon signed-rank test for distinguishing the awake state
from the S1 state. The shaded green cells with bold text represent the lowest p-value for each subject in the training set. At
the bottom, the index having p-values lower than αp for most subjects is marked in the same way.

Subject Index1 Index2 θ/α β/α (θ + α)/β θ/β (θ + α)/
(α + β) γ/δ (γ + β)/

(δ + α)
This Work Eoh et al. [36] Jap et al. [37] da Silveira et al. [10]

tr03-0092 1.12 × 10−6 4.82 × 10−3 1.23 × 10−4 7.22 × 10−1 4.97 × 10−2 1.62 × 10−08 1.41 × 10−9 1.06 × 10−6 3.09 × 10−4

tr03-0256 3.92 × 10−8 1.43 × 10−13 2.42 × 10−6 6.88 × 10−4 1.11 × 10−3 4.04 × 10−2 3.60 × 10−1 9.08 × 10−3 1.51 × 10−9

tr03-0876 1.37 × 10−20 3.87 × 10−17 5.06 × 10−3 1.63 × 10−7 9.80 × 10−14 2.94 × 10−6 1.58 × 10−5 1.09 × 10−1 2.09 × 10−1

tr03-1389 9.77 × 10−11 1.35 × 10−8 9.64 × 10−2 2.06 × 10−1 2.86 × 10−4 1.27 × 10−1 1.91 × 10−1 1.82 × 10−1 3.01 × 10−1

tr04-0649 5.85 × 10−21 4.11 × 10−21 5.71 × 10−12 2.38 × 10−9 8.12 × 10−7 1.89 × 10−1 2.18 × 10−5 3.33 × 10−7 6.13 × 10−3

tr04-0726 2.96 × 10−20 3.19 × 10−20 5.90 × 10−20 2.31 × 10−16 9.40 × 10−9 2.78 × 10−14 2.62 × 10−15 2.36 × 10−19 2.19 × 10−20

tr05-1434 7.90 × 10−10 9.79 × 10−13 6.76 × 10−9 3.70 × 10−10 1.62 × 10−1 3.96 × 10−17 2.00 × 10−19 5.42 × 10−17 1.08 × 10−11

tr05-1675 1.71 × 10−13 1.85 × 10−11 1.24 × 10−9 7.82 × 10−3 1.48 × 10−1 1.10 × 10−14 4.47 × 10−16 1.58 × 10−2 4.62 × 10−10

tr07-0168 2.88 × 10−21 5.15 × 10−21 1.75 × 10−13 4.73 × 10−11 8.08 × 10−6 1.05 × 10−8 4.49 × 10−11 8.87 × 10−16 1.01 × 10−1

tr07-0458 8.34 × 10−11 1.77 × 10−16 1.66 × 10−4 1.77 × 10−4 5.51 × 10−1 1.32 × 10−2 6.62 × 10−3 3.68 × 10−4 4.17 × 10−1

tr07-0861 2.88 × 10−21 3.11 × 10−21 3.14 × 10−3 3.55 × 10−7 3.64 × 10−2 9.96 × 10−8 1.11 × 10−6 1.49 × 10−17 1.50 × 10−12

tr08-0021 2.88 × 10−21 2.88 × 10−21 4.09 × 10−2 2.54 × 10−9 4.55 × 10−8 3.34 × 10−10 4.91 × 10−5 4.19 × 10−13 2.10 × 10−6

tr08-0111 2.88 × 10−21 2.88 × 10−21 4.41 × 10−2 7.54 × 10−5 1.94 × 10−20 2.04 × 10−20 3.92 × 10−4 4.50 × 10−15 3.41 × 10−3

tr09-0175 7.78 × 10−5 7.92 × 10−2 4.64 × 10−2 3.10 × 10−4 5.35 × 10−14 2.23 × 10−5 2.68 × 10−6 7.18 × 10−2 1.30 × 10−5

tr × 10-0872 2.62 × 10−15 1.96 × 10−14 1.76 × 10−2 3.89 × 10−2 5.91 × 10−3 5.09 × 10−6 7.52 × 10−5 2.14 × 10−5 2.33 × 10−5

tr13-0204 1.71 × 10−3 6.62 × 10−1 6.30 × 10−4 4.91 × 10−5 6.36 × 10−5 2.91 × 10−10 2.63 × 10−10 5.59 × 10−1 2.16 × 10−2

No. subjects
with p < 6.9
× 10−5

14 13 6 9 8 12 11 9 8
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Table 3. Statistical significance p-values were obtained by the Wilcoxon signed-rank test for distinguishing the awake state
from the S1 state. The shaded green cells with bold text represent the lowest p-value for each subject in the test set. At the
bottom, the index having p-values lower than αp for most subjects is marked in the same way.

Subject Index1 Index2 θ/α β/α (θ + α)/β θ/β (θ + α)/
(α + β) γ/δ (γ + β)/

(δ + α)
This Work Eoh et al. [36] Jap et al. [37] da Silveira et al. [10]

tr04-0653 3.19 × 10−9 2.71 × 10−9 2.61 × 10−7 1.80 × 10−5 6.83 × 10−1 3.63 × 10−9 2.17 × 10−8 2.69 × 10−6 3.33 × 10−10

tr05-0028 1.26 × 10−9 2.36 × 10−7 3.78 × 10−3 2.99 × 10−1 3.45 × 10−1 3.56 × 10−1 5.16 × 10−2 1.70 × 10−1 4.36 × 10−2

tr05-0332 2.88 × 10−21 2.88 × 10−21 8.04 × 10−16 2.10 × 10−5 2.66 × 10−3 7.39 × 10−14 8.17 × 10−18 1.84 × 10−16 3.00 × 10−16

tr07-0127 3.71 × 10−18 1.27 × 10−15 8.92 × 10−2 1.44 × 10−2 3.44 × 10−5 1.38 × 10−2 2.51 × 10−5 9.07 × 10−16 3.36 × 10−16

tr08-0157 2.88 × 10−21 2.88 × 10−21 6.51 × 10−5 1.26 × 10−7 9.66 × 10−1 6.67 × 10−3 1.85 × 10−3 2.82 × 10−11 5.92 × 10−11

tr09-0328 1.80 × 10−10 1.14 × 10−2 7.90 × 10−10 9.56 × 10−7 1.70 × 10−7 2.01 × 10−1 1.92 × 10−3 3.54 × 10−2 7.01 × 10−5

tr09-0453 2.73 × 10−1 7.80 × 10−4 1.63 × 10−1 2.96 × 10−1 1.03 × 10−7 3.89 × 10−2 3.17 × 10−2 8.30 × 10−16 6.45 × 10−9

tr12-0255 1.37 × 10−2 5.55 × 10−10 4.31 × 10−19 2.17 × 10−18 1.89 × 10−16 2.20 × 10−19 8.22 × 10−19 1.11 × 10−7 2.33 × 10−7

tr12-0441 2.76 × 10−11 9.26 × 10−9 6.95 × 10−4 6.89 × 10−1 2.46 × 10−3 3.63 × 10−13 1.53 × 10−4 2.13 × 10−3 5.68 × 10−8

tr13-0170 7.59 × 10−7 3.60 × 10−5 3.74 × 10−2 4.73 × 10−2 1.91 × 10−4 9.71 × 10−4 2.16 × 10−2 6.07 × 10−17 5.23 × 10−16

tr13-0508 2.69 × 10−1 7.61 × 10−2 1.87 × 10−5 1.99 × 10−2 1.10 × 10−9 9.17 × 10−2 6.22 × 10−5 7.26 × 10−5 7.26 × 10−2

tr13-0653 1.09 × 10−16 7.36 × 10−20 4.90 × 10−8 4.16 × 10−4 8.05 × 10−2 1.66 × 10−2 1.03 × 10−9 3.47 × 10−2 1.40 × 10−5

No. subjects
with p < 6.9
× 10−5

9 9 7 5 5 4 6 7 9

Table 4. The classification accuracy was obtained with the XGBoost algorithm for each subject in the training set. The
shaded green cells with bold text show the highest accuracy obtained for each subject. At the bottom, the best mean accuracy
for each ratio index is marked in the same way.

Subject Index1 Index2 θ/α β/α (θ + α)/β θ/β (θ + α)/
(α + β) γ/δ (γ + β)/

(δ + α)
This Work Eoh et al. [36] Jap et al. [37] da Silveira et al. [10]

tr03-0092 0.5420 0.5252 0.6387 0.5168 0.5504 0.6092 0.6050 0.4684 0.5527
tr03-0256 0.5924 0.6303 0.5840 0.5504 0.5672 0.6345 0.6345 0.4473 0.4346
tr03-0876 0.6387 0.5672 0.6008 0.6218 0.4748 0.6471 0.6303 0.5781 0.5992
tr03-1389 0.3487 0.3908 0.4874 0.5588 0.5042 0.5378 0.4664 0.5696 0.5148
tr04-0649 0.6975 0.8025 0.5462 0.5462 0.5630 0.4832 0.5210 0.6118 0.5527
tr04-0726 0.7983 0.7605 0.6681 0.6176 0.5966 0.6134 0.6765 0.7637 0.7511
tr05-1434 0.3739 0.3697 0.4160 0.6218 0.7059 0.5882 0.6933 0.5485 0.5063
tr05-1675 0.6849 0.6513 0.6933 0.5546 0.6218 0.5630 0.7227 0.5781 0.5781
tr07-0168 0.7773 0.8193 0.6008 0.5504 0.5630 0.6092 0.6303 0.4473 0.5105
tr07-0458 0.3109 0.2689 0.5378 0.4748 0.5084 0.5378 0.5504 0.4684 0.4979
tr07-0861 0.6933 0.7269 0.5378 0.5420 0.5504 0.5168 0.5714 0.6540 0.6160
tr08-0021 0.7857 0.6387 0.5630 0.4874 0.4664 0.3866 0.4748 0.6329 0.6245
tr08-0111 0.6891 0.8025 0.7143 0.7101 0.7227 0.5462 0.4748 0.6287 0.6118
tr09-0175 0.6050 0.5252 0.5966 0.4748 0.5420 0.6218 0.6008 0.5401 0.6498
tr10-0872 0.6134 0.6008 0.5084 0.5168 0.4874 0.5252 0.4832 0.5274 0.4810
tr13-0204 0.5042 0.4538 0.6597 0.4790 0.6387 0.6471 0.6303 0.5570 0.5570
Average 0.6035 0.5959 0.5846 0.5515 0.5664 0.5667 0.5853 0.5638 0.5649

Index1 has the highest average accuracy and the highest classification accuracy for
3 of 16 subjects. Index2 has the second-highest average accuracy and the highest clas-
sification accuracy for 4 of 16 subjects, which is the most of all indices. θ/α [36] and
(θ + α)/(α + β) [37] are the only other indices with an average classification accuracy above
0.58, while θ/α [36] and θ/β [37] are the only other indices with the highest accuracy for
3 of 16 subjects. The β/α [36] index has the lowest average classification accuracy on the
training set (0.5515).

Table 5 shows the classification accuracy on the test set. Index1 has the highest average
accuracy and the highest classification accuracy for 3 of 12 subjects. Index2 has the third-
highest average accuracy and the highest classification accuracy for 4 of 12 subjects, which
is the most of all indices. The only other index with comparable accuracy is θ/α [36], with
the second-highest average accuracy. All other indices have at least 2.5% lower accuracy
than the two novel indices.

Table 6 shows the degree of precision of drowsiness detection on the training set.
Index2 has the highest average precision of drowsiness detection and the highest precision
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of drowsiness detection for five subjects, which is the highest of all indices. Index1 has the
second-best average precision of drowsiness detection. (θ + α)/(α + β) [37] and γ/δ [10]
have a precision of drowsiness detection comparable to Index1 and Index2, while all other
ratio indices have lower precision.

Table 5. The classification accuracy was obtained with the XGBoost algorithm for each subject in the test set. The shaded
green cells with bold text show the highest accuracy obtained for each subject. At the bottom, the best mean accuracy for
each ratio index is marked in the same way.

Subject Index1 Index2 θ/α β/α (θ + α)/β θ/β (θ + α)/
(α + β) γ/δ (γ + β)/

(δ + α)
This Work Eoh et al. [36] Jap et al. [37] da Silveira et al. [10]

tr04-0653 0.5672 0.6345 0.6303 0.5042 0.5168 0.5840 0.5630 0.5612 0.5738
tr05-0028 0.4454 0.4202 0.5294 0.5588 0.4664 0.4076 0.5462 0.5021 0.5443
tr05-0332 0.8067 0.8277 0.7563 0.5630 0.5294 0.6555 0.6134 0.5654 0.6118
tr07-0127 0.5462 0.6092 0.4916 0.5294 0.5252 0.5000 0.4118 0.4304 0.4051
tr08-0157 0.6303 0.6681 0.5294 0.5294 0.5000 0.5084 0.5294 0.5232 0.4810
tr09-0328 0.6050 0.5084 0.5966 0.5168 0.5000 0.5042 0.5672 0.5738 0.5401
tr09-0453 0.5588 0.5252 0.5714 0.5420 0.5294 0.5504 0.5840 0.5105 0.4557
tr12-0255 0.5420 0.5546 0.6639 0.5462 0.4748 0.5630 0.5924 0.6329 0.5654
tr12-0441 0.6891 0.5756 0.5840 0.5168 0.5378 0.5630 0.5798 0.6498 0.5274
tr13-0170 0.6008 0.5630 0.5924 0.5546 0.6261 0.6471 0.5336 0.5612 0.4430
tr13-0508 0.4538 0.5084 0.6555 0.6008 0.5588 0.6261 0.6092 0.5654 0.5443
tr13-0653 0.6807 0.6303 0.5210 0.5462 0.5630 0.5336 0.6008 0.5359 0.5063
Average 0.5938 0.5854 0.5935 0.5424 0.5273 0.5536 0.5609 0.5510 0.5165

Table 6. The precision of drowsiness detection was obtained with the XGBoost algorithm for each subject in the training set.
The shaded green cells with bold text show the highest precision obtained for each subject. At the bottom, the best mean
precision for each ratio index is marked in the same way.

Subject Index1 Index2 θ/α β/α (θ + α)/β θ/β (θ + α)/
(α + β) γ/δ (γ + β)/

(δ + α)
This Work Eoh et al. [36] Jap et al. [37] da Silveira et al. [10]

tr03-0092 0.5439 0.5439 0.5439 0.5439 0.5439 0.5439 0.5439 0.5439 0.5439
tr03-0256 0.6222 0.6348 0.5676 0.5349 0.5571 0.6127 0.6096 0.4270 0.3974
tr03-0876 0.6514 0.5800 0.6765 0.5973 0.4808 0.7397 0.7123 0.5804 0.6264
tr03-1389 0.2273 0.3774 0.4906 0.5455 0.5034 0.5391 0.4556 0.5519 0.5120
tr04-0649 0.7582 0.8273 0.5733 0.7895 0.7778 0.4878 0.5294 0.9063 0.6000
tr04-0726 0.8318 1.0000 0.7128 0.6373 0.6055 0.6627 0.7333 0.8370 0.7706
tr05-1434 0.4051 0.4083 0.1429 0.6028 0.7168 0.7692 0.7805 0.6571 0.5027
tr05-1675 0.6642 0.6011 0.6885 0.5607 0.6559 0.5862 0.7265 0.5425 0.5433
tr07-0168 0.7500 0.7923 0.5759 0.5375 0.5397 0.5730 0.5963 0.4488 0.5156
tr07-0458 0.2816 0.0492 0.5437 0.4789 0.5088 0.5446 0.5732 0.4500 0.4930
tr07-0861 0.6264 0.6688 0.5338 0.5342 0.5349 0.5105 0.5521 0.6216 0.5780
tr08-0021 0.7464 0.6854 0.6119 0.4717 0.4535 0.4000 0.4688 0.6325 0.6355
tr08-0111 0.6692 0.8214 0.7297 0.8205 0.7912 0.5314 0.4840 0.6500 0.5985
tr09-0175 0.6404 0.5263 0.5742 0.4762 0.5379 0.6142 0.6053 0.5273 0.6207
tr10-0872 0.6174 0.5909 0.5045 0.5130 0.4892 0.5254 0.4882 0.5349 0.4627
tr13-0204 0.5054 0.4545 0.6357 0.4820 0.6170 0.6636 0.6348 0.6032 0.5970
Average 0.5963 0.5976 0.5691 0.5704 0.5821 0.5815 0.5934 0.5946 0.5623

Table 7 shows the degree of precision of drowsiness detection achieved on the test set.
Index1 has the highest average precision. θ/α [36] and γ/δ [10] have 1% lower precision
than Index1, while all other indices have at least 4% lower precision. Index2 has the
second-highest average precision.
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Table 7. The precision of drowsiness detection was obtained with the XGBoost algorithm for each subject in the test set.
The shaded green cells with bold text show the highest precision obtained for each subject. At the bottom, the best mean
precision for each ratio index is marked in the same way.

Subject Index1 Index2 θ/α β/α (θ + α)/β θ/β (θ + α)/
(α + β) γ/δ (γ + β)/

(δ + α)
This Work Eoh et al. [36] Jap et al. [37] da Silveira et al. [10]

tr04-0653 0.5769 0.6569 0.6742 0.5030 0.5133 0.6000 0.5862 0.5795 0.5914
tr05-0028 0.3818 0.4296 0.5178 0.5385 0.4762 0.4214 0.5364 0.5000 0.5862
tr05-0332 0.7483 0.9333 0.7905 0.5547 0.5321 0.7846 0.6709 0.8571 0.8824
tr07-0127 0.5401 0.6512 0.4722 0.5294 0.5231 0.5000 0.3600 0.4309 0.4207
tr08-0157 0.5812 0.6087 0.5158 0.5574 0.5000 0.5048 0.5153 0.5122 0.4886
tr09-0328 0.6147 0.5078 0.5650 0.5137 0.5000 0.5041 0.5678 0.5620 0.5372
tr09-0453 0.5398 0.5176 0.5436 0.5301 0.5248 0.5306 0.5538 0.5049 0.4721
tr12-0255 0.5316 0.5351 0.6054 0.5342 0.4826 0.5393 0.5545 0.5886 0.5389
tr12-0441 0.8000 0.5789 0.5633 0.5093 0.5249 0.5478 0.5785 0.6496 0.5231
tr13-0170 0.6333 0.5466 0.5724 0.5355 0.6056 0.6296 0.5313 0.6944 0.3478
tr13-0508 0.4337 0.5091 0.6331 0.5674 0.5443 0.6154 0.6140 0.5478 0.5352
tr13-0653 0.7048 0.6000 0.5177 0.5314 0.5419 0.5213 0.5845 0.5392 0.5037
Average 0.5905 0.5896 0.5809 0.5337 0.5224 0.5582 0.5544 0.5805 0.5356

3.3. Computational Analysis

With regard to the classification and the use of machine learning algorithms, an
advantage of using the novel multichannel indices compared to the existing single-channel
indices is also the saving of memory and time, due to the reduction of dimensionality. The
accuracies of Index1 and Index2 from Table 4 were achieved with the model constructed
from the single feature only, while all other indices had six features since the dataset
contains six EEG channels. For this reason, storing the novel indices consumes six times
less memory. The time consumption was measured as an average of 100 executions. The
measured time included classifier initialization, classifier training, classifications on the
test subject and calculation of classification accuracy. Table 8 shows the results of time
consumption measurements. The use of the novel multichannel indices saves about 30% of
time compared to all other traditionally used single-channel ratio indices.

Table 8. The average time of 100 executions of the XGBoost classifier’s initialization, training, classifications on the test
subject and calculation of classification accuracy, expressed in milliseconds. The shaded green cells with bold text represent
the best values for each subject and the best average value.

Subject Index1 Index2 θ/α β/α (θ + α)/β θ/β (θ + α)/
(α + β) γ/δ (γ + β)/

(δ + α)
This Work Eoh et al. [36] Jap et al. [37] da Silveira et al. [10]

tr03-0092 86.3772 86.9689 122.7764 124.0313 129.9221 129.5543 130.6956 128.6490 128.9000
tr03-0256 86.7446 87.1034 123.3161 123.2911 130.3844 130.2867 130.6147 128.6415 128.7518
tr03-0876 86.3508 87.0188 122.6970 123.5249 130.2485 130.7789 130.6456 128.7160 128.3419
tr03-1389 85.9344 86.8811 122.1586 123.8243 130.4414 130.1170 131.3382 129.2281 128.8390
tr04-0649 86.9833 87.5527 123.6650 124.0832 130.2565 130.0574 130.2316 129.2234 128.8357
tr04-0726 86.5498 87.5921 123.7690 123.6945 129.6285 129.6750 130.6256 128.9002 128.6363
tr05-1434 86.5450 86.6549 123.0505 130.6853 131.9267 130.6205 131.3138 130.6215 131.3438
tr05-1675 87.0534 87.4627 123.3135 130.0399 130.4660 129.1552 129.5943 130.5365 128.9256
tr07-0168 86.9143 87.2251 122.9559 129.6185 130.5158 130.1070 129.7780 129.6381 128.7795
tr07-0458 86.5651 86.8690 122.6074 129.9533 130.1468 130.2667 130.4915 128.8906 129.5788
tr07-0861 86.8634 87.2801 122.7545 130.2319 130.0104 128.1135 129.9124 129.3949 128.7760
tr08-0021 86.9239 88.9566 123.0910 130.0868 129.1948 130.0221 130.1670 129.3241 129.1652
tr08-0111 86.6697 87.4626 122.7216 130.3879 130.5019 130.4011 129.8419 128.8413 129.1940
tr09-0175 87.3240 87.3827 123.4803 129.6729 130.9953 130.1271 131.1785 128.7062 128.9786
tr10-0872 86.9690 87.5381 124.0918 130.5091 129.4638 130.6490 130.2964 129.4843 129.3599
tr13-0204 87.2509 87.1135 123.2010 131.7928 130.4062 131.4087 130.3568 128.9199 128.1530
Average 86.7512 87.3164 123.1031 127.8392 130.2818 130.0838 130.4426 129.2322 129.0350
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4. Discussion

The main idea of our research was to combine frequency-domain features from differ-
ent brain regions into a multichannel ratio index to improve frequency-domain features
for the detection of drowsiness and to gain new insights into drowsiness. The results
in Tables 2–8 suggest that two novel multichannel ratio indices improve the detection
of drowsiness based on the frequency-domain features and reduce the time required
for detection.

We must note that the main idea of this research was not to create the best possible
model for drowsiness detection but only to bring improvement into frequency-domain
features that are often used for drowsiness detection. Our focus was on developing
the method for obtaining these novel indices, which is explained in Section 2.3 “Multi-
Objective Optimization”. In order to confirm that our conclusions also hold for other
classifiers besides XGBoost, Table 9 shows the average accuracy on the test set obtained
with Naïve Bayes, k nearest neighbors, logistic regression, decision tree, random forest
and support vector machine classifiers (using the scikit-learn library at default settings).
The average accuracies of two novel indices vary from 56% to 65% among the algorithms.
All the algorithms show that our novel multichannel indices are better than existing
single-channel indices.

Table 9. The average accuracy was obtained on the test set with different classification algorithms. Each row is colored
with a pallet of colors ranging from dark green for the highest number in the row to dark red for the lowest number in the
row. The algorithms are: NB—Naïve Bayes, KNN—k nearest neighbors, Logistic—logistic regression, DT—decision tree,
RF—random forest and SVM—support vector machine.

Algorithm Index1 Index2 θ/α β/α (θ + α)/β θ/β (θ + α)/
(α + β) γ/δ (γ + β)/

(δ + α)

This Work Eoh et al. [36] Jap et al. [37] da Silveira et al. [10]

NB 0.6399 0.6535 0.5947 0.5462 0.5432 0.5308 0.5663 0.5316 0.5277

KNN 0.5785 0.5840 0.5588 0.5387 0.5399 0.5452 0.5525 0.5378 0.5277

Logistic 0.6396 0.6543 0.6029 0.5131 0.5383 0.5626 0.5735 0.5793 0.5613

DT 0.5717 0.5629 0.5456 0.5050 0.5074 0.5420 0.5267 0.5356 0.5223

RF 0.5719 0.5659 0.5762 0.5380 0.5360 0.5549 0.5501 0.5321 0.5222

SVM 0.6325 0.6526 0.6200 0.5695 0.5714 0.5731 0.5801 0.5541 0.5478

Our results were compared with the seven existing single-channel ratio indices that
are currently state-of-the-art frequency-domain features. The newest one was introduced
in 2016 [10], but all of these single-channel ratio indices are often used in the more recent
drowsiness detection papers [57–59].

The authors in the aforementioned research report 92% accuracy as the best-obtained
accuracy [57]. This accuracy was obtained based on the epoch-level validation. Epoch-level
validation is a cross-validation procedure on the epoch level, which means that there is a
very high probability that all subjects will have epochs in the training set and in the test
set at the same time. On the other hand, subject-level validation is validation where it
is ensured that subjects in the test set are not contained in the training set. An example
of a subject-level validation is the leave-one-subject-out cross-validation that we used in
this research. The only proper way for model validation is subject-level validation, as it
represents the real-life setting in which the data from a new subject are used only for testing
the model. Empirical tests conducted in related research showed a large difference in the
accuracies between epoch-level validation and subject-level validation [60].

In a study from Mehreen et al. [57], the authors also provide subject-level validation,
and the accuracy achieved was 71.5% based on 15 frequency-domain features. The highest
accuracy achieved in our research is shown in Table 9, and it was 65.45%, achieved by
logistic regression. This 65.45% accuracy is relatively close to 71.5%, and it must be noted
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that it was obtained based only on the Index2 feature, with a simple algorithm and without
any parameter optimization. Due to this, we are confident that the addition of our two
multichannel ratio indices would lead to an improvement in all state-of-the-art drowsiness
detection systems that use frequency-domain features. Again, our aim was not to create the
best possible drowsiness detection model but to prove that the novel multichannel indices
are better than the existing single-channel frequency-domain features.

The Equations (4) and (6) for these multichannel ratio indices, obtained after opti-
mizing the parameters with the optimization algorithm, suggest that alpha and delta are
two of the most important frequency power bands for drowsiness detection. Equation (6)
suggests that delta power in the frontal region describes drowsiness better than in the
central region, while alpha power in the occipital and central regions describes drowsiness
better than in the frontal region.

These results are consistent with several previous research papers on drowsiness de-
tection that reported the importance of increasing alpha power [22,35,61,62]. Delta power is
usually only present in deep sleep stages [36], so some researchers studying drowsiness do
not include delta in their research [63]. However, there is still much research that includes
delta power. The increase in delta power is considered to be an indicator of drowsiness [4].
Our research found that theta and beta powers are not as good drowsiness indicators
as alpha and delta powers, while many other research studies disagree. A decrease in
beta power was found to be an indicator of drowsiness in [4,36,64,65] and an increase in
theta power was found to be an indicator of drowsiness in [27,34,61,62,65]. Wang et al. [38],
in their study of microsleep events, found that alpha and delta rhythms characterize
microsleep events. As mentioned earlier, there is an inconsistency in terminology, and
some researchers consider sleep stage S1 as drowsiness [5–9], while Johns [11] considers
it equivalent to microsleep events in the driving scenario. We used the data from sleep
stage S1 and referred to it in this research as drowsiness. Since our results suggest that
delta and alpha are the most significant for the detection of drowsiness, as in the work of
Wang et al. [38] on microsleep events, our work suggests that sleep stage S1 may be more
similar to microsleep events than to drowsiness, but further research is needed to support
this as a fact.

Apart from the indication that drowsiness is closely related to microsleep events, it
may also be closely linked to driver fatigue. Some researchers even use the term fatigue as
a synonym for drowsiness [66]. Fatigue is a consequence of prolonged physical or mental
activity [67] and can lead to drowsiness [68]. Normally, rest and inactivity relieve fatigue,
however, they exacerbate drowsiness [69]. Lal and Craig [70] found that delta and theta
band activities increase significantly during fatigue. Craig et al. [71] reported significant
changes in the alpha 1, alpha 2, theta and beta bands, while they did not find any significant
changes in the delta band when observing driver fatigue. Simon et al. [68] report that alpha
band power and alpha spindles correlate with fatigue.

These three research papers [68,70,71] all use visual inspection to define the ground
truth of fatigue. This approach to defining the ground truth is prone to subjectivity. A
similar problem occurs when drowsiness is defined by using subjective drowsiness ratings,
such as the Karolinska sleepiness scale [72].

Driver drowsiness, driver fatigue and microsleep events are defined as different inter-
nal states of the brain, but show similar behavior when observing the features obtained
from the EEG. Possible explanations could be that fatigue, drowsiness and microsleep have
a similar effect on brain functions and cause the driver’s inability to function at the desired
level. Most researchers of these three driver states only use frequency-domain features,
while there are a number of other features (nonlinear features [30], spatiotemporal fea-
tures [31] and entropies [32]) that could be used. Further studies with these features could
find some features of the EEG signal that distinguish drowsiness, fatigue and microsleep.
Distinguishing features of these three brain states could lead to the exact definitions of
these terms. Precise and standardized definitions of fatigue, drowsiness and microsleep
would help researchers to compare their work more easily.
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Figure 4 shows that the proposed procedure for creating the novel ratio indices has
succeeded in creating step-like indices for a given subject. In addition to Index1 and Index2,
which show desirable behavior, the indices (θ + α)/β and θ/β show similar, favorable
behavior for a few channels. Figure 5 shows a comparison of novel ratio indices with the
best and the worst channel for γ/δ and (γ + β)/(δ + α) single-channel indices for subject
tr04-0726. Index1, index2, θ/α [36], (θ + α)/β, (θ + α)/(α + β) [37] and γ/δ [10] show
similar behavior. These indices seem to detect drowsiness well, but with about a 50 epochs
delay. Since several different single-channel indices that were previously shown to correlate
with drowsiness together with two novel multichannel indices show the same delay in
detecting drowsiness, this suggests that there may be shortcomings in the labeling of the
initial signals. The manual for scoring sleep [42] provides guidelines for labeling, and it
may be possible that the professionals who labeled the sleep signals labeled an approximate
time of transition from the W state to the S1 state, as it is known that labeling any kind of
several-hour-long EEG signal is a very tedious, hard and time-consuming job [73]. For this
reason, the loose transition window is applied in the optimization algorithm, as described
in Section 2.3.

The main shortcoming in applying our approach is the need to place six EEG electrodes
on the driver’s scalp while driving. Apart from being intrusive, there is also a problem
with noise in real-world applications that cannot be neutralized with the current state-of-
the-art filter technology. All electrophysiological signals measured with wearable devices
have a similar problem with intrusiveness and noise. ECG measurements, for example,
are somewhat less susceptible to noise than EEG. Several recent works have shown that
ECG can be used as a good predictor of sleep stages based on deep learning classifiers.
Sun et al. [74] combined ECG with abdominal respiration and obtained a kappa value of
0.585, while Sridhar et al. [75] obtained a kappa value of 0.66. Combining EEG and ECG
measurements has also been proposed in the context of driver drowsiness detection under
simulator-based laboratory conditions [76]. Despite the problems of intrusiveness and noise
susceptibility, research based on the electrophysiological signals brings a shift towards a
precise definition of drowsiness. Once there is an exact definition of drowsiness or at least
guidelines and manuals that accurately describe drowsiness (similar to the manuals for
evaluating sleep stages), a big step will be taken to solve the problem of early detection
of drowsiness [77]. It is doubtful that a wearable system based on electrophysiological
signals will ever be widely used in real-world driving, but they still need to be developed.
In our opinion, such wearable electrophysiological devices are more likely to be used for
calibration/validation of non-intrusive systems (such as the driving performance-based or
video-based systems) in controlled/simulated driving scenarios. In such scenarios, it is
possible to control ambient noise, leading to a reduction in the effects of noise sensitivity.

An additional limitation of this work is that we were able to download data from 393
of 992 subjects completely, and only 28 of these 393 subjects were included in our study
due to the inclusion condition that we described in Section 2.1 ”Dataset, Preprocessing and
Feature Extraction”. Although it is a small subset of data, with the use of 12 subjects as
a test set, we showed that the dataset is large enough to provide a good generalization
(as seen in Tables 3, 5 and 7). In a recent review paper about state-of-the-art drowsiness
detection [33], the authors reviewed 39 papers, and the average number of subjects in the
included works is 23.5, which also indicates that our number of subjects included in the
current study (28) is acceptable.
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Figure 5. The comparison of the two novel multichannel indices with the best and the worst channel for γ/δ and
(γ + β)/(δ + α) single-channel indices for subject tr04-0726. The white part of the diagram represents the awake state, while
the yellow part of the diagram represents the stage 1 of sleep, i.e., the drowsiness state.
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5. Conclusions

This paper presented two novel multichannel ratio indices for the detection of drowsi-
ness obtained by multi-objective optimization based on evolutionary computation. The
results suggested that alpha and delta powers are good drowsiness indicators. The novel
multichannel ratio indices were compared with seven existing single-channel ratio indices
and showed better results in detecting drowsiness measured with precision and in the
overall classification accuracy of both states using several machine learning algorithms.
Our work suggests that a more precise definition of drowsiness is needed, and that accurate
early detection of drowsiness should be based on multichannel frequency-domain ratio
indices. The multichannel features also reduced the time needed for classification. The
process of obtaining these indices by using a multi-objective optimization algorithm can
also be applied to other areas of EEG signal analysis.

Research such as this, together with research on small hardware for physiology-
based drowsiness detection, can eventually lead to an easy-to-use, non-intrusive device
that reliably detects drowsiness. In addition, research on a reliable and standardized
definition of drowsiness is needed and it would lead to improvements in the field of
drowsiness detection.
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