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Abstract

Objective

Behaviorally unresponsive patients in intensive care units (ICU) are unable to consistently

and effectively communicate their most fundamental physical needs. Brain-Computer Inter-

face (BCI) technology has been established in the clinical context, but faces challenges in

the critical care environment. Contrary to cue-based BCIs, which allow activation only during

pre-determined periods of time, self-paced BCI systems empower patients to interact with

others at any time. The study aims to develop a self-paced BCI for patients in the intensive

care unit.

Methods

BCI experiments were conducted in 18 ICU patients and 5 healthy volunteers. The proposed

self-paced BCI system analyzes EEG activity from patients while these are asked to control

a beeping tone by performing a motor task (i.e., opening and closing a hand). Signal decod-

ing is performed in real time and auditory feedback given via headphones. Performance of

the BCI system was judged based on correlation between the optimal and the observed

performance.

Results

All 5 healthy volunteers were able to successfully perform the BCI task, compared to

chance alone (p<0.001). 5 of 14 (36%) conscious ICU patients were able to perform the

BCI task. One of these 5 patients was quadriplegic and controlled the BCI system without

any hand movements. None of the 4 unconscious patients were able to perform the BCI

task.

Conclusions

More than one third of conscious ICU patients and all healthy volunteers were able to gain

control over the self-paced BCI system. The initial 4 unconscious patients were not. Future
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studies will focus on studying the ability of behaviorally unresponsive patients with cognitive

motor dissociation to control the self-paced BCI system.

Introduction

Disorders of consciousness are common with or without acute brain injury. Recent studies of

acute brain injuries have identified behaviorally unresponsive patients that show evidence of

volitional brain activation detected by functional magnetic resonance imaging (fMRI) or

electroencephalography (EEG) [1, 2]. Patients that demonstrate this activation are in a state

called cognitive motor dissociation (CMD), which has been associated in one study with later

behavioral recovery of consciousness and functional outcomes [1]. These patients currently

have no ability to communicate with loved ones or health care providers despite possessing

some level of preserved consciousness. A common challenge for patients is their inability to

consistently and effectively communicate their most fundamental physical needs [3], such as

unrecognized pain, discomfort, feelings of loss of control and insecurity, depersonalization,

anxiety, sleep disturbances, fear, and frustration [4]. Non-vocal techniques such as lip reading

and gestures are the primary means of communication for these patients. These methods are,

however, often inadequate for effective communication [5].

Brain-computer interface (BCI) technology translates cerebral electrical activity, typically

recorded by EEG, into computer commands bypassing other body functions [6, 7]. Despite

having used BCI systems efficiently for rehabilitation purposes [8, 9], their introduction in the

critical care context is limited [10–12]. Implementation of BCI systems in critical care settings

has faced a number of technical and logistical challenges. These challenges include low reliabil-

ity due to auditory or physical distractions, possible extinction of goal-directed thinking, and

fatigue [13]. Other challenges include physical disabilities. Patients, for example, might be

unable to successfully use visual-based BCI systems due to eyelid apraxia or other visual

impairments. Utilizing systems based on tactile input may also pose challenges, due to pain

medication, extended bedrest, and skin breakdown. Auditory-based BCI tasks may be most

promising, but are not without their own set of challenges. Auditory BCI studies with critically

ill patients have often reported high variability and/or poor performance in a single session

[12]. Multiple sessions pose challenges in a hectic ICU setting. Given this, currently studied

BCI systems in the intensive care unit (ICU) focus on quick and reliable signaling (e.g., ‘yes’/

‘no’ binary signals [11], steady-state visual evoked potential- (SSVEP-) based communication

[10], or transient evoked potentials (P300 or N200) [12]) rather than spelling of words or

sentences.

All these systems are cue-based (synchronous) BCI systems that are limiting to patients, as

they are active only during pre-determined periods of when the patient is presented a cue.

Users will only be able to generate a response during these pre-specific periods. Self-paced

(asynchronous) systems are always active and analyze brain activity from continuously

recorded data. These systems allow patients to freely activate the BCI at their own intention.

This approach is particularly promising, as acutely brain injured patients often have a fluctuat-

ing mental status and might be unable to perform using a cue-based approach at the one pre-

specified moment in time. Self-paced BCI systems, however, possess their own set of chal-

lenges. Due to the large amount of data continuously processed over time, self-paced BCI sys-

tems must rely on high true positive rates and a low number of false positive detections [14].

The overall goal of this study was to develop and test a prototype of a self-paced BCI system

that can be employed in the critical care context that would provide the foundation to study
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behaviorally unresponsive patients in the future. Unresponsiveness was defined purely on

behavior for the purposes of this study in other words, all patients that did not show any evi-

dence of command following with a motor response (e.g., showing two fingers when asked to

do so) were classified as unresponsive [15]. Patients were carefully assessed for the presence of

locked in syndrome but this classification has obvious limitations in patients in complete

locked in syndrome or those in cognitive motor dissociation [1]. However, this classification

reflects the practice of current clinical practice outside of the research context.

Methods

Patient and healthy volunteer population

The study was approved by the Columbia University institutional review board. Approval

number AAAS3851. Written consent was obtained from the patient or the designated surro-

gate for patients that were unable to provide consent themselves, and from healthy volunteers.

We included adult patients who were admitted to the neurological intensive care unit between

September 2019 and February 2020. Patients qualified for inclusion in the study if they had

EEG placed to rule out electrographic seizures and a board certified epileptologist had deter-

mined that seizures were not seen. Additionally, patients qualified that were admitted to the

neurocritical intensive care unit that did not have EEG placed but consented to have EEG

recorded for research purposes alone. These patients only qualified for inclusion in the study if

no seizures were recorded after review of the EEG placed for research purposes. Classification

into conscious versus unconscious patients was based on the Command Following Score

(CFS) [1, 15], which determines the ability of the patient to follow a verbal command with a

motor response (e.g., showing two fingers or sticking out the tongue). We assessed for mim-

icking to minimize the risk of aphasia confounding the assessment of consciousness as

explained in detail previously [15]. All patients with ongoing seizure activity were excluded.

Healthy volunteers had EEG placed for research purposes alone.

Experimental design

The BCI system utilized EEG signal acquisition from the subject with signal decoding occur-

ring in a bedside computer, and sensory feedback provided to the patient (Fig 1). For all partic-

ipants, 21 EEG electrodes (C3, C4, O1, O2, A1, A2, Cz, F3, F4, F7, F8, Fz, Fp1, Fp2, P3, P4, Pz,

T7, T8, P7, P8) were applied with collodion to the patient’s head by certified EEG technicians

Fig 1. General scheme of the BCI system used in the experiment.

https://doi.org/10.1371/journal.pone.0245540.g001
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according to the International 10–20 system. EEG was obtained using unipolar channels via a

standard clinical digital bedside video EEG monitoring system (XLTEK, Excel-Tech Corp.,

Natus Medical Incorporated, Oakville, Ontario, Canada; low-pass filter = 70 Hz, high-pass = 1

Hz, sampling rate = 200 Hz). Signal quality was visually checked during the experiment. EEG

was transferred to the bedside decoding computer (BCI computer) via a TCP/IP protocol,

developed in Microsoft1 Visual C++ 2017 (The Microsoft Corporate, Redmond, US). The

EEG data decoder was implemented in Matlab1 2019a (The MathWorks, Inc., Natick, US)

and Microsoft1 Visual C++ 2017 providing real-time processing on a standard computer

(Intel1 Xeon1 CPUE3-1245v5, 3.5 GHz, RAM 64 Gb) installed on a movable cart.

Auditory feedback was delivered using disposable earphones (E-A-RTONE™ 3A or 5A

Insert Earphones) connected to the BCI computer. To provide visual feedback, a separate

monitor was placed in front of the patient and connected to the BCI computer. A second mon-

itor was connected to the BCI computer. This monitor was not visible to the patient and was

used by the operator to control the experiment. The BCI computer allows the operator to tune

a set of decoding algorithm hyper-parameters in real-time to optimize BCI performance [16].

The commands to the patients were given in English or Spanish, depending on the patient’s

native language.

Experimental protocol

Depending on the level of patient fatigue, the first or the first and the second session of the

experiment were used for BCI model calibration (BCI training stage) and lasted 5 minutes per

session. The last session was used for validation of the BCI model (BCI testing stage) and lasted

10 minutes. 5-minute breaks were provided between sessions. Patients were asked to control

both the tempo of a beeping sound (Fig 2) and move a bar on a screen in order to provide

both, an auditory and a visual task (Fig 3). As many ICU patients have visual apraxia and

behaviorally unresponsive patients often have their eyes closed, we removed the visual feed-

back after completing the first 3 patients and the first 2 healthy volunteers. Following the audi-

tory prompts, patients were asked to repeatedly open and close their right hand until hearing

the “stop” command. The BCI system analyzed the corresponding EEG signal to detect hand

motion every 100 ms. Each EEG detection or failure of detection of hand movement was

reflected in the auditory or visual feedback provided to the patient. To prevent patient frustra-

tion caused by false detections, algorithm predictions were partially corrected with ground

truth information during the calibration session. Ground truth in this context refers to the

command to move or not to move that the patient was asked to perform at the moment. The

weight of ground truth linearly decreased over time to 0 within 3 minutes to allow the patient

to gain full control over the BCI system. During the validation session, no ground truth infor-

mation was provided to the algorithm.

Feature extraction and data formation

The input data feature tensor X was formed from EEG epochs containing 1 second of the sig-

nal taken continuously with a time step of 100 ms [16, 17]. Each EEG epoch was mapped by

the continuous wavelet transform (CWT) to the frequency-spatial-temporal feature space. The

complex Morlet wavelet was chosen as a mother wavelet [17–19] and the analyzed frequency

band ranged from 1 to 35 Hz with 1 Hz steps. Absolute values of the wavelet coefficients were

decimated along the temporal domain by averaging 10 sliding windows each one of 100 ms

long. The output variable y was equal to 1 or 0: 1 corresponded to the command “. . . keep

opening and closing . . .”, and 0 corresponded to the command “. . . stop opening and closing

. . .” (Fig 4).
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Signal decoding

The REW-NPLS algorithm [16] was chosen for signal decoding as it demonstrated high effi-

ciency in prior BCI applications [16, 17]. The decoding model created by the REW-NPLS algo-

rithm was used to predict the response variable, i.e., the intention of opening and closing of

the hand, every 100 ms. During the calibration session the model was adjusted every 10 sec-

onds, while the model was fixed during the validation session (Fig 5).

Quality evaluation

The quality of the subject’s control over the BCI system was estimated by correlation r between

the predicted states and the real states. In addition, the True Positive Rate (TPR) and the True

Negative Rate (TNR) were obtained. The TPR represents the proportion of the ‘. . . keep open-

ing and closing . . .’ states that were correctly predicted. TNR represents correct prediction of

the ‘. . . stop opening and closing . . .’ states. The BCI system is set to predict the state every 100

ms. To test significance, we created 1000 randomized models generated from the recorded

data after randomly shuffling of the epoch labels. Significance of the correlation achieved by

the predictive model was quantified by a one-tailed permutation test at the significance level of

α = 0.001 [20]. This test compared the correlation coefficients provided by the analyzed model

with coefficients generated by models based on random permutation of epoch labels.

Fig 2. BCI protocol. To begin the session, each patient was first presented with the command ‘We are going to start.’ After the command ‘To make it beep faster keep

opening and closing your right hand’, the patient was expected to try moving his/her right hand. After the command ‘To make it beep slower stop opening and closing

your right hand’, the patient was expected to stop his/her right-hand motion. To ensure patients did not forget the task, each command was repeated every 10 seconds.

Duration of each motion/no motion period was randomly chosen from the interval [15, 50] seconds.

https://doi.org/10.1371/journal.pone.0245540.g002
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Results

We performed a total of 23 recordings using the self-paced BCI system, including 5 healthy

volunteers, 14 conscious and 4 unconscious patients. Amongst patient recordings, 4 were

placed for study purposes alone and 14 were already in place at the time of enrollment. None

of the EEGs in patients or healthy volunteers showed seizures at the time of enrolment.

Healthy volunteers

All healthy volunteers were able to control the BCI system with correlation coefficients signifi-

cantly greater than the correlations provided by the random models (p<0.001) (Table 1). The

ability to control the BCI system was seen in both the auditory and visual-auditory feedback

paradigms.

Patients

The most common admission diagnoses were status epilepticus, ischemic stroke, subarachnoid

hemorrhage, intracerebral hemorrhage, and subdural hematoma (Table 2). Of the behaviorally

conscious patients, 7 had mild to moderate impairment of consciousness (1 anxiety, 6 leth-

argy) and 4 were comatose. Five of 14 conscious patients (36%) were able to control the pro-

vided BCI system using a motor command to move their hands, including one patient with

Fig 3. Auditory and visual feedback. (A) Auditory feedback. Each time the motion intention pattern was detected in the EEG signal, the pace of the sound (beets per

second, bps) and sound frequency were increased (Δbps = 0.15, ΔkHz = 0.15) until 2 bps and 2 kHz were reached. If the pattern was not detected, both were decreased

(Δbps = -0.15, ΔkHz = -0.15) until reaching 0.5 bps and 0.5 kHz. When reaching a pace of 2 bps and a 2 kHz frequency during the motion task the auditory feedback

“you have succeeded” was provided to the patient. (B) Visual feedback. Each time the motion intention was detected, the size of the bar was increased by 0.1 until

reaching of 1. Otherwise, it was decreased by 0.1, until reaching 0. Motion intention periods were indicated with a green arrow pointing up and a red hourglass was

pictured when no motion intention patterns were detected. A smiley face was displayed when the bar reached 1 (full size).

https://doi.org/10.1371/journal.pone.0245540.g003
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quadriplegia. 2 of 3 conscious patients (67%) that were provided with auditory and visual feed-

back were able to control the BCI system. Three of 11 conscious patients (27%) that were tested

using only auditory feedback were able to control the BCI system. For all five successful control

cases, the correlation coefficients between the real and the ideal control were significantly

greater than the correlation for the random control (p<0.001) (Table 2 and Fig 6). Among 9

conscious patients that were unable to control the BCI system, 6 were lethargic and 1 was anx-

ious. None of the 4 unconscious patients were able to control the BCI system.

Discussion

Current BCI systems developed for the ICU environment are cue-based. These systems are

only active during pre-defined times that a cue is presented. In this study, we propose a proto-

type of a self-paced BCI system, which allows BCI activation when the patient wants to activate

the system. Alerting health care providers to pain or discomfort will have much greater impact

if patients are not restricted to prespecified time points. Here we report the initial development

of our self-paced BCI system for ICU patients. The proposed self-paced prototype developed

by our team utilizes a standard, clinical EEG system and a standard, commercially available

computer to provide sensory feedback to the subject. This approach building on widely avail-

able technology will support more easy integration into clinical practice.

The experimental design consisted of a highly restricted number of experimental trials with

only one or two sessions allowed for model calibration and a single model testing session. Con-

ducting several trials on multiple days would have been preferable to optimize the model. We

chose this approach due to unique challenges faced in patients with acute brain injury in the

critical care setting. Fatigue that quickly develops in any patient undergoing repeated 5–10

minute lasting training and validation trials is magnified early after brain injury, in patients

Fig 4. Data formation scheme. For each time t, to form the explanatory variable x(t), EEG signal from the electrodes

was mapped by continuous wavelet transform with 35 frequencies (1, 2, . . ., 35 Hz). Then, the absolute values of the

wavelet coefficients were decimated along the temporal modality to receive 10 points. The response variable y(t) was

equal to 1 during the command “Keep opening and closing . . .” and was equal to 0 during the command “Stop

opening and closing . . .”. The next epoch was taken with a time step of 100 ms.

https://doi.org/10.1371/journal.pone.0245540.g004
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Fig 5. Signal decoding during calibration and validation sessions of the BCI experiment. The model was updated

every 10 seconds during the calibration session and fixed during the validation session.

https://doi.org/10.1371/journal.pone.0245540.g005

Table 1. Characteristics of the healthy volunteers.

Healthy volunteer Age/gender BCI feedback BCI activation

r TPR TNR

1 34/M Auditory/Visual 0.58 0.92 0.66

2 37/M Auditory/Visual 0.61 0.77 0.83

3 34/M Auditory 0.49 0.83 0.64

4 25/M Auditory 0.11 0.74 0.48

5 29/M Auditory 0.41 0.77 0.86

� bold font represents significant superiority over the results of the random model control (p<0.001).

BCI, Brain-Computer Interface

r, correlation coefficient between the real and the ideal control

TPR, True Positive Rate

TNR, True Negative Rate

M, male.

https://doi.org/10.1371/journal.pone.0245540.t001
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with pain, and the critical care context in general. We explored different numbers of training

trials and found that we were able to get more reliable results using a minimum number of no

more than two training sessions. We demonstrated that despite these challenging ICU condi-

tions, several patients were able to gain control of the BCI system. The online calibration of the

model, which allows immediate feedback to the patient constituted the principal factor for this

success as this feedback enables the patient to rapidly develop a control strategy. Next we are

planning to integrate this BCI supported feedback for detection of CMD, building on a

recently published approach [21].

To quantify user control over the BCI system, we considered the TPR, which represents the

proportion of ‘. . . keep opening and closing . . .’ states that are correctly identified, and the

TNR, representing the proportion of ‘. . . stop opening and closing . . .’ states that are correctly

Table 2. Characteristics of the ICU patients.

Patient Age/gender Etiology BCI feedback BCI activation CFS Comments

r TPR TNR

Conscious

1 65/M SAH Auditory/Visual 0.64 0.9 0.8 5

2 28/F C4-C8 fracture, spinal cord injury with quadriplegia Auditory/Visual 0.51 0.7 0.87 5

3 56/F Neurotoxicity Auditory 0.28 0.48 0.6 5

4 60/M Left temporal lobe ICH Auditory 0.29 0.43 0.57 4

5 75/M Left thalamic/basal ganglia abscess Auditory 0.16 0.64 0.5 5

6 65/F Nonconvulsive status epilepticus Auditory 0.03 0.48 0.49 5 Anxious

7 88/M Cardiac arrest, acute/early subacute pontine stroke Auditory/Visual -0.21 0.34 0.43 4 Lethargic

8 62/F Central nervous system infection Auditory -0.06 0.44 0.47 4 Lethargic

9 61/M Status epilepticus Auditory -0.1 0.35 0.34 4 Lethargic

10 75/M SDH Auditory -0.14 0.5 0.29 5

11 75/M Left temporal ischemic stroke Auditory -0.23 0.42 0.38 4

12 85/M SDH Auditory -0.08 0.41 0.53 5 Lethargic

13 78/M Right thalamic ICH Auditory -0.15 0.74 0.08 5 Lethargic

14 85/F SAH Auditory -0.1 0.69 0.29 5 Lethargic

Unconscious

15 84/M SAH Auditory -0.06 0.61 0.31 1

16 48/F Nonconvulsive status epilepticus with SDH Auditory -0.1 0.45 0.47 2

17 58/F SAH, ICH Auditory -0.1 0.27 0.46 3

18 61/M Acute ischemic brainstem stroke Auditory -0.18 0.28 0.47 3

Random model

N = 1000, r = 0.00 ± 0.01, TPR = 0.50 ± 0.01, TNR = 0.50 ± 0.02

� bold font represents significant superiority over the results of the random model control (p<0.001).

BCI, Brain-Computer Interface

r, correlation coefficient between the real and the ideal control

TPR, True Positive Rate

TNR, True Negative Rate

ICH, intracerebral hemorrhage

SAH, subarachnoid hemorrhage

SDH, subdural hemorrhage

M, male

F, female

CFS, Command Following Score: 1—coma, 2—eye opening, 3—tracking attending, 4—simple commands, 5—complex commands.

https://doi.org/10.1371/journal.pone.0245540.t002
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Fig 6. Testing results. (A) Patient 1, (B) Patient 2, (C) Patient 3, (D) Patient 4, (E) Patient 5. Both auditory and visual feedback were provided

for the cases of (A) and (B); only auditory feedback was provided for the cases of (C), (D), and (E). For all the cases, value 1 of y-axis

corresponds to the task “. . . keep opening and closing . . .”, and 0 corresponds to the task “. . . stop opening and closing . . .”.

https://doi.org/10.1371/journal.pone.0245540.g006
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identified. As these two parameters may dissociate, we also calculated the correlation coeffi-

cient between real and ideal control trajectories.

This system was tested both on healthy volunteers and patients, which were on a spectrum

of impaired of consciousness. All heathy volunteers and 36% of conscious patients were able to

reliably activate the BCI system using a motor intention even if they were unable to move their

hand.

The study cohort presented here did not adequately reflect the full spectrum of patients

with disorders of consciousness in the critical care setting and was underpowered to determine

the potential benefits in unresponsive appearing patients with cognitive motor dissociation, a

group for which BCI systems may have tremendous benefits. It demonstrated that, in the criti-

cal care context, it is possible to apply a BCI system built on widely available EEG technology

in the clinical context. The study presented here illustrates the successful optimization and

adjustment of the experimental protocol within the ICU context. As external noise may pro-

vide a challenge for BCI systems, future studies will focus on quantifying the impact of these

on BCI success.

All five healthy volunteers demonstrated ability to reliably control the BCI system on the

level that significantly outperformed the random model control. Both types of sensory feed-

back, auditory and auditory-visual, were tested on healthy volunteers. Although, the results

and patient comments gave preference to auditory-visual feedback, the experiments have dem-

onstrated that auditory feedback alone is also feasible. This is important, as development of a

BCI system for patients in cognitive motor dissociation, who frequently have their eyes closed,

is the long-term goal of this project. Some level of visual feedback, however, may be feasible

even in patients that do not open their eyes such as light of different colors projected on the

eyelids. This would be among the goals of future BCI studies.

Impairment of consciousness may involve impairment of comprehension as well as arousal

[22], as impairment of arousal is a common in brain injured patients [23]. Our study also dem-

onstrated that patients with disorders of arousal may have challenges in successfully utilizing

the BCI system. The level of arousal which precludes successful BCI interaction is, however,

uncertain. To determine the threshold of impaired arousal, all command following non-apha-

sic patients will be formally tested using the 60-Second Test [24]. In addition, it should be

investigated if patients with cognitive motor dissociation that demonstrate command follow-

ing on a functional MRI [2] or EEG assessment [1] are able to interact with the BCI system.

The following studies will be devoted to solving these questions. The presented pilot study is a

major step forward as it provides the foundation to carry out these experiments in the ICU

environment.

Limitations

We elected to only allow a small number of training sessions and validation sessions, but felt

that it was important to show that the BCI system is able to work under these circumstances

keeping concerns about patient fatigue in mind. Importantly, in behaviorally unresponsive

patients it is particularly challenging to detect fatigue. Additionally, our cohort of healthy vol-

unteers was not well matched in terms of gender or age distribution when compared to our

patient cohort. This study was not conceptualized to comprehensively study if BCI activation

in cognitive motor dissociation is possible but this question will be the focus of future studies

utilizing the BCI system presented here.

In summary, our results show that conscious patients can achieve control over a self-paced

BCI system in a noisy ICU environment full of distraction and noise. Based on these initial

observations we cannot judge to what level patients will be able to utilize the BCI system to
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express and communicate their most basic needs to providers or loved ones. However, devel-

oping a self-paced BCI system which does not exist at this point in time for the ICU context

would constitute a major step forward in providing these patients some degree of autonomy in

a challenging situation. Future studies will need to optimize the self-paced BCI system, deter-

mine the ability to communicate needs to others, assess patient, surrogate, and health care pro-

vider satisfaction with the BCI system, determine the minimum threshold of fatigue allowable

for successful BCI activation, and determine if patients that are behaviorally unresponsive

such as those in cognitive motor dissociation are able to utilize this BCI system.
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