A Complete Solution for Dissecting Pure Main and Epistatic Effects of QTL in Triple Testcross Design

Xiao-Hong He, Yuan-Ming Zhang*

Section on Statistical Genomics, State Key Laboratory of Crop Genetics and Germplasm Enhancement/Chinese National Center for Soybean Improvement, College of Agriculture, Nanjing Agricultural University, Nanjing, Jiangsu, China

Abstract

Epistasis plays an important role in genetics, evolution and crop breeding. To detect the epistasis, triple test cross (TTC) design had been developed several decades ago. Classical procedures for the TTC design use only linear transformations Z_1 , Z_2 and Z_3 , calculated from the TTC family means of quantitative trait, to infer the nature of the collective additive, dominance and epistatic effects of all the genes. Although several quantitative trait loci (QTL) mapping approaches in the TTC design have been developed, these approaches do not provide a complete solution for dissecting pure main and epistatic effects. In this study, therefore, we developed a two-step approach to estimate all pure main and epistatic effects in the F₂-based TTC design under the F₂ and F_{∞} metric models. In the first step, with Z₁ and Z₂ the augmented main and epistatic effects in the full genetic model that simultaneously considered all putative QTL on the whole genome were estimated using empirical Bayes approach, and with Z₃ three pure epistatic effects were obtained using two-dimensional genome scans. In the second step, the three pure epistatic effects obtained in the first step were integrated with the augmented epistatic and main effects for the further estimation of all other pure effects. A series of Monte Carlo simulation experiments has been carried out to confirm the proposed method. The results from simulation experiments show that: 1) the newly defined genetic parameters could be rightly identified with satisfactory statistical power and precision; 2) the F_{2} based TTC design was superior to the F_2 and $F_{2,3}$ designs; 3) with Z_1 and Z_2 the statistical powers for the detection of augmented epistatic effects were substantively affected by the signs of pure epistatic effects; and 4) with Z₃ the estimation of pure epistatic effects required large sample size and family replication number. The extension of the proposed method in this study to other base populations was further discussed.

Citation: He X-H, Zhang Y-M (2011) A Complete Solution for Dissecting Pure Main and Epistatic Effects of QTL in Triple Testcross Design. PLoS ONE 6(9): e24575. doi:10.1371/journal.pone.0024575

Editor: Kerby Shedden, University of Michigan, United States of America

Received April 14, 2011; Accepted August 14, 2011; Published September 19, 2011

Copyright: © 2011 He, Zhang. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This work was supported by grant 2011CB109300 from the National Basic Research Program of China, grants 30900842, 31000666 and 30971848 from the National Natural Science Foundation of China, grant KYT201002 from the Fundamental Research Funds for the Central Universities, grant 20100097110035 from Specialized Research Fund for the Doctoral Program of Higher Education, grant B08025 from the 111 Project, grant KJ08001 from the NAU Youth Sci-Tech Innovation Fund and a Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: soyzhang@njau.edu.cn

Introduction

Epistasis, the interaction between genes, plays an important role in genetics, evolution and crop breeding. First, it is an important genetic component in the genetic architecture of complex traits [1,2]. Next, it can lead to heterosis [3–7], which is very important in hybrid breeding. In addition, it is a driving force in evolution and plays a central role in founder effect models of speciation [1,8,9]. Over the past several decades, many attempts have been made to detect the epistasis. One important attempt was triple test cross (TTC) design developed by Kearsey and Jinks [10], which is a powerful breeding design as well. Therefore, the great importance associated with the epistasis necessitates an in-depth study of the TTC design.

The TTC design is to cross the *i*th individual (i = 1, 2, ..., n) of an F_2 population (or backcross, recombinant inbred lines (RIL) and near isogenic lines (NIL)) to the same three testers, the two inbred lines (P_1 and P_2) and their F_1 , to produce 3n families. The design is considered the most efficient model as it provides not only a precise test for epistasis, but also unbiased estimates of additive and dominance components if epistasis is absent [10]. In early studies,

only the phenotypic data of quantitative traits were used in the TTC to infer the nature of the additive, dominance and epistatic effects of polygenes using classical generation mean [11–13] and variance component analysis [10,12,14–17]. However, these conventional biometrical genetic procedures deal only with the collective effects of all the polygenes [6,7,11,12]. The introduction of molecular markers has facilitated the mapping of quantitative trait loci (QTL) in numerous species, and substantial progress has been achieved in the detection of individual QTL and their interaction in the RIL- and NIL-based TTC designs.

In the RIL-based TTC designs, Kearsey et al. [12] employed the marker difference regression of Kearsey and Hyne [18] to detect QTL for 22 quantitative traits in *Arabidopsis thaliana*. Frascaroli et al. [16] used composite interval mapping [19] to identify main-effect QTL and the mixed linear model approach [20] to detect digenic epistatic QTL in the analyses of heterosis in maize. The method has been used to identify the main-effect QTL and digenic epistatic QTL underlying the heterosis of nine important agronomic and economic traits in rice by Li et al. [17]. However, the additive and dominant effects estimated from the above approaches are confounded with epistatic effect if epistasis is present. To overcome this issue, Melchinger et al. [21] derived quantitative genetic expectations of QTL main and interaction effects in the RIL-based TTC design. On their theoretical findings, using one-dimensional genome scans, we can estimate augmented additive and dominance effects [7] and QTL- bygenetic background interaction, whereas using two-way ANOVA between all pairs of marker loci, we can estimate additive-byadditive (*aa*) and dominance-by-dominance (*dd*) interactions. Kusterer et al. [22] applied the novel approaches of Melchinger et al. [7,21] to detect QTL for heterosis of biomass-related traits in *Arabidopsis*. In the above studies, only one variable was involved at one time. To increase the power of QTL detection, Kusterer et al. [22] adopted multi-variable joint analysis [23], as proposed by Melchinger et al. [7] for QTL mapping in the NCIII design.

In the NIL-based TTC design, Melchinger et al. [21] used two QTL mapping methods to study heterosis in *Arabidopsis*. In the generation means approach, additive, dominance and QTL \times genetic background epistasis effects were tested and estimated, and the approach along with particular two-segment NILs was applied by Reif et al. [24] to map *aa* digenic interaction. In addition, Zhu and Zhang [25] derived formulae for calculating the statistical power in the detection of epistasis; and Wang et al. [26] used interval mapping [27] to detect QTL underlying endosperm traits and demonstrated that the TTC provided a reasonably precise and accurate estimation of QTL positions and effects, especially the two dominant effects, which perfectly overcomes the drawback of the F_{2:3} design.

In summary, two issues in the detection of QTL in the TTC need to be addressed. First, only a few studies are built on F_2 -based TTC [25,26], whereas most are built on RIL [7,12,16,17,21,22] and NIL [6,24]. Second, additive and dominance effects were confounded with QTL-by-genetic background interaction [7,21,22] and only *aa* and *dd* digenic interactions were evaluated in the RIL-based TTC [16,17,21,22].

The objective of this study was to estimate, in an unambiguous and unbiased manner, all the main and epistatic effects of QTL in the F_2 -based TTC design. A series of Monte Carlo simulation experiments was carried out to confirm the proposed approach. The extension of the new method to other base populations in the TTC was discussed as well.

Methods

Genetic design and data collection

An F_2 population was derived from two inbred lines (P_1 and P_2) that differed significantly in the quantitative traits of interest and possessed abundant polymorphism molecular markers. A random sample of $n F_2$ individuals (female parents) was backcrossed to three testers, the two parental lines and their F_1 , to produce 3n families (L_{1i} , L_{2i} and L_{3i}). All of the 3n families, each with m replications, were planted. Molecular marker information was observed from all of the $n F_2$ individuals, whereas quantitative traits were measured for all of the 3nm TTC progeny. The phenotypic observations were denoted by y_{ij} , where t=1,2 and 3 for L_1 , L_2 and L_3 ; $i=1,2, \cdots, n$ and $j=1,2, \cdots, m$. The family means were denoted by $\bar{L}_{ii} = \sum_{j=1}^{m} y_{ij} / m$. Following Kearsey and Jinks [10] and Melchinger et al. [21], we performed three linear transformations: $Z_{1i} = \bar{L}_{1i} + \bar{L}_{2i}$, $Z_{2i} = \bar{L}_{1i} - \bar{L}_{2i}$ and $Z_{3i} = \bar{L}_{1i} + \bar{L}_{2i} - 2\bar{L}_{3i}$. The association between Z_i and the marker genotypes of the F_2 plants were used to infer the genetic architecture of the trait.

Genetic models for mapping QTL in the F₂-based TTC design

The expected genetic values of Z_{1i} , Z_{2i} and Z_{3i} depended on the choice of the metric. Two main metrics, the F_2 and F_{∞} metrics,

were adopted for the populations derived from the cross between the two inbred lines [28-30]. The derivation of the expected genetic values of Z_{1i} , Z_{2i} and Z_{3i} under both the F_2 and the F_{∞} metric models was presented in Table S1, Table S2, Table S3, Table S4, Table S5, Table S6, and **Supporting Information S2**. The genetic effect symbols adopted in this study were referred to Kao and Zeng [28].

Statistical genetic models for mapping QTL under the F_2 metric model. According to the expected genetic value of Z_{1i} under the F_2 metric model in Table S5, the phenotypic value of Z_{1i} can be described as:

$$Z_{1i} = 2\mu + x_{a_1i}a_1 + x_{a_2i}a_2 + x_{a_1a_2i}i_{a_1a_2} + x_{a_1a_2i}i_{a_1d_2} + x_{a_1a_2i}i_{a_1d_2} + x_{a_1a_2i}i_{a_1d_2} + x_{a_1a_2i}i_{a_1d_2} + e_{1i}$$
(1)

where μ is the mean genotypic value of the F₂ population; a_k and d_k are additive and dominance effects of the *k*th QTL, respectively; $i_{a_1a_2}$, $i_{a_1d_2}$, $i_{d_1a_2}$ and $i_{d_1d_2}$ are additive-by-additive, additive-by-dominance, dominance-by-additive and dominance-by-dominance interactions between the 1st and 2nd QTL, respectively; x_{a_1i} , x_{a_2i} , $x_{a_1a_2i}$, $x_{a_1d_2i}$, $x_{d_1a_2i}$ and $x_{d_1d_2i}$ are dummy variables and determined by the genotype of the *i*th F₂ plant (Table S5); and e_{1i} is the residual error with an $N(0,\sigma_1^2)$ distribution. According to the results in Table S5, there are $x_{d_1d_2i} = x_{a_1a_2i} - \frac{1}{2}$, $x_{a_1d_2i} = -\frac{1}{2}x_{a_2i}$ and $x_{d_1a_2i} = -\frac{1}{2}x_{a_1i}$. To solve the genetic parameters, model (1) must be reduced to:

$$Z_{1i} = \mu_{Z_1} + x_{a_1i}a_1^* + x_{a_2i}a_2^* + x_{\underset{i_{12}i}{\leftrightarrow}i_{12}} \stackrel{\leftrightarrow}{i_{12}} + e_{1i}$$
(2)

where $\mu_{Z_1} = 2\mu - \frac{1}{2}i_{d_1d_2}, a_1^* = a_1 - \frac{1}{2}i_{d_1a_2}, a_2^* = a_2 - \frac{1}{2}i_{a_1d_2}, \quad \overleftarrow{i}_{12} = i_{a_1a_2} + i_{d_1d_2} \text{ and } x_{\overrightarrow{i}_{12}i_{12}} = x_{a_1a_2i} = x_{d_1d_2i} + \frac{1}{2}.$

If the quantitative trait was controlled by q QTL, model (2) should be extended to:

$$Z_{1i} = \mu_{Z_1} + \sum_{k=1}^{q} x_{a_k i} a_k^* + \sum_{k=1}^{q-1} \sum_{l=k+1}^{q} x_{\overrightarrow{i}_{kl}} \overset{\leftrightarrow}{i}_{kl} + e_{1i}$$
(3)

where model mean $\mu_{Z_1} = 2\mu - \frac{1}{2}\sum_{k=1}^{q-1}\sum_{l=k+1}^{q} i_{d_k d_l}; a_k^* = a_k - \frac{1}{2}\sum_{l=k+1}^{q-1} i_{d_k d_l}; a_k^* = a_k - \frac$

ź

 $\frac{1}{2}\sum_{l\neq k}^{q}i_{d_{k}a_{l}}$ is augmented additive effect of QTL k; $\vec{i}_{kl} = i_{a_{k}a_{l}} + i_{d_{k}d_{l}}$ is augmented epistatic effect between QTL k and l; and $x_{a_{k}i}$ and $x_{i_{k}l}$ are determined by the genotypes of the kth and kth QTL (marker) of the *i*th F₂ plant (Table 1). The coefficients for the genotype $M_{k}m_{k}M_{l}m_{l}$ were integrated by the frequencies of $M_{k}M_{l}/m_{k}m_{l}$ and $M_{k}m_{l}/m_{k}M_{l}$. The augmented epistatic effects (\vec{i}_{kl}) are ignored in Melchinger et al. [21], this may result in a bigger residual error and lower statistical power.

In the same way, the phenotypic value of Z_{2i} can be described as:

$$Z_{2i} = a_1 + u_{d_1i}d_1 + a_2 + u_{d_2i}d_2 + u_{a_1a_2i}i_{a_1a_2} + u_{a_1d_2i}i_{a_1d_2} + u_{a_1a_2i}i_{d_1a_2} + e_{2i}$$
(4)

where u_{d_1i} , u_{d_2i} , $u_{a_1a_2i}$, $u_{a_1d_2i}$ and $u_{d_1a_2i}$ are determined by the genotype of the *i*th F₂ plant (Table S5); and e_{2i} is the residual error with an $N(0,\sigma_2^2)$ distribution. According to the results in Table S5, there are $u_{a_1d_2i} = u_{d_1a_2i}$ and $u_{a_1a_2i} = -\frac{1}{2}(u_{d_1i} + u_{d_2i})$. To solve the

Marker genotype of F2 plant	F2 r	netric r	model													F _∞ met	ric mod	a
	Z_{1i}													Z_{2i}	Z_{3i}	Z_{1i}	Z_{2i}	Z_{3i}
	x_{a_k}	$\chi_{\mathrm{a}_{\mathrm{l}}}$	$X_{\stackrel{\leftarrow}{i}_{[k]}}$	$u_{\mathrm{d}_{\mathrm{k}}}$	$u_{\rm d_l}$	$u_{{ m i}_{ m I_{ m I}}}$	$\nu_{a_kd_l}$	$v_{d_ka_l}$	$\mathcal{V}d_kd_l$	x_{a_k}	x_{a_1}	$\stackrel{X_{\leftrightarrow}}{i_k}$	$u_{\mathrm{d}_{\mathrm{k}}}$	$u_{\rm d_l}$	$u_{\mathbf{\tilde{i}}_{\mathbf{kl}}}$	$v_{\mathrm{a}_k\mathrm{d}_l}$	$v_{d_ka_l}$	$\mathcal{V}d_kd_1$
$M_k M_k M_l M_l$	-	-	-	Ť	Ī	$-\frac{1}{2}$	- <i>r</i>	- r	r	-	-	-	Ţ.	- I	0	- <i>r</i>	-r	r
$M_k M_k M_l m_l$	-	0	<u>1</u>	ī	0	0	0	r -	0	-	0	-10	ī	0	12	0	r -	0
$M_k M_k m_l m_l$		ί.	0	ī	-	21-	В	- r	- <i>r</i>		Ī	0	Ţ.	-	-	R	- r	-r
$M_k m_k M_l M_l$	0	-	1	0	ī	0	- <i>r</i>	0	0	0	-	-10	0	ī	1	-r	0	0
$M_k m_k M_l m_l$	0	0	$\frac{r_{kl}^3 + (1-r)_{kl}^3}{r_{kl}^2 + (1-r_{kl})^2}$	0	0	$\frac{(1-2r_{kl})[r_{kl}^2-(1-r_{kl})^2]}{2[r_{kl}^2+(1-r_{kl})^2]}$	0	0	$\frac{r_{kl}(1-2r_{kl})[(1-r_{kl})^2-r_{kl}^2]}{r_{kl}^2+(1-r_{kl})^2}$	0	0	$\frac{r_{kl}^3 + (1-r)_{kl}^3}{r_{kl}^2 + (1-r_{kl})^2}$	0	0	$\frac{r_{kl}(1-r_{kl})}{r_{kl}^2 + (1-r_{kl})^2}$	0	0	$\frac{r_{kl}(1-2r_{kl})[(1-r_{kl})^2-r_{kl}^2]}{r_{kl}^2+(1-r_{kl})^2}$
$M_k m_k m_l m_l$	0	ī	1 -	0	-	0	r	0	0	0	Ϊ	2	0	-	2	В	0	0
$m_k m_k M_l M_l$	ī	-	0	-	Ϊ	-162	ŗ	В	- <i>r</i>	ī	-	0	-	ī	-	- <i>r</i>	В	-r
$m_k m_k M_l m_l$	ī	0	-141	-	0	0	0	В	0	ī	0	-10	-	0	- 47	0	В	0
m _k m _k m _l m _l	ī	ī		-	-	-1	-	~	r	ī	ī	-	-	-	0	r	r	r
doi:10.1371/jo	urnal.p	one.00	124575.t001															

genetic parameters, model (4) must be reduced to:

$$Z_{2i} = \mu_{Z_2} + u_{d_1i}d_1^* + u_{d_2i}d_2^* + u_{\tilde{i}_{12}i}\tilde{i}_{12} + e_{2i}$$
(5)

where $\mu_{Z_2} = a_1 + a_2$, $d_1^* = d_1 - \frac{1}{2}i_{a_1a_2}$, $d_2^* = d_2 - \frac{1}{2}i_{a_1a_2}$, $\tilde{i}_{12} = i_{a_1d_2} + i_{d_1a_2}$ and $u_{\tilde{i}_{12}i} = u_{a_1d_2i} = u_{d_1a_2i}$.

If the quantitative trait was controlled by q QTL, model (5) should be extended to:

$$Z_{2i} = \mu_{Z_2} + \sum_{k=1}^{q} u_{d_k i} d_k^* + \sum_{k=1}^{q-1} \sum_{l=k+1}^{q} u_{\tilde{i}_k l^i} \tilde{i}_{kl} + e_{2i}$$
(6)

where model mean $\mu_{Z_2} = \sum_{k=1}^{q} a_k$; $d_k^* = d_k - \frac{1}{2} \sum_{l \neq k}^{q} i_{a_k a_l}$ is augmented ed dominance effect of QTL k; $\tilde{i}_{kl} = i_{a_k d_l} + i_{d_k a_l}$ is augmented epistatic effect between QTL k and l; and dummy variables $u_{d_k l}$ and $u_{\tilde{i}_{kl}i}$ are determined by the genotypes of the kth and kth QTL of the kth F₂ plant (Table 1). The augmented epistatic effects (\tilde{i}_{kl}) are overlooked in Melchinger et al. [21], this may result in a bigger residual error and lower statistical power.

Similarly, the phenotypic value of Z_{3i} can be described as:

$$Z_{3i} = ri_{a_1a_2} + v_{a_1d_2i}i_{a_1d_2} + v_{d_1a_2i}i_{d_1a_2} + v_{d_1d_2i}i_{d_1d_2} + e_{3i}$$

$$= \mu_{Z_3} + v_{a_1d_2i}i_{a_1d_2} + v_{d_1a_2i}i_{d_1a_2} + v_{d_1d_2i}i_{d_1d_2} + e_{3i}$$
(7)

where $\mu_{Z_3} = ri_{a_1a_2}$; *r* is the recombination fraction between two QTL under study; and dummy variables $v_{a_1d_2i}$, $v_{d_1a_2i}$ and $v_{d_1d_2i}$ are determined by the genotype of the *i*th F₂ plant (Table 1 and Table S5). Here pure *ad*, *da* and *dd* epistatic effects can be estimated with two-dimensional genome scans. This differs from that in Melchinger et al. [21], in which only *dd* epistasis is estimated with two-way ANOVA.

Models (3), (6) and (7) were working models for our QTL mapping approach in the F2-based TTC design. Here we proposed a two-step approach to obtain all the pure main and epistatic effects in the presence of epistasis. In the first step, model (3) can be used to estimate the augmented additive (a_k^*) and epistatic (i_{kl}) effects, model (6) can be used to estimate the augmented dominance (d_k^*) and epistatic (\tilde{i}_{kl}) effects, and model (7) can be used to estimate three types of pure epistatic effects $(i_{a_{\nu}d_{\nu}},$ $i_{d_k a_l}$ and $i_{d_k d_l}$). In the second step, all estimated epistatic effects in models (3), (6) and (7) were integrated for the estimation of all four types of the pure epistatic effects using $i_{a_ka_l} = i_{kl} - i_{d_kd_l}$, $i_{a_k d_l} = (\tilde{i}_{kl} + 2i_{a_k d_l} - i_{d_k a_l})/3$ and $i_{d_k a_l} = (\tilde{i}_{kl} - i_{a_k d_l} + 2i_{d_k a_l})/3$. These pure epistatic effects further integrate with the estimates of both a_k^* and d_k^* for the estimation of pure additive and dominance effects, using $a_k = (a_k^* + \frac{1}{2} \sum_{l=1, l \neq k}^{q} i_{d_k a_l})$ and $d_k = (d_k^* + \frac{1}{2} \sum_{l=1, l \neq k}^{q} i_{a_k a_l})$. When epistasis is absent, pure additive (a_k) and dominance (d_k) effects can be directly obtained from model (3) and model (6), respectively.

Genetic models for mapping QTL under the \mathbf{F}_{∞} metric model. With Z_{1i} , Z_{2i} and Z_{3i} genetic models for mapping QTL under the \mathbf{F}_{∞} metric model have the same forms as described in models (3), (6) and (7), respectively. The detailed derivation was described in Table S6 and **Supporting information S1** and the detailed comparisons were given in Tables 1 and 2. The pure epistatic effects under the two metrics are calculated in the same way and the pure additive and dominance effects under the two metrics are calculated in different ways, here $a_k = [a_k^* -$

Tablé	e 2. Genet	ic parameter component	and parameter estim	lation method for tl	he genetic models o	f Z ₁ , Z ₂ and Z ₃ under the F ₂ \tilde{c}	and the F_∞ metric model	s.
Data	Model	Model parameter compone	ents					Parameter estimation method
		F ₂ metric model			F∞ metric model			
		Model mean	Augmented main effect	Augmented epistatic effect	Model mean	Augmented main effect	Augmented epistatic effect	
Z1	(3)	$\mu_{Z_1} = 2\mu - \frac{1}{2} \sum_{k=1}^{q-1} \sum_{l=k+1}^{q} i_{d_k d_l}$	$a_k^* = a_k - \frac{1}{2} \sum_{j \neq k}^q i_{d_k a_l}$	$\vec{i}_{kl} = i_{a_k a_l} + i_{d_k d_l}$	$\mu_{Z_1} = 2\mu + \sum_{k=1}^q d_k$	$a_k^* = a_k + \frac{1}{2} \sum_{l \neq k}^q (i_{a_k d_l} - i_{d_k a_l})$	$\vec{i}_{kl} = i_{a_k a_l} + i_{d_k d_l}$	Empirical Bayes
Z_2	(9)	$\mu_{Z_2} = \sum_{k=1}^q a_k$	$d_k^* = d_k - \frac{1}{2} \sum_{l \neq k}^q i_{a_k a_l}$	$\tilde{\mathbf{i}}_{kl} = \mathbf{i}_{a_k d_l} + \mathbf{i}_{d_k a_l}$	$\mu_{Z_2} = \sum_{k=1}^q a_k$	$d_k^* = d_k - rac{1}{2} \sum_{l eq k}^q \left(i_{a_k a_l} - i_{d_k d_l} ight)$	$\tilde{i}_{kl} = i_{a_k a_l} + i_{a_k a_l}$	Empirical Bayes
Z ₃	(2)	$\mu_{Z_3} = r\dot{u}_{a_1a_2}$	1	$i_{a_1d_2}, i_{d_1a_2}, i_{d_1d_2}$	$\mu_{Z_3} = r \dot{a}_{a_1 a_2}$	1	$i_{a_1d_2}, \dot{i}_{d_1a_2}, \dot{i}_{d_1d_2}$	Maximum likelihood
doi:10.1	1371/journal.p	oone.0024575.t002						

$$\sum_{l=1, l \neq k}^{q} (i_{a_k d_l} - i_{d_k a_l}) \text{ and } d_k = [d_k^* + \frac{1}{2} \sum_{l=1, l \neq k}^{q} (i_{a_k a_l} - i_{d_k d_l})].$$

Genetic parameter estimation

 $\frac{1}{2}$

Models (3) and (6) have a uniform appearance. However, the true number of QTL (q) is hard to determine. Variable selection via a stepwise regression or a stochastic search variable selection is the common procedure for epistatic QTL analysis. But these methods are computationally intensive and may not be optimal [31–33]. Thus, we adopted the empirical Bayes (E-Bayes) method of Xu [33] for the estimation of parameters in the above models. The E-Bayes approach assumes that there is one QTL standing on each marker throughout the genome and shrinks the genetic effects of all "nonsignificant" QTL toward zero. Here, we only gave some necessary procedures; for the technical details of the E-Bayes refer to the original study of Xu [33].

Models (3) and (6) can be uniformly written as:

$$y_i = \mu + \sum_{k=1}^{q} x_{ki} g_k + \sum_{k=1}^{q-1} \sum_{l=k+1}^{q} x_{kli} i_{kl} + e_i = \mu + \sum_{j=1}^{p} z_{ji} \gamma_j + e_i \quad (8)$$

where μ is the model mean; g_k is the augmented main effect of the *k*th QTL; i_{kl} is the augmented epistatic effect between the *k*th and *k*th QTL; $p = \frac{1}{2}q(q+1)$ is the total number of genetic effects, including the augmented main and epistatic effects; and $e_i \sim N(0, \sigma^2)$ is the residual error. Model (8) can be expressed in matrix form:

$$\mathbf{y} = \mathbf{X}\boldsymbol{\beta} + \mathbf{Z}\boldsymbol{\gamma} + \boldsymbol{\varepsilon} \tag{9}$$

where $\mathbf{y} = (y_1, y_2, \cdots, y_n)^{\mathrm{T}}$; $\mathbf{X} = (1, 1, \cdots, 1)^{\mathrm{T}}$; $\boldsymbol{\beta} = \{\mu\}$; $\mathbf{Z} = (\mathbf{Z}_1, \cdots, \mathbf{Z}_p)$; $\boldsymbol{\gamma} = (\gamma_1, \cdots, \gamma_p)^{\mathrm{T}}$ and $\boldsymbol{\varepsilon} \sim N(\mathbf{0}, \mathbf{I}\sigma^2)$.

In the expectation and maximization (EM) algorithm of the E-Bayes method [33], model (9) is a typical mixed model and $\boldsymbol{\beta}$ is treated as a fixed effect, whereas $\boldsymbol{\gamma}$ is treated as a random effect. Therefore, \mathbf{y} has a multivariate normal distribution with the mean $\boldsymbol{\mu} = \mathbf{X}\boldsymbol{\beta}$ and the variance-covariance matrix $V = \sum_{j=1}^{p} \mathbf{Z}_{j} \mathbf{Z}_{j}^{T} \sigma_{j}^{2} + \mathbf{I}\sigma^{2}$.

In the EM algorithm of E-Bayes, the genetic parameters γ are the focus of interest and the normal prior is assigned to γ_j , i.e., $\gamma_j \sim N(0, \sigma_j^2)$ and σ_j^2 is further assigned a scaled inverse χ^2 prior,

i.e.,
$$\sigma_j^2 \sim \text{Inv} - \chi^2(\tau, \omega) \propto (\sigma_j^2)^{-\frac{1}{2}(\tau+2)} \exp\left(-\frac{\omega}{2\sigma_j^2}\right)$$
. The β has uniform prior distribution.

The EM algorithm procedures are as follows:

1) Choose $\xi = (\tau, \omega) = (0,0)$ and assign initial values: $\sigma_1^2 = \sigma_2^2 = \cdots = \sigma_p^2 = 1.0, \boldsymbol{\beta} = (\boldsymbol{X}^T \boldsymbol{X})^{-1} \boldsymbol{X}^T \mathbf{y}, \sigma^2 = (\mathbf{y} - \boldsymbol{X} \boldsymbol{\beta})^T (\mathbf{y} - \boldsymbol{X} \boldsymbol{\beta})/n.$ 2) E-step: the best linear unbiased prediction (BLUP) estimation

of the expectation of the quadratic term

$$\begin{cases} E(\gamma_j) = \sigma_j^2 \mathbf{Z}_j^T \mathbf{V}^{-1}(\mathbf{y} - \mathbf{X}\boldsymbol{\beta}) \\ \operatorname{var}(\gamma_j) = \sigma_j^2 (1 - \mathbf{Z}_j^T \mathbf{V}^{-1} \mathbf{Z}_j \sigma_j^2) \\ E(\gamma_j^T \gamma_j) = E(\gamma_j^T) E(\gamma_j) + \operatorname{tr}[\operatorname{var}(\gamma_j)] \end{cases}$$
(10)

3) M-step: the maximum-likelihood estimation for σ_j^2 , fixed effects and residual variance

$$\begin{cases} \sigma_j^2 = \frac{E(\gamma_j^T \gamma_j) + \omega}{\tau + 2 + 1} \\ \boldsymbol{\beta} = (\boldsymbol{X}^T \boldsymbol{V}^{-1} \boldsymbol{X})^{-1} (\boldsymbol{X}^T \boldsymbol{V}^{-1} \mathbf{y}) \\ \sigma^2 = \frac{1}{n} (\mathbf{y} - \boldsymbol{X} \boldsymbol{\beta})^T (\mathbf{y} - \boldsymbol{X} \boldsymbol{\beta} - \sum_{j=1}^p Z_j E(\gamma_j)) \end{cases}$$
(11)

4) repeat steps 2) - 3) until a certain criterion of convergence is satisfied, e.g. the difference of parameter estimate values between two adjacent iterations were less than 10^{-10} .

In addition, we performed a two-dimension scan using the maximum likelihood approach for the estimation parameters in models (7).

Likelihood ratio test

If we only want to report QTL with relatively large effects and give readers accurate information about how significant the identified QTL were, statistical test should be conducted. The usual likelihood ratio test (LRT) cannot be carried out with the E-Bayes method owing to an oversaturated epistatic genetic model. We proposed the following two-stage selection process to screen the QTL [31]. In the first stage, all QTL with $t_j = |\hat{b}_j|/\hat{\sigma}_j > 2.0$ are picked up. In the second stage, the epistatic genetic model is modified so that only effects past the first round of selection are included in the model. Owing to the smaller dimensionality of the reduced model, we can use the maximum likelihood method to reanalyze the data and perform the LRT [31]. The test statistic is

$$LR_{i} = -2[L(\theta_{-i}) - L(\theta)]$$
⁽¹²⁾

where $\boldsymbol{\theta}$ is the parameters vector in the statistical genetic model in the second stage analysis of model (8); $\boldsymbol{\theta}_{-j}$ is the parameters vector in $\boldsymbol{\theta}$ excluding the currently tested genetic effect γ_j ; $L(\boldsymbol{\theta})$ and $L(\boldsymbol{\theta}_{-j})$ are the log maximum likelihood function for $\boldsymbol{\theta}$ and $\boldsymbol{\theta}_{-j}$, respectively. For simplicity, we took $LOD = LR_j/4.61 = 2.5$ and 3.0 as the critical values in our small and larger genome simulation experiments, respectively.

Results

Experiment I

The purpose of the simulation experiment was: (1) to evaluate the statistical performance of the proposed approach; (2) to compare the proposed method with previous approaches, such as Kearsey et al. [12], Frascaroli et al. [16] and Li et al. [17] or Melchinger et al. [7,21] and Kusterer et al. [22], according to statistical power, standard deviation and accuracy measure; and (3) to compare the TTC design with the F_2 and $F_{2:3}$ genetic designs.

The simulated genome consisted of three chromosomes (chr1, chr2 and chr3), and 11 evenly spaced markers covered each chromosome with an average marker interval of 10.0 cM. We simulated three main-effect QTL and one pair-wise interaction QTL, all of which overlapped with markers. All three main-effect QTL were located at the center (50.0 cM) of each chromosome, and QTL₂ on chr2 interacted with QTL₃ on chr3. The genetic parameters under both the F₂ and the F_∞ metric models were as follows: $\mu = 100.00$; $a_1 = 1.50$ and $d_1 = 1.50$ for QTL₁; $a_2 = 2.00$ and $d_2 = -1.00$ for QTL₂; $a_3 = -1.00$ and $d_3 = 2.00$ for QTL₃; $i_{a_2a_3} = 1.00$, $i_{a_2d_3} = 1.50$, $i_{d_2a_3} = 1.00$ and $i_{d_2d_3} = 1.50$ for the epistatic effects between QTL₂ and QTL₃. The marginal heritabilities of these genetic effects varied from 1.01% to

36.54%. The sample size (n), the number of individual in the F_2 population, was set at two levels: 200 and 400. The number of individuals (m) for each TTC family was set at 1, 5 and 10. The environmental variance (σ_{ϵ}^2) was set at 4.00 and 1.00. To implement the last objective of the simulation experiment, two other kinds of populations, the F_2 and $F_{2:3}$ populations, were also simulated. However, molecular marker information for all three populations was derived from the corresponding F_2 individuals. Each treatment was replicated 200 times for the TTC and $F_{2:3}$ designs and 400 times for the F₂ design. In the analyses of the TTC family data, two approaches were adopted: 1) Method A, the proposed method in this study, and 2) Method B, the modified method of Kearsey et al. [12], Frascaroli et al. [16] and Li et al. [17] or Melchinger et al. [7,21] and Kusterer et al. [22], by removing the augmented epistatic effects from models (3) and (6). In the analyses of the F_2 and $F_{2:3}$ datasets, all of the main effects and all of the pair-wise interaction effects for all of the markers on the whole genome were simultaneously included in the genetic model. For each simulated QTL, we counted the samples in which the LOD statistic was greater than 2.5 and the identified QTL was within 20.0 cM of the simulated QTL. The estimate for QTL parameter was the average of the corresponding estimates in the counted samples. The ratio of the number of such samples to the total number of replicates represented the empirical power of this OTL.

To achieve the first objective of the simulation experiment, Z_1 , Z_2 and Z_3 were analyzed by *Method A*. In the first step, with Z_1 or Z_2 33 augmented additive or dominance effects $(a_k^* \text{ or } d_k^*)$ and 528 augmented epistatic effects $(i_{kl} \text{ or } i_{kl})$ were estimated, and with Z_3 1584 pure epistatic effects $(i_{a_k d_l}, i_{d_k a_l} \text{ and } i_{d_k d_l})$ were estimated. All the effects were tested by likelihood ratio statistic in order that real QTL could be identified. The results for detected QTL under the F_2 metric model were listed in Table 3, Table 4, Table 5. The results show that the newly defined parameters, i.e., μ_{Z_k} , a_k^* , d_k^* (k=1,2,3), i_{23} and i_{23} , were estimated in an almost unambiguous and unbiased manner, and all of the main-effect QTL were identified with a high statistical power and precision in the estimated effects and positions of the QTL by taking the TTC family mean as the unit of phenotypic measurement. The augmented epistatic QTL (i_{23} and i_{23}) were also well detected, except for the situation when n = 200, m = 5 and $\sigma_s^2 = 4.00$. In the second step, all the pure main and epistatic effects would be estimated in an unbiased manner (Table 6). It should also be noted that a large sample $(n \ge 400)$, a greater family replication number $(m \ge 10)$, and moderate QTL heritability $(\sigma_{\varepsilon}^2 \le 1.00)$ are needed for the partition of the augmented epistatic effects (\vec{i}_{23} and \tilde{i}_{23}) into its components (aa, ad, da and dd), and detecting dd epistasis is more difficult than detecting ad epistasis (Tables 5 and 6). The theoretical explanation is that ad (also da) has a larger contribution to the genetic variance of Z_3 than dd $(V_{\rm G}(Z_{3i}) = \frac{1}{8}(i_{a_2d_3}^2 + i_{d_2a_3}^2) + \frac{1}{16}i_{d_2d_3}^2$ when $r_{23} = 0.50$, **Supporting** Information S2). In addition, the powers in the detection of the augmented epistatic effects (i_{23} in Table 3 and i_{23} in Table 4) were always much higher than those of pure epistatic effects (ad, da and dd in Table 5). The possible explanations lie in that 1) the augmented epistatic effects $(i_{23} = i_{a_2a_3} + i_{d_2d_3} \text{ and } i_{23} = i_{a_2d_3} + i_{d_2a_3})$ were the sum of two epistatic effects with the same signs in Experiment I and were inflated, and 2) these epistatic effects have different contributions to the genetic variances of Z_1 , Z_2 and Z_3 (Supporting Information S2).

To achieve the second objective of the simulation experiment, Z_1 and Z_2 were re-analyzed by *method* B and the results under the F_2 metric model were also listed in Tables 3 and 4. The results show that the Z_1 and Z_2 could still be used to unbiasedly

Table 3. Comparison of the proposed approach (Method A) with previous method (Method B) that does not consider augmented epistasis for mapping QTL of Z₁ under the F₂ metric model.

		Metho	d A**												Metho	a b							
u u	°2	MSe	μ_{Z_1}	QTL1			QTL2			2TL ₃		QTL ₂ ×(QTL ₃		MSe	μ_{Z_1}	QTL1		QTL2			QTL ₃	
				a,*	noitizo9	Power	a, *	noitizoq	<i>»</i> Power	*ۋ	Position Power	i_23	² noitizo9	Position ₃			aı	noitizoq	a ₂ a	noitizo9	Power	م Position	Power
Parame	eter va	lues	199.25	1.50	50.00		1.50	50.00		1.75	50.00	2.50	50.00	50.00			1.50	50.00	2.00	50.00	1	-1.00 50.00	
200 1	4.00	13.321 (1.370)	200.438 (0.514)	1.641 (0.246)	50.135 (8.410)	0.740	1.625 (0.290)	49.937 (7.779)	0.790 -))	-1.808 0.312)	50.160 0.935 (7.069)	4.218 (0.539)	40.000 (8.165)	52.500 0.02 (12.583)	20 13.363 (1.357)	200.502 (0.258)	2 1.648 (0.251)	50.068 (7.781)	0.740 1.631 (0.286	50.127 5) (7.249)	0.785	-1.827 50.43 (0.304) (7.018	7 0.915 3)
	1.00	7.013 (0.727)	200.387 (0.477)	1.508 (0.241)	49.682 (4.104)	0.980	1.511 (0.249)	50.459 (4.332)	- 080.0))	1.779 0.258)	50.103 1.000 (3.311)	3.143 (0.400)	47.692 (8.321)	51.538 0.06 (6.887)	55 7.053 (0.695)	200.503 (0.199)	1.510 (0.240)	49.887 (3.857)	0.980 1.511 (0.252	50.606 (4.899)	066.0	-1.779 50.04 (0.259) (3.670	7 1.000
2	4.00	2.643 (0.335)	199.638 (0.681)	1.485 (0.161)	50.061 (0.725)	066.0	1.505 (0.166)	49.950 (0.707)	1.000 - ((1.733 0.154)	50.048 1.000 (0.478)	2.689 (0.378)	50.112 (3.482)	49.346 0.65 (4.197)	30 2.933 (0.305)	200.495 (0.118)	1.500 (0.163)	50.010 (1.017)	0.990 1.517 (0.182	50.027 (0.382)	0.995	-1.736 50.04 (0.170) (0.454	5 1.000 t)
	1.00	1.351 (0.145)	199.261 (0.151)	1.498 (0.111)	50.011 (0.156)	1.000	1.479 (0.126)	49.991 (0.573)	1.000 -	1.744 0.109)	49.985 1.000 (0.217)	2.499 (0.243)	50.201 (2.000)	49.749 0.95 (1.863)	95 1.732 (0.165)	200.505 (0.100)) 1.489 (0.135)	49.932 (0.752)	1.000 1.485 (0.151	49.994 () (0.546)	1.000	-1.738 49.98 (0.130) (0.282	6 1.000 2)
10	4.00	1.270 (0.138)	199.268 (0.219)	1.505 (0.118)	50.000 (0.000)	1.000	1.492 (0.116)	50.000 (0.000)	1.000 - ((1.746 0.097)	49.998 1.000 (0.235)	2.494 (0.279)	49.795 (2.479)	50.051 0.97 (1.899)	75 1.651 (0.159)	200.50£ (0.090)	5 1.504 (0.133)	49.984 (0.353)	1.000 1.487 (0.155	50.000 (0.000)	1.000	-1.750 49.98 (0.129) (0.350	4 1.000))
	1.00	0.679 (0.076)	199.247 (0.115)	1.496 (0.078)	50.007 (0.099)	1.000	1.494 (0.082)	50.011 (0.160)	1.000 - ((1.752 0.073)	50.018 1.000 (0.195)	2.515 (0.170)	50.000 (0.000)	49.934 0.95 (0.740)	90 1.067 (0.098)	200.506 (0.073)	5 1.502 (0.104)	50.011 (0.438)	1.000 1.502 (0.132	50.008 (0.112)	1.000	-1.742 50.02 (0.114) (0.299	1 1.000
400 1	4.00	13.101 (1.008)	200.250 (0.639)	1.522 (0.233)	50.202 (4.828)	0.990	1.534 (0.242)	49.462 (2.959)	0.995 - (i	-1.755 0.246)	50.000 0.990 (3.023)	3.241 (0.333)	50.000 (5.872)	49.667 0.15 (4.901)	50 13.207 (1.003)	, 200.48£ (0.187)	3 1.522 (0.236)	49.898 (3.911)	0.985 1.530 (0.245	49.463 3) (2.959)	1.000	-1.760 49.95 (0.245) (2.930	0 0.995
	1.00	6.797 (0.485)	199.647 (0.667)	1.502 (0.176)	50.000 (1.743)	066.0	1.475 (0.181)	50.017 (1.439)	1.000 -	1.726 0.185)	50.098 0.995 (1.001)	2.650 (0.302)	50.156 (5.468)	49.688 0.6 ² (4.514)	40 7.082 (0.442)	200.504 (0.131)	1.501 (0.184)	50.101 (1.740)	0.990 1.479 (0.180	50.108 (1.369)	066.0	-1.733 50.074 (0.194) (0.776	8 0.990 (i
5	4.00	2.544 (0.185)	199.255 (0.210)	1.515 (0.125)	50.014 (0.192)	1.000	1.498 (0.098)	49.997 (0.301)	1.000 -	1.745 0.120)	49.989 1.000 (0.330)	2.483 (0.283)	50.136 (2.150)	50.035 0.95 (1.612)	35 2.924 (0.209)	200.50C (0.082)	0 1.517 (0.130)	50.020 (0.281)	1.000 1.498 (0.110	50.029) (0.526)	1.000	-1.746 49.99 (0.136) (0.405	6 1.000 5)
	1.00	1.349 (0.102)	199.246 (0.110)	1.499 (0.076)	50.007 (0.242)	1.000	1.509 (0.068)	50.000 (0.000)	1.000 -	1.761 0.073)	50.000 1.000 (0.000)	2.495 (0.162)	49.987 (0.180)	49.994 1.00 (0.090)	00 1.733 (0.106)	200.503 (0.063)	1.502 (0.090)	50.003 (0.284)	1.000 1.509 (0.091	50.014 () (0.202)	1.000	-1.757 50.00 (0.095) (0.000	0 1.000
10	4.00	1.281 (0.087)	199.240 (0.139)	1.504 (0.077)	50.000 (0.000)	1.000	1.503 (0.078)	49.993 (0.168)	1.000 -	1.750 0.078)	50.012 1.000 (0.123)	2.506 (0.204)	50.000 (0.000)	49.938 1.00 (0.617)	00 1.674 (0.111)	200.49£ (0.065)	3 1.501 (0.090)	50.000 (0.000)	1.000 1.494 (0.098	50.000 3) (0.000)	1.000	-1.749 50.01 (0.104) (0.127	3 1.000
	1.00	0.677 (0.055)	199.250 (0.081)	1.501 (0.052)	50.000 (0.000)	1.000	1.493 (0.054)	50.000 (0.000)	1.000 -	1.754 0.053)	49.994 1.000 (0.079)	2.505 (0.118)	49.991 (0.126)	50.009 1.00 (0.126)	00 1.064 (0.067)	200.505 (0.053)	0.068) (0.068)	50.000 (0.000)	1.000 1.495 (0.082	50.004 2) (0.062)	1.000	-1.758 49.99 (0.088) (0.089	4 1.000)
* <i>n</i> der Table 8 ** μ_{Z_1}	notes s 3. $=2\mu -$	sample siz $\frac{1}{2}i_{d_2d_3} = 2$	ze; <i>m</i> is nu 2 × 100.00	mber of r $-\frac{1}{2} \times 1.5$	eplication $0 = 199.25$	s; and σ_1 , $a_1^* = a_1$	$\frac{2}{6}$ is resid	ual variar $a_2^* = a_2 - a_2$	The for the form $\frac{1}{2}i_{d_2a_3} = \frac{1}{2}$	he pheni $2.00 - \frac{1}{2}$	otypic trait v $\times 1.00 = 1.50$	alue y_{tij} .	. The num $(1-\frac{1}{2}i_{a_2d_3}^{-1})$	bers in pare =(-1.00)-	in these a $\frac{1}{2} \times 1.50 =$	are standal = -1.75 a	rd deviatic nd $\vec{i}_{23} = i_i$	on and the $r_{2a_3}+i_{d_2d_3}$	e same is tru6 = 1.00 + 1.50	for the lat = 2.50, see	ter table e model	s except for T (3) for details	able 6 ti s.
doi:10.	1371/j	ournal.po	ne.002457	'5.t003																			

Table 4. Comparison of the proposed approach (Method A) with previous method (Method B) that does not consider augmented epistasis for mapping QTL of Z₂ under the F₂

		Methoc	ł A**												Metho	d B								
u u	$\sigma_{\rm c}^2$	MSe	μ_{Z_2}	QTL1			QTL ₂		ð	ìТL ₃		QTL2	×QTL ₃		MSe	μ_{Z_2}	QTL1		Ø	TL2		Ø	Ľ.	
				ď*	Position	Power	d2*	Position	یم مرجعت	*"	Power	\tilde{i}_{23}	^s noitizoq	Position ₃			q,	noitizoA	שיאר אין	Position	Power	ى ا	Position Power	
Parame	eter val	lues	2.50	1.50	50.00		-1.50	50.00	-	50	50.00	2.50	50.00	50.00			1.50	50.00	،	1.00 50	00.0	5	0 50.00	
200 1	4.00	13.033 (1.479)	2.566 (0.351)	1.658 (0.275)	49.351 (6.635)	0.770	-1.631 (0.275)	49.379 (8.184)	0.725 1.	.284) (i	19.737 0.76 8.608)	0 4.019 (0.506)	51.429) (10.885)	45.143 0.17) (14.219)	5 13.297 (1.424)	2.525 (0.252)	1.661 (0.292)	49.545 (5.906)	0.785 -1	.636 49 .282) (7.	9.801 0. .346)	.755 1.6	32 49.400 0.7 ¹ 292) (7.877)	50
	1.00	6.834 (0.761)	2.513 (0.227)	1.518 (0.237)	50.127 (4.821)	0.960	-1.511 (0.240)	49.848 (4.342)	0.985 1.	.518 5 .235) (;	60.084 0.99 5.822)	0 3.002 (0.447)	53.133 (11.469)	49.157 0.41 (10.146)	5 7.116 (0.741)	2.509 (0.192)	1.516 (0.237)	50.052 (4.007)	1- 0.970 0)	.520 49 .237) (4	9.846 0. .245)	.975 1.5 (0.	29 49.949 0.98 223) (5.392)	985
5	4.00	2.525 (0.276)	2.485 (0.117)	1.516 (0.155)	50.003 (0.836)	1.000	-1.496 (0.166)	49.942 (1.187)	1.000 1. (0	.494 <u>-</u> .166) (1.000) 0.99	5 2.537 (0.416)	50.011 (5.056)	50.320 0.90 (5.746)	5 2.906 (0.299)	2.479 (0.121)	1.527 (0.157)	49.982 (1.385)	1.000 -1 (0	.495 49 .184) (0.	.926) 0.	.995 1.5 (0.	12 49.997 0.9 177) (0.036)	95
	1.00	1.338 (0.146)	2.502 (0.096)	1.486 (0.114)	49.926 (0.533)	1.000	-1.490 (0.098)	49.978 (0.313)	1.000 1. (0	.507 5 .108) (i	60.033 1.00 0.308)	0 2.489 (0.260)	49.571 (2.067)	50.236 1.00 (2.416)	0 1.721 (0.163)	2.503 (0.087)	1.482 (0.137)	49.926 (0.956)	0.995 -1 (0	.488 50 .130) (0.	0.031 0. .661)	.995 1.5 (0.	15 50.044 0.9 135) (0.629)	95
10	4.00	1.269 (0.132)	2.512 (0.109)	1.497 (0.104)	50.022 (0.306)	1.000	-1.507 (0.126)	50.004 (0.311)	1.000 1. (0	.497 5 109) (i	60.010 1.00 0.451)	0 2.530 (0.319)	50.045 (2.162)	50.239 1.00 (2.571)	0 1.673 (0.150)	2.510 (0.093)	1.498 (0.122)	50.018 (0.261)	1.000 -1 (0	.518 50 .147) (0	.021 1.	.000 (0.	95 50.028 0.99 128) (0.490)	95
	1.00	0.686 (0.075)	2.502 (0.070)	1.496 (0.079)	50.000 (0.000)	1.000	-1.498 (0.075)	49.993 (0.098)	1.000 1.	.506 4 .073) (i	19.994 1.00 0.092)	0 2.490 (0.186)	49.967 (0.471)	50.017 0.99 (0.238)	5 1.073 (0.096)	2.501 (0.071)	1.502 (0.096)	50.000 (0.000)	1.000 -1 (0	.495 50 .122) (0.	.041 1. .480)	.000 1.5 (0.	15 50.000 1.00 118) (0.000)	8
400 1	4.00	12.764 (1.022)	2.473 (0.245)	1.523 (0.238)	50.282 (3.733)	066.0	-1.487 (0.237)	50.063 (4.238)	0.995 1. (0	504 4. .239) (·	19.594 0.98 4.020)	5 2.995 (0.478)	50.938 (8.835)	49.792 0.48 (9.059)	0 13.128 (0.980)	2.486 (0.186)	1.515 (0.251)	50.355 (3.867)	0.995 -1 (0	.503 49 .225) (4.:	.505) 0.	.990 1.5 (0.	19 49.848 0.9 239) (4.331)	06
	1.00	6.807 (0.523)	2.510 (0.143)	1.498 (0.174)	50.127 (1.460)	066.0	-1.475 (0.185)	50.394 (2.379)	0.995 1. (0	.478 4 .171) (1.959) 1.00	0 2.574 (0.376)	49.586 (6.110)	50.296 0.84 (6.585)	5 7.179 (0.498)	2.506 (0.137)	1.497 (0.170)	50.115 (1.763)	0.995 -1 (0	.471 50 .188) (1.:).151 0. .582)	.995 1. ² (0.	80 49.789 1.00 183) (1.730)	8
ŝ	4.00	2.544 (0.195)	2.510 (0.097)	1.498 (0.116)	49.981 (0.203)	1.000	-1.499 (0.111)	50.000 (0.000)	1.000 1. (0	.494 <u>5</u> .124) (i	60.020 1.00 0.390)	0 2.472 (0.309)	49.897) (2.057)	50.398 0.99 (3.529)	0 2.933 (0.212)	2.508 (0.080)	1.495 (0.133)	49.984 (0.163)	1.000 -1 (0	.500 49 .131) (0.	.301) 1.	.000 (0.	90 50.000 1.00 143) (0.000)	00
	1.00	1.348 (0.101)	2.500 (0.075)	1.502 (0.081)	49.991 (0.262)	1.000	-1.511 (0.076)	50.009 (0.131)	1.000 1. (G	.497 <u>-</u>	60.016 1.00 0.165)	0 2.507 (0.178)	50.017 (0.235)	49.983 1.00 (0.235)	0 1.736 (0.110)	2.500 (0.065)	1.502 (0.100)	49.985 (0.216)	1.000 -1 (0	.510 49 .103) (0.	.130) 1.	.000 1.4 (0.	97 50.000 1.00 396) (0.000)	00
10	4.00	1.261 (0.089)	2.504 (0.071)	1.500 (0.079)	50.029 (0.240)	1.000	-1.503 (0.076)	49.996 (0.058)	1.000 1. (0	.499 <u>5</u> 1.074) (1	0.000 1.00 0.000)	0 2.489 (0.208)	50.022 (0.249)	49.967 1.00 (0.326)	0 1.650 (0.117)	2.506 (0.071)	1.498 (0.093)	50.028 (0.236)	1.000 -1 (0	.510 50 .099) (0	.258) 1.	.000 (0.	01 50.002 1.00 098) (0.215)	00
	1.00	0.677 (0.054)	2.496 (0.065)	1.504 (0.058)	50.007 (0.092)	1.000	-1.491 (0.056)	50.000 (0.000)	1.000 1.	.502 ⁴ .054) (19.993 1.00 0.068)	0 2.512 (0.128)	50.012 (0.163)	49.994 1.00 (0.082)	0 1.069 (0.074)	2.498 (0.051)	1.502 (0.068)	49.998 (0.167)	1.000 -1 (0	.490 49 .083) (0.	.166) 1.	.000 (0.	00 49.996 1.00 387) (0.054)	8
* <i>n</i> der ** $\mu_{Z_2}^{-}$ = doi:10.1	notes s = $a_1 + c$ 1371/jo	sample siz $a_2 + a_3 = 1$ vurnal.por	e; m is nu 50+2.00 ne.002457	umber of)+(-1.0 5.t004	replicatic $0 = 2.50$,	$d_1^* = d_1$	$\sigma_{\rm c}^2$ is rescaled in the second secon	sidual variants $\frac{1}{2}$ $d_2 - \frac{1}{2}$	ance for $i_{a_2a_3} = ($ -	the phe -1.00)	notypic tr $\frac{1}{2} \times 1.00 =$	ait valué = – 1.50,	$g_{3} y_{tij}.$	$\frac{1}{2}i_{a_2a_3} = 2.00-$	$-\frac{1}{2} \times 1.00$	= 1.50 and	$\tilde{i}_{23} = i_{a_2d}$	$+i_{d_2a_3} =$	1.50 + 1.6	0=2.50, 5	see Mod	lel (6) fc	r details.	

Table 5. Mapping QTL for Z_3 under the F_2 metric model.

n	m	σ^2_{ϵ}	MSe	μ_{Z_3}	QTL ₂ ×Q	TL ₃						
					$i_{a_2d_3}$	Power	$i_{d_2 a_3}$	Power	$i_{d_2d_3}$	Power	Position ₂	Position ₃
Para	neter v	alues		0.50	1.50		1.00		1.50		50.00	50.00
200	1	4.00	49.410 (4.534)	0.508 (0.515)	4.283 (0.377)	0.045	5.353 (0.376)	0.010	6.659 (1.376)	0.025	50.250 (8.293)	49.450 (7.843)
		1.00	32.103 (3.311)	0.535 (0.396)	3.716 (0.235)	0.060	4.208 (0.840)	0.015	4.751 (0.281)	0.010	50.050 (8.175)	50.600 (7.274)
	5	4.00	9.993 (0.981)	0.498 (0.218)	2.499 (0.254)	0.155	2.302 (0.300)	0.030	3.471 (0.421)	0.045	49.750 (7.120)	50.050 (6.458)
		1.00	6.367 (0.609)	0.514 (0.175)	2.054 (0.244)	0.320	1.932 (0.233)	0.120	2.698 (0.324)	0.110	49.900 (6.260)	50.350 (5.050)
	10	4.00	4.961 (0.502)	0.509 (0.158)	1.809 (0.253)	0.440	1.748 (0.222)	0.135	2.336 (0.300)	0.150	49.950 (5.888)	49.850 (4.424)
		1.00	3.158 (0.338)	0.505 (0.120)	1.627 (0.252)	0.815	1.392 (0.178)	0.310	2.088 (0.306)	0.370	49.650 (4.179)	50.150 (3.396)
400	1	4.00	50.246 (3.427)	0.489 (0.350)	3.511 (0.393)	0.080	3.556 (0.184)	0.020	5.020 (0.519)	0.050	49.800 (7.432)	50.100 (7.434)
		1.00	31.734 (2.121)	0.511 (0.271)	2.838 (0.406)	0.150	2.778 (0.332)	0.045	4.008 (0.685)	0.040	50.250 (7.328)	49.550 (6.821)
	5	4.00	10.052 (0.675)	0.500 (0.152)	1.903 (0.253)	0.460	1.739 (0.182)	0.135	2.534 (0.267)	0.165	50.900 (5.947)	50.250 (4.853)
		1.00	6.391 (0.489)	0.515 (0.123)	1.627 (0.260)	0.800	1.450 (0.191)	0.225	2.009 (0.289)	0.350	49.850 (4.646)	50.300 (3.739)
	10	4.00	5.003 (0.386)	0.506 (0.124)	1.540 (0.277)	0.915	1.319 (0.190)	0.375	1.882 (0.256)	0.490	50.100 (3.750)	50.300 (2.820)
		1.00	3.174 (0.222)	0.495 (0.081)	1.495 (0.246)	0.995	1.117 (0.179)	0.755	1.633 (0.263)	0.820	50.400 (2.981)	50.250 (1.859)

* n denotes sample size; m is family replication number; and σ_x^2 is residual variance for the phenotypic trait value y_{tij} .

 $\mu_{Z_3} = r_{23}i_{a_2a_3} = 0.50 \times 1.00 = 0.50$, see Model (7) for details.

doi:10.1371/journal.pone.0024575.t005

estimate QTL additive (a_1) and dominance effect (d_1) when the QTL (QTL_1) acted independently; but provided biased estimation of QTL additive $(a_2 \text{ and } a_3)$ and dominance effects $(d_2 \text{ and } d_3)$ when the QTL acted dependently (QTL₂ and QTL₃). The additive $(a_2 \text{ and } a_3)$ and dominance effects $(d_2 \text{ and } a_3)$ d_3) of interactive QTL obtained by Method B in Tables 3 and 4 were indeed the newly defined additive effects $(a_2^* \text{ and } a_3^*)$ and the new dominance effects $(d_2^* \text{ and } d_3^*)$ with slightly poorer precision (little larger in standard deviation) in estimated QTL effects and positions and lower statistical power. This means that the new method was better than the previous methods of Kearsey et al. [12], Frascaroli et al. [16] and Li et al. [17] in the presence of epistasis. The higher statistical power and smaller error variance for method A over method B shows that the new method was also superior to the methods of Melchinger et al. [7,21] and Kusterer et al. [22]

To achieve the third objective of the simulation experiment, the F_2 and $F_{2:3}$ data were analyzed and the results under the F_2 metric model were listed in Tables 7 and 8. The results show that many effects could be estimated in an unambiguous and unbiased manner in the F_2 and $F_{2:3}$ genetic designs. In the situation of m=1, the F_2 design was superior to the both TTC and $F_{2:3}$ designs. The reasons are as follows. In all the above three designs, marker genotypes were from F_2 individuals. If m=1, genotype sampling error was large for both TTC and $F_{2:3}$ designs. Meanwhile, the proposed approach in this study did not consider the mixed distribution of the $F_{2:3}$ (or TTC) progeny derived from heterozygous F₂ parents. However, the powers in the detection of the main and epistatic QTL were smaller for the F_2 design than for the TTC design with m = 5 (or 10) when sample size (n) was small and/or environmental variance (σ_{ϵ}^2) was large, and the same trend was obtained for the precision of the estimates for the effects and the positions of the main and epistatic QTL. For example, when n = 200 and $\sigma_{\varepsilon}^2 = 4.00$, the power for main effects a_1 and d_1 were 0.850 and 0.775 and the standard deviation (SD) were 0.253 and 0.308, respectively, in F_2 design (Table 7); while the power for a_1 and d_1 were 1.000 and 1.000 and the SD were 0.118 and 0.104, respectively, in TTC design with a family replication of 10 (Tables 3 and 4). This may be due to the fact that the phenotypic value is measured from F_2 individuals and from the TTC family, and the family mean can be used to decrease the residual variance and to improve the precision of the phenotypic data. Both the TTC and F_{2:3} designs use family mean to decrease environmental variance and improve the precision of phenotype of quantitative trait. In addition, the dominant components decrease significantly in the $F_{2:3}$ design due to its self-crossing, and the statistical powers for detecting dominance effects, additive by dominance (dominance by additive) epistatic effect and especially dominance by dominance epistatic effect in the $F_{2,3}$ design will be lower than that in the TTC design. For example, when n = 400, m = 10 and $\sigma_{\varepsilon}^2 = 4.00$, the power of 0.170 for $i_{d_2d_3}$ in F_{2:3} (Table 8) was much lower than that of 0.490 in the TTC (Table 5). The genetic variance contributed by the simulated three QTL under TTC and F2:3 designs were

Table 6. Estimation of pure main and epistatic effects of QTL in the F₂-based TTC design using the two-step approach under the cases of n = 400, m = 10 and $\sigma_{\epsilon}^2 = 1.00$ (200 replicates).

Metric	Statistics	QTL ₁		QTL ₂		QTL ₃		QTL ₂ ×Q	TL ₃		
		a ₁	<i>d</i> ₁	a ₂	d ₂	a ₃	d ₃	$i_{a_2a_3}$	$i_{a_2 d_3}$	$i_{d_2 a_3}$	$i_{d_2d_3}$
Parameter	values	1.50	1.50	2.00	-1.00	-1.00	2.00	1.00	1.50	1.00	1.50
F ₂	Mean	1.501	1.504	2.028	-1.128	-1.025	1.865	0.886	1.466	1.075	1.633
	SD	0.052	0.058	0.108	0.214	0.100	0.214	0.262	0.200	0.190	0.263
	Power	1.000	1.000	1.000	1.000	1.000	1.000	0.820	0.995	0.995	0.820
F∞	Mean	1.502	1.504	2.049	-1.051	-1.062	1.940	0.797	1.468	1.080	1.724
	SD	0.055	0.063	0.213	0.305	0.193	0.306	0.263	0.224	0.219	0.264
	Power	1.000	1.000	1.000	1.000	1.000	1.000	0.670	0.990	0.990	0.670

doi:10.1371/journal.pone.0024575.t006

(Supporting Information S2):

$$V_{G}(Z_{1i}) = \frac{1}{2}(a_{1}^{2} + a_{2}^{2} + a_{3}^{2}) + \frac{1}{16}(i_{a_{2}a_{3}}^{2} + i_{d_{2}d_{3}}^{2})$$

+ $\frac{1}{8}(i_{a_{2}d_{3}}^{2} + i_{d_{2}a_{3}}^{2}) - \frac{1}{2}(a_{2}i_{d_{2}a_{3}} + a_{3}i_{a_{2}d_{3}}) + \frac{1}{8}i_{a_{2}a_{3}}i_{d_{2}d_{3}}$
$$V_{G}(Z_{2i}) = \frac{1}{2}(d_{1}^{2} + d_{2}^{2} + d_{3}^{2}) + \frac{1}{4}i_{a_{2}a_{3}}^{2} + \frac{1}{16}(i_{a_{2}d_{3}}^{2} + i_{d_{2}a_{3}}^{2})$$

- $\frac{1}{2}(d_{2} + d_{3})i_{a_{2}a_{3}} + \frac{1}{8}i_{a_{2}d_{3}}i_{d_{2}a_{3}}$

$$V_{\rm G}(Z_{3i}) = \frac{1}{8}(i_{a_2d_3}^2 + i_{d_2a_3}^2) + \frac{1}{16}i_{d_2d_3}^2$$

$$V_{G}(\bar{\mathbf{F}}_{2:3}) = \frac{1}{2}(a_{1}^{2} + a_{2}^{2} + a_{3}^{2}) + \frac{1}{16}(d_{1}^{2} + d_{2}^{2} + d_{3}^{2}) + \frac{1}{4}i_{a_{2}a_{3}}^{2}$$
$$+ \frac{1}{16}(i_{a_{2}d_{3}}^{2} + i_{d_{2}a_{3}}^{2}) + \frac{3}{256}i_{d_{2}d_{3}}^{2} - \frac{1}{4}(a_{2}i_{a_{2}d_{3}} + a_{3}i_{d_{2}a_{3}})$$
$$- \frac{1}{32}(d_{2} + d_{3})i_{d_{2}d_{3}}$$

These variance component can be used to interpret the above simulated experiments results.

Experiment II

The purpose of the simulation experiment was to show the statistical properties of the proposed approach in the TTC design when the augmented epistatic effects consisted of two epistatic effects of equal strength in opposite directions. The genetic parameters under both the F₂ and the F_{∞} the metric models were as follows: $\mu = 100.00$; $a_1 = 1.50$, $d_1 = 1.50$ for QTL₁; $a_2 = 2.00$, $d_2 = -1.00$ for QTL₂; $a_3 = -1.00$, $d_3 = 2.00$ for QTL₃; $i_{a_2a_3} = 1.00$, $i_{a_2d_3} = 1.50$, $i_{d_2a_3} = -1.00$ and $i_{d_2d_3} = -1.50$ for the epistatic effects between QTL₂ and QTL₃. The marginal heritabilities of these genetic effects now varied from 0.98% to 38.75%. The value of *m* was set at 5 and 10. The other settings were the same as those in Experiments I.

The results for Experiments II are listed in Table 9, Table 10, Table 11. The results show that the powers in the detection of the augmented epistatic effects (\vec{i}_{23} in Table 9 and \vec{i}_{23} in Table 10) were very low. The results are reasonable because the genetic contributions of the augmented epistatic effects to the genetic variance of Z_1 and Z_2 were low. However, the powers for pure epistatic effects (i_{ad} , i_{da} and i_{dd}) remained steady (Tables 5 and 11) because the genetic contributions for these effects do not change.

Experiment III

We simulated a large genome to explore the performance of the proposed method in real data analysis. The simulated genome was 1000.0 cM in total length and covered by 210 markers (10 chromosomes, each covered with twenty-one 5.0 cM equally spaced markers). Ten main-effect QTL and three pairs of interacted QTL, which totally explained $\sim 50\%$ variation of L₁, L_2 and L_3 , were assumed (Tables 12 and 13). The environmental variance (σ_{ϵ}^2) , sample size and family replication number were set at 6.0, 500 and 10, respectively. The mapping results from 200 samples under the F2 metric model were presented in Table 12 for the main-effect QTL and Table 13 for the epistatic QTL. Results from Table 12 showed that all the augmented main effects were unbiasedly estimated with satisfactory powers; and most pure additive and dominance effects were also unbiasedly estimated with the exception of pure dominance effects for QTL₅ and QTL₈. The results from Table 13 demonstrated that with Z_1 and Z_2 the augmented epistatic effects (\hat{i} and \hat{i}) were well estimated when they consisted of two epistatic effects with same sign (QTL₄ and QTL_7 , QTL_9 and QTL_{10}) and were poorly detected when they consisted of two epistatic effects of equal strength in opposite directions (i_{58} and i_{58} for QTL₅ and QTL₈); with Z_3 all the pure epistatic effects $(i_{ad}, i_{da} \text{ and } i_{dd})$ were well estimated, and no matter what signs they were; and all pure epistatic effects $(i_{aa}, i_{ad}, i_{da}$ and i_{dd}) estimated in the second stage were unbiased except for i_{aa} for QTL₅ and QTL₈ $(i_{a_5a_8})$. The failure of detecting i_{58} resulted in biased estimate for $i_{a_5a_8}$, which further caused bad estimate for d_5 and d_8 . These results were similar to those in simulation experiments I and II. The time cost was ~4.70h per sample on our person computer (CPU: Intel® CoreTM 2 DUO 3.0G, Memory: 2.0G).

Experiment IV

This simulation experiment was to consider the situation that QTL stands on the position in the marker interval. The three simulated QTL were placed at 45.0 (the middle of marker

Table	7. Rest	ults of QTI	- mapp	ing in F ₂	2 popul	ation ur	nder the F ₂	2 metric	c model	(400 replici	ations).								
<i>u</i>	τ ² ε	Statistics	MSe	ή	QTL1			QTL2			QTL ₃			QTL ₂ ×Q	Ľ				
					aı	d_{7}	Position	a2	d_2	Position	a ₃	d_3	Position	$i_{a_2a_3}$	$i_{a_2d_3}$	$i_{d_2a_3}$	$i_{d_2d_3}$	Position ₂	Position ₃
Paramet	er valu	sə		100.00	1.50	1.50	50.00	2.00	-1.00	50.00	-1.00	2.00	50.00	1.00	1.50	1.00	1.50	50.00	50.00
200 4	4.00	Mean	4.016	100.051	1.480	1.571	50.193	1.920	-1.267	49.951	-1.036	1.940	50.138	1.320	1.813	1.637	2.317	50.413	50.233
		SD	0.613	0.336	0.253	0.308	2.522	0.307	0.220	2.059	0.197	0.357	3.825	0.225	0.335	0.255	0.370	9.245	8.089
		Power			0.850	0.775		0.963	0.313		0.488	0.935		0.418	0.540	0.158	0.200		
-	1.00	Mean	0.979	99.984	1.469	1.479	50.013	1.979	-0.971	50.077	-0.961	1.967	49.962	0.980	1.485	1.032	1.516	50.086	50.058
		SD	0.137	0.142	0.133	0.179	0.271	0.132	0.160	0.867	0.141	0.184	1.649	0.178	0.272	0.193	0.311	2.974	2.940
		Power			0.998	0.993		1.000	0.920		0.923	0.998		0.960	0.995	0.730	0.848		
400 4	4.00	Mean	3.952	99.963	1.465	1.495	49.922	1.974	-1.039	49.920	-0.984	2.001	49.894	1.058	1.548	1.258	1.768	50.180	50.311
		SD	0.340	0.207	0.202	0.211	1.130	0.191	0.184	1.757	0.156	0.231	2.018	0.226	0.313	0.238	0.304	5.795	4.453
		Power			0.973	0.963		1.000	0.740		0.808	1.000		0.783	0.893	0.425	0.525		
-	1.00	Mean	0.970	99.995	1.498	1.504	49.998	1.997	-0.987	49.999	-0.994	2.000	50.005	0.995	1.502	0.997	1.531	49.959	49.952
		SD	0.079	0.065	0.078	0.111	0.080	0.085	0.111	060.0	0.089	0.111	0.369	0.119	0.166	0.163	0.237	0.966	1.364
		Power			1.000	1.000		1.000	0.993		0.998	1.000		0.995	1.000	0.985	0.998		
* <i>n</i> denot doi:10.137	:es samp 71/journa	le size; and al.pone.0024	$\sigma_{\rm E}^2$ is resic 575.t007	lual varianc	ce for the	phenoty,	oic trait value	Yuj.											

interval), 52.5 (the right of the sixth marker) and 47.5 cM (the left of the sixth marker), respectively. The number of individuals (m)for each TTC family was set at 5 and 10. The other settings were the same as those in the Experiment I. The results were shown in Table 14, Table 15, Table 16. The accuracies for the effects and the positions of QTL, as well as the empirical power, were satisfied but lower than those presented in Table 3, Table 4, Table 5; and the QTL effects were slightly underestimated because of the recombination between QTL and its adjacent marker.

Discussion

Compared to previous studies on the methodologies for the TTC, the method described here offers advantages over the previous approaches. First, with Z_1 or Z_2 all augmented main and epistatic effects $(a_k^*, d_k^*, i_{kl} \text{ and } \tilde{i}_{kl})$ were included simultaneously in one genetic model and estimated together by the E-Bayes approach. Our simulation studies showed that these augmented effects could be estimated with very high power and precision when the component epistatic effects $(i_{a_ka_l} \text{ and } i_{d_kd_l} \text{ or } i_{a_kd_l} \text{ and } i_{d_ka_l})$ of i_{kl} and \tilde{i}_{kl} have the same direction (Tables 3, 4 and 13). Even though these epistatic effects have different signs, the new approach works well for augmented main-effect QTL parameters (Tables 9, 10 and 12).

Second, with Z_3 three pure epistatic effects $(i_{a_k d_l}, i_{d_k a_l} \text{ and } i_{d_k d_l})$ were estimated simultaneously in this study by two-dimensional genome scans. Although we attempted to use a full genetic model that included all the digenic epistatic effects for the estimation of all the epistatic effects under the framework of E-Bayes, it failed. The reasons are unclear. To date, there have been several approaches to detect the epistasis in the RIL-based TTC and NCIII designs, little is currently reported about the estimation of more than two epistatic effects in the TTC. Frascaroli et al. [16] and Li et al. [17] adopted the mixed linear model approach of Wang et al. [20] to detect $i_{a_k a_l}$ in the analyses of Z_1 and $i_{d_k d_l}$ in the analyses of Z_2 ; and Kusterer et al. [22] and Melchinger et al. [21] used two-way ANOVA on L_3 and Z_3 for the detection of $i_{a_ka_l}$ and $i_{d_k d_l}$, respectively. However, the two studies involved only one digenic epistatic effect. Although multiple interval mapping has been used to detect the augmented epistatic effects (\vec{i}_{kl} and \vec{i}_{kl}) by Garcia et al. [34], the genetic design is NCIII and the estimate is a compound effect, not a pure epistatic effect. In addition, Reif et al. [24] proposed a two-step procedure to detect $i_{a_k a_l}$ with particular two-segment NILs.

Finally, many main and epistatic effects can be estimated in an unambiguous and unbiased manner by our two-step approach. In the first step, the augmented main and epistatic effects (a_k^*, d_k^*, i_{kl}) and \tilde{i}_{kl} and three pure epistatic effects $(i_{a_k d_l}, i_{d_k a_l} \text{ and } i_{d_k d_l})$ may be estimated in the separate analyses of Z_1 , Z_2 and Z_3 . In the next step, all four pure epistatic effects $(i_{a_ka_l}, i_{a_kd_l}, i_{d_ka_l} \text{ and } i_{d_kd_l})$ may be estimated by using the equation $i_{kl} = i_{a_k a_l} + i_{d_k d_l}$ and $\tilde{i}_{kl} = (i_{a_k d_l} + i_{d_k a_l})$ and pure additive and dominant effects may be further estimated by using the equations of a_k^* and d_k^* . The simulation results show that the two-step approach works well (Tables 6, 12 and 13). However, the pure epistatic effects $(i_{a_kd_l},$ $i_{d_k a_l}$ and $i_{d_k d_l}$) could not be detected with satisfactory statistical power when the sample size (n) and family replication number (m)were low (Tables 5 and 11). Therefore, a large n and m are needed for the detection of epistasis. To accommodate larger n, suitable field experimental designs, such as split-plot design [13,16] and block in replication [35], are desired to control for environmental error

The F_2 -based TTC design is superior to the F_2 design for the detection of main-effect and epistatic QTL when there is a small

Table 8. Results of QTL mapping in $F_{2:3}$ population under the F_2 metric model (200 replications)

"	ε	$\sigma_{\rm c}^2$	Statistics	MSe	μ	QTL1			QTL ₂			QTL3			QTL ₂ ×0	TL ₃				
						д,	qı	Position	đ2	d_2	Position	a ₃	d_3	Position	$i_{a_2a_3}$	$i_{a_2d_3}$	$i_{d_2a_3}$	$i_{d_2d_3}$	Position ₂	Position ₃
Para	ameter	values			100.00	1.50	1.50	50.00	2.00	-1.00	50.00	-1.00	2.00	50.00	1.00	1.50	1.00	1.50	50.00	50.00
200	-	4.00	Mean	7.447	99.577	1.555	3.266	49.298	1.644	-2.965	50.408	-1.432	3.056	48.289	1.568	3.661	3.724	6.774 4	49.180	49.727
			SD	0.992	0.442	0.350	0.363	6.508	0.303	0.182	5.546	0.256	0.396	9.174	0.279		0.756	0.673	15.060	11.073
			Power			0.260	0.035		0.485	0.015		0.160	0.040		0.130	0.005	0.190	0.010		
		1.00	Mean	4.598	99.659	1.520	2.492	49.739	1.629	-2.321	50.556	-1.316	2.495	49.191	1.213	2.676	3.005	5.471 4	48.164	50.340
			SD	0.625	0.417	0.276	0.431	5.123	0.303	0.251	4.390	0.218	0.383	5.834	0.191	0.247	0.570	. 689.0	16.695	10.972
			Power			0.535	0.095		0.720	0.015		0.260	0.095		0.320	0.015	0.260	0.015		
	5	4.00	Mean	1.647	99.756	1.451	1.875	49.996	1.688	-1.675	50.053	-1.205	1.874	49.470	0.986	2.023	2.139	3.924	50.490	49.984
			SD	0.228	0.327	0.205	0.450	1.910	0.284	0.303	3.002	0.216	0.352	4.288	0.171	0.413	0.520	1.001	7.294	7.627
			Power			0.810	0.150		0.950	0.165		0.630	0.350		0.785	0.155	0.265	0.030		
		1.00	Mean	0.958	99.825	1.449	1.601	49.905	1.780	-1.464	49.805	-1.132	1.743	49.969	0.973	1.666	1.684	3.168 4	19.669	50.851
			SD	0.156	0.344	0.170	0.314	1.741	0.258	0.302	2.049	0.222	0.387	3.680	0.142	0.307	0.409	0.453 4	4.729	5.057
			Power			0.965	0.405		0.965	0.375		0.780	0.570		0.975	0.415	0.255	0.105		
	10	4.00	Mean	0.798	99.912	1.486	1.562	50.019	1.808	-1.411	50.094	-1.119	1.661	50.083	0.970	1.602	1.542	2.957 4	49.405	49.872
			SD	0.122	0.282	0.113	0.259	0.946	0.245	0.241	1.606	0.188	0.316	2.209	0.157	0.305	0.443	0.601	4.014	5.857
			Power			0.980	0.585		066.0	0.370		0.795	0.700		0.975	0.510	0.290	0.110		
		1.00	Mean	0.480	99.878	1.485	1.524	50.077	1.895	-1.369	50.004	-1.102	1.598	50.090	0.971	1.462	1.163	2.738	50.324	50.007
			SD	0.087	0.270	0.103	0.249	0.861	0.200	0.229	1.200	0.190	0.332	1.135	0.099	0.294	0.287	0.661	2.936	3.537
			Power			0.975	0.710		1.000	0.650		0.935	0.835		1.000	0.800	0.395	0.120		
400	-	4.00	Mean	7.535	99.635	1.449	2.241	49.375	1.668	-2.508	49.907	-1.263	2.500	49.643	1.145	2.979	2.809	5.061 4	47.713	49.927
			SD	0.621	0.365	0.233	0.304	3.559	0.315	0.580	3.263	0.218	0.383	4.957	0.187	0.316	0.532	0.533	10.857	9.961
			Power			0.535	0.055		0.730	0.050		0.330	0.110		0.510	0.050	0.300	0.015		
		1.00	Mean	4.405	99.759	1.490	1.940	50.294	1.639	-1.831	49.843	-1.195	2.013	50.567	1.017	2.514	2.231	4.379	50.307	50.276
			SD	0.382	0.368	0.208	0.351	3.063	0.287	0.269	1.892	0.313	0.392	5.326	0.169	0.375	0.545 (0.364 9	9.151	6.021
			Power			0.785	0.225		006.0	0.125		0.545	0.295		0.860	0.100	0.250	0.020		
	2	4.00	Mean	1.486	99.888	1.465	1.543	50.217	1.848	-1.448	49.858	-1.130	1.764	50.073	0.994	1.555	1.502	3.301	50.372	49.942
			SD	0.142	0.271	0.142	0.277	1.682	0.242	0.267	1.327	0.210	0.423	1.339	0.137	0.300	0.375	0.895	3.409	4.417
			Power			0.935	0.640		066.0	0.485		0.850	0.730		1.000	0.615	0.310	0.205		
		1.00	Mean	0.879	99.869	1.486	1.505	50.073	1.933	-1.424	49.963	-1.080	1.639	49.998	0.994	1.452	1.161	2.852	50.372	50.199
			SD	0.089	0.222	0.092	0.247	0.795	0.159	0.224	0.490	0.200	0.344	1.347	0.080	0.289	0.272	0.927	2.272	3.123
			Power			0.985	0.720		1.000	0.740		0.950	0.895		1.000	0.890	0.505	060.0		
	10	4.00	Mean	0.740	99.923	1.499	1.504	50.062	1.941	-1.389	49.950	-1.081	1.665	50.006	0.994	1.437	1.104	2.945 4	49.811	49.771
			SD	0.065	0.178	0.075	0.228	0.720	0.156	0.208	0.707	0.163	0.351	0.508	0.089	0.283	0.223	0.845	2.789	2.498
			Power			1.000	0.905		1.000	0.740		0.935	0.960		1.000	0.925	0.625	0.170		
		1.00	Mean	0.429	99.936	1.497	1.487	49.966	1.982	-1.355	49.983	-1.029	1.715	50.008	0.998	1.473	0.955	2.409 4	49.862	49.872
			SD	0.036	0.139	0.060	0.215	0.626	0.109	0.178	0.185	0.091	0.284	0.080	0.050	0.221	0.181	0.736	1.653	2.063
			Power			1.000	0.965		1.000	0.865		1.000	0.990		1.000	0.995	0.930	0.180		
* 2 0	denote:	s sample	size; <i>m</i> is famil	y replicatio	on number;	and $\sigma_{ m s}^2$ is re	sidual variā	ance for the p	henotypic	trait value	Yuj.									
doi:	10.1371	/journal.p	oone.0024575.tv	008																

Table 9. Results of mapping QTL of Z₁ under F₂ metric model while augmented epistatic effects consisted of two epistatic effects of equal strength in opposite directions (200 replications).

2	E	$\sigma_{\rm c}^2$	MSe	μ_{Z_1}	QTL1			QTL ₂			QTL ₃			QTL₂×QT L	ŝ		
					a,*	Position	Power	a_* a_	Position	Power	a * a	Position	Power	\vec{i}_{23}	Position ₂	Position ₃	Power
Paran	neter va	lues		200.75	1.50	50.00		2.50	50.00		-1.75	50.00		-0.50	50.00	50.00	
200	5	4.00	2.567 (0.280)	200.502 (0.151)	1.488 (0.162)	49.977 (0.322)	1.000	2.501 (0.152)	49.973 (0.280)	1.000	-1.740 (0.174)	50.000 (0.000)	1.000				0.000
		1.00	1.349 (0.143)	200.502 (0.107)	1.496 (0.103)	50.028 (0.535)	1.000	2.503 (0.096)	50.000 (0.000)	1.000	-1.748 (0.101)	50.000 (0.000)	1.000				0.000
	10	4.00	1.264 (0.128)	200.506 (0.101)	1.496 (0.108)	50.007 (0.337)	1.000	2.494 (0.109)	49.998 (0.144)	1.000	-1.753 (0.121)	49.987 (0.244)	1.000	-1.079	40.000	40.000	0.005
		1.00	0.684 (0.081)	200.514 (0.121)	1.513 (0.081)	49.969 (0.253)	1.000	2.498 (0.064)	49.995 (0.065)	1.000	-1.749 (0.077)	50.019 (0.202)	1.000	-0.888 (0.096)	53.333 (15.275)	43.333 (5.774)	0.015
400	ŝ	4.00	2.530 (0.193)	200.515 (0.127)	1.494 (0.113)	50.009 (0.576)	1.000	2.504 (0.107)	49.994 (0.088)	1.000	-1.744 (0.126)	50.051 (0.362)	1.000				0.000
		1.00	1.337 (0.099)	200.507 (0.104)	1.500 (0.080)	50.000 (0.000)	1.000	2.501 (0.066)	49.995 (0.070)	1.000	-1.751 (0.078)	49.985 (0.208)	1.000				0.000
	10	4.00	1.275 (0.100)	200.517 (0.127)	1.488 (0.079)	50.000 (0.000)	1.000	2.492 (0.073)	50.000 (0.077)	1.000	-1.750 (0.079)	49.999 (0.216)	1.000	-0.880 (0.036)	60.000 (15.492)	50.000 (21.909)	0.030
		1.00	0.677 (0.057)	200.512 (0.088)	1.503 (0.056)	49.996 (0.057)	1.000	2.500 (0.049)	50.000 (0.000)	1.000	-1.756 (0.059)	50.000 (0.000)	1.000	-0.676 (0.074)	52.500 (14.880)	45.000 (5.345)	0.040
* n de $\mu_{Z_1} = 1$ de details dei 10	notes sar $2\mu - \frac{1}{2}id_2d$;	mple size; $n_{b_{\rm s}} = 2 \times 100.0$	η is family re $00 - \frac{1}{2} \times (-1)$	plication nu 1.50)=200.7	umber; and σ_1^* 5, $a_1^* = a_1 = 1$	² is residual vi .50, $a_2^* = a_2 - \frac{1}{2}$	ariance for th $\frac{1}{2}i_{d_2a_3}=2.00-$	le phenotypic - $\frac{1}{2} \times (-1.00)$	trait value y_{ij} = 2.50, $a_3^* = a_3$	$i - \frac{1}{2}i_{a_2 d_3} = (-$	$-1.00) - \frac{1}{2} \times 1.00$.50=-1.75 aı	nd $\vec{i}_{23} = i_{a_2a_3} + $	- $i_{d_2d_3} = 1.00 +$	(-1.50) = -0	.50, see Mode	l (3) for

Table 10. Results of mapping QTL of Z_2 under the F_2 metric model while augmented epistatic effects consisted of two epistatic effects of equal strength in opposite directions (200 replications).

	Power		0.015	0.020	0.035	0.055	0.040	0.035	0.120	0.240	ils.
	Position ³	50.00	60.000 (20.000)	62.500 (17.078)	54.286 (9.759)	44.545 (11.282)	47.500 (12.817)	48.571 (12.150)	50.000 (10.215)	48.750 (9.368)	lel (6) for deta
L3	Position ₂	50.00	50.000 (10.000)	50.000 (14.142)	41.429 (22.678)	51.818 (15.374)	52.500 (19.086)	54.286 (7.868)	46.250 (11.726)	50.208 (11.938)	=0.50, see Mod
QTL ₂ ×QTI	${ ilde i}_{23}$	0.50	1.605 (0.074)	1.198 (0.226)	1.141 (0.181)	0.852 (0.127)	1.218 (0.184)	0.896 (0.112)	0.909 (0.103)	0.647 (0.060)	.50+(-1.00)
	Power	ī	0.995	1.000	1.000	1.000	1.000	1.000	1.000	1.000	$d_3 + i d_{2a_3} = 1$
	Position	50.00	50.014 (0.920)	50.007 (0.564)	49.979 (0.299)	50.000 (0.000)	50.017 (0.242)	49.990 (0.209)	49.991 (0.123)	50.003 (0.046)	.50 and $\tilde{i}_{23} = i_{a_2}$
QTL ₃	d_{3}^{*}	1.50	1.526 (0.156)	1.482 (0.105)	1.491 (0.129)	1.496 (0.074)	1.515 (0.113)	1.514 (0.075)	1.501 (0.074)	1.499 (0.056)	$-\frac{1}{2} \times 1.00 = 1$
	Power		0.995	1.000	1.000	1.000	1.000	1.000	1.000	1.000	$i_{a_2a_3} = 2.00 -$
	Position	50.00	49.935 (1.198)	50.045 (0.375)	49.994 (0.235)	49.990 (0.139)	49.986 (0.195)	50.002 (0.165)	49.987 (0.233)	50.000 (0.000)	: trait value y_{ij} . -1.50, $d_3^* = d_3 - \frac{1}{2}$
QTL ₂	d_2^*	-1.50	-1.512 (0.146)	-1.500 (0.109)	-1.507 (0.113)	-1.498 (0.070)	-1.504 (0.107)	-1.502 (0.065)	-1.490 (0.072)	-1.500 (0.046)	ie phenotypic $-\frac{1}{2} \times 1.00 = -$
	Power		1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	riance for the $=(-1.00)$
	Position	50.00	50.032 (1.635)	49.981 (0.515)	50.028 (0.306)	50.000 (0.155)	50.000 (0.000)	50.008 (0.253)	50.029 (0.234)	50.003 (0.045)	${a}^2_{ m E}$ is residual va $d^2_{ m 2}=d_2-{1\over 2}i_{a_2a_2}$
QTL1	d_{7}^{*}	1.50	1.483 (0.175)	1.496 (0.098)	1.501 (0.119)	1.496 (0.075)	1.498 (0.123)	1.502 (0.084)	1.500 (0.076)	1.501 (0.052)	mber; and $\sigma_1^* = d_1 = 1.50$,
μ_{Z_2}		2.50	2.513 (0.153)	2.495 (0.111)	2.500 (0.113)	2.500 (0.078)	2.507 (0.120)	2.498 (0.071)	2.509 (0.097)	2.505 (0.059)	ly replication $(1.00) = 2.50, d_1^s$
MSe			2.501 (0.266)	1.327 (0.151)	1.271 (0.135)	0.674 (0.080)	2.519 (0.199)	1.327 (0.102)	1.277 (0.084)	0.669 (0.049)	e; <i>m</i> is famil)+2.00+(-
$\sigma_{\rm c}^2$		r values	4.00	1.00	4.00	1.00	4.00	1.00	4.00	1.00	s sample siz $t_2 + a_3 = 1.50$
u m		Paramete	200 5		10		400 5		10		* <i>n</i> denote $\mu_{Z_2} = a_1 + \epsilon$

2 *a2a3 = 53 5 n N - (nn-2 $\frac{2}{2}$ $t_{a_2a_3}$ 22 51 Ē a^{1} $\mu_{Z_2} = a_1 + a_2 + a_3 = 1.50 + 2.00 + (-1.00)$ doi:10.1371/journal.pone.0024575.t010 **Table 11.** Results of mapping QTL of Z_3 under F_2 metric model while augmented epistatic effects consisted of two epistatic effects of equal strength in opposite directions (200 replications).

n	m	σ_{ϵ}^2	MSe	μ_{Z_3}	QTL ₂ ×Q	TL ₃						
					$i_{a_2d_3}$	Power	$i_{d_2a_3}$	Power	$i_{d_2d_3}$	Power	Position ₂	Position ₃
Param	eter val	ues		0.50	1.50		-1.00		-1.50		50.00	50.00
200	5	4.00	9.868 (0.969)	0.489 (0.201)	2.397 (0.281)	0.205	-2.342 (0.353)	0.040	-3.292 (0.286)	0.060	50.200 (6.571)	49.550 (6.597)
		1.00	6.303 (0.622)	0.484 (0.191)	2.055 (0.296)	0.330	-1.933 (0.200)	0.085	-2.811 (0.424)	0.105	50.550 (5.863)	49.500 (5.559)
	10	4.00	4.946 (0.502)	0.484 (0.147)	1.879 (0.288)	0.540	-1.681 (0.161)	0.140	-2.429 (0.272)	0.185	49.600 (5.657)	49.950 (4.860)
		1.00	3.224 (0.350)	0.506 (0.138)	1.656 (0.280)	0.700	-1.412 (0.173)	0.240	-2.079 (0.282)	0.335	50.000 (4.702)	50.300 (4.243)
400	5	4.00	9.953 (0.775)	0.490 (0.155)	1.866 (0.302)	0.535	-1.705 (0.201)	0.095	-2.422 (0.283)	0.205	50.650 (5.589)	49.800 (5.395)
		1.00	6.312 (0.496)	0.511 (0.126)	1.638 (0.274)	0.780	-1.404 (0.143)	0.275	-2.050 (0.259)	0.390	49.950 (4.860)	50.200 (4.005)
	10	4.00	4.923 (0.350)	0.501 (0.121)	1.591 (0.284)	0.910	-1.314 (0.219)	0.405	-1.856 (0.264)	0.490	49.950 (4.312)	49.850 (3.680)
		1.00	3.200 (0.237)	0.493 (0.089)	1.499 (0.266)	0.995	-1.106 (0.157)	0.725	-1.595 (0.267)	0.825	49.900 (3.006)	49.950 (2.351)

* *n* denotes sample size; *m* is family replication number; and σ_{i}^2 is residual variance for the phenotypic trait value y_{tij} . $\mu_{Z_1} = r_{23}i_{a_2a_3} = 0.50 \times 1.00 = 0.50$, see Model (7) for details. doi:10.1371/journal.pone.0024575.t011

Table 12. Simulated and estimated main-effect QTL position and effects for large genome data under the F₂ metric model (200 replications).

Main effect QTL	True pa	aramet	er			Estimat	te at the fi	irst stage				Estima	te at the	second s	tage	
	Posi. (cM)	Pure main effec	i :ts	Augm main	ented effects	<i>Z</i> 1			<i>Z</i> ₂			а	Power	d	Power	Posi.
		а	d	a [*]	ď	a*	Posi.	Power	ď	Posi.	Power					
QTL ₁	30.00	-1.00	0.50	-1.00	0.50	-0.992 (0.094)	30.000 (0.709)	1.000	0.510 (0.092)	28.453 (6.726)	0.695	-0.992 (0.094)	1.000	0.510 (0.092)	0.695	29.463 (2.878)
QTL₂	75.00	1.00	-1.00	1.00	-1.00	0.987 (0.098)	74.949 (1.131)	0.980	-0.937 (0.155)	75.003 (1.642)	1.000	0.987 (0.098)	0.980	-0.937 (0.155)	1.000	74.997 (1.119)
QTL ₃	150.00	0.70	0.00	0.70	0.00	0.677 (0.096)	150.102 (3.078)	0.980	(.)	(.)	•	0.677 (0.096)	0.980			150.102 (3.078)
QTL₄	235.00	1.50	-1.00	1.00	-1.50	0.993 (0.099)	235.029 (0.797)	0.995	-1.468 (0.107)	234.975 (0.354)	1.000	1.482 (0.155)	1.000	-1.006 (0.263)	1.000	235.002 (0.436)
QTL₅	465.00	1.20	0.60	1.50	0.90	1.488 (0.110)	465.000 (0.000)	1.000	0.882 (0.099)	465.189 (1.426)	0.985	1.207 (0.171)	1.000	0.207 (0.367)	1.000	465.093 (0.708)
QTL ₆	555.00	-0.50	1.00	-0.50	1.00	-0.500 (0.086)	555.211 (5.339)	0.910	0.976 (0.108)	555.048 (1.329)	0.995	-0.500 (0.086)	0.910	0.976 (0.108)	0.995	555.133 (2.636)
QTL ₇	675.00	-1.00	1.50	-1.75	1.00	-1.744 (0.096)	675.000 (0.000)	1.000	0.993 (0.112)	675.162 (1.301)	0.995	-0.997 (0.138)	1.000	1.450 (0.272)	1.000	675.080 (0.649)
QTL ₈	740.00	-0.70	1.30	-1.30	1.60	-1.295 (0.097)	739.975 (0.354)	1.000	1.584 (0.105)	740.000 (0.000)	1.000	-0.697 (0.210)	1.000	0.922 (0.361)	1.000	739.988 (0.177)
QTL ₉	830.00	0.00	0.00	0.50	0.50	0.534 (0.106)	829.632 (5.402)	0.815	0.524 (0.098)	829.588 (6.104)	0.910	0.083 (0.327)	0.900	0.021 (0.516)	0.985	829.477 (4.845)
QTL ₁₀	870.00	0.00	0.00	0.50	0.50	0.535 (0.099)	869.859 (4.750)	0.885	0.512 (0.096)	870.322 (6.115)	0.855	0.112 (0.349)	0.955	-0.018 (0.547)	0.990	869.987 (4.063)

doi:10.1371/journal.pone.0024575.t012

lable 13.	Simulat	ed and	estim	ated	epista	מ נונ	o II	sitions	and ett	ects tor I	large gen	iome dat	a undei	r the F ₂ r	netric m	odel (7	uu repiic	ations).				
Epistatic QTL	True par.	ameter							Estimate	at the first	: stage											
	Posi. A (cM)	Posi. B (cM)	Pure	epistati	ic effec	ts	Augm epista effect:	iented itic s	z				12				m					
			i_{aa}	i_{ad}	i_{da}	i_{dd}		ĩ		Posi. A	Posi.	Power	ĩ	Posi. A	Posi. B P	ower	p	da i_a	ⁿ	osi. A	Posi. B	Power
QTL4×QTL7	235.00	675.00	1.00	1.50	1.00	1.50	2.50	2.50	2.501 (0.287)	234.995 (2.309)	675.025 (1.543)	1.000	2.450 (0.312)	234.922 (2.102)	674.930 0. (1.872)	086	.528 0.342)	.022 1 0.348) ((.577 25 .485) (6	36.025 5.405)	675.550 (4.854)	1.000
QTL5 ×QTL8	465.00	740.00	-0.60	1.20	-0.60	1.20	0.60	0.60	1.092 (.)	475.000 (.)	740.000 (.)	0.005	1.078 (0.173)	466.486 (17.633)	739.324 0. (18.603)	.185 1	.257 0.299)	0.632 1 0.352) ((.424 46 .575) (8	54.516 3.886)	740.591 (6.100)	0.930
QTL9×QTL10	830.00	870.00	-1.00	-1.00	-1.00	-1.00	-2.00	-2.00	-1.971 (0.275)	829.578 (3.499)	870.361 (3.836)	0.830	-1.935 (0.337)	830.300 (2.664)	870.287 0. (4.207)	- 586.	1.223	1.187 -1 0.532) ((.270 82 .554) (1	23.921 0.713)	875.612 (10.098)	0.695
										Esti	imate at the	second sta	ge									
										iaa	•	ower	i_{ad}	Power	i ida		Power	i_{dd}	Ром	/er	Posi. A	Posi. B
QTL4×QTL7	235.00	675.00	1.00	1.50	1.00	1.50				0.92	4 70) 1	000	1.494 (0.300)	1.000	0.98 (0.27	7 72)	1.000	1.577 (0.485)	1.00	0	235.298 (2.453)	675.186 (1.780)
QTL5 ×QTL8	465.00	740.00	-0.60	1.20	-0.60	1.20				-1.4	24 0 75) 0	930	1.285 (0.290)	0.930	-0.6(4 1	0.930	1.424 (0.575)	0.93	0	464.656 (9.3 16)	740.556 (7.221)
QTL9×QTL10	830.00	870.00	-1.00	-1.00	-1.00	-1.00				-1.0	25 0 72) 0	.890	-1.055 (0.509)	0.695	-1.03	37 23)	0.695	-1.270 (0.554)	0.57	0	828.471 (3.777)	871.732 (4.528)
doi:10.1371/jc	urnal.pone	.0024575.	t013																			

Mapping Epistatic QTL in the TTC Design

sample size and a large residual variance (Tables 3, 4, 5 and 7), and is more powerful for estimating d_k , $i_{a_kd_l}$ (or $i_{d_ka_l}$) and especially $i_{d_kd_l}$ than the $F_{2:3}$ design (Tables 4, 5 and 8). The new method may be extended to the TTC design derived from other base populations, such as RIL, BC and DH. This is because the genetic models for Z_1 , Z_2 and Z_3 in these new TTC designs can be described in the same manner. In Tables S7, S8 and **Supporting Information S3** we only presented the expected genetic values and genetic variance for Z_1 , Z_2 and Z_3 under both the F_2 and the F_{∞} metric models in the RIL-based TTC design.

The proposed approach in this study differs from the previous methods of Kearsey et al. [12], Frascaroli et al. [16], Melchinger et al. [7,21] and Li et al. [17]. First, the former derives the linear regression models for Z_1 , Z_2 and Z_3 and the latter makes use of ANOVA. Thus, the precondition for the former is to derive the dummy variables for each genetic effects, whereas the precondition for the latter is to obtain the expectation and expected mean squares. In the expectation and expected mean squares, if one effect is confounded by another effect, these confounded effects may be estimated together. That is the augmented effect in the above ANOVA. If there are multicollinear relationships among dummy variables, the corresponding effects cannot be estimated. However, the effect combination is estimable. That is the augmented effect in the linear regression analysis. This can explain why we construct augmented effects. Second, we consider all the main-effect QTL and all the digenic interactions in one model of Z_1 or Z_2 , all the augmented additive, dominance and epistatic effects have been rightly defined, and all the pure main and epistatic effects can be unbiasedly estimated. Although in the previous studies the augmented additive and dominant effects (a_k^*) and d_k^* have been rightly defined and are clearly confounded by QTL × genetic background epistasis in the RIL-based TTC and NCIII designs [7,21,22], the augmented epistatic effects have been ignored. This neglect would result in a biased estimation for the augmented main effects, a larger residual variance and a lower power of QTL detection (Tables 3 and 4). In addition, with Z_3 we can estimate three types of pure epistatic effects (ad, da and dd) using two-dimensional genome scans. This differs from Melchinger et al. [21], in which only dd epistasis can be obtained.

The F_2 and F_{∞} are two main metrics that are adopted for populations derived from a cross between two inbred lines. The F₂ metric is orthogonal for the F_2 population when epistatic genes are under linkage equilibrium, whereas the F_{∞} metric is orthogonal for homozygous lines [28-30]. An orthogonal model implies that estimates of the genetic effects are consistent in a full and reduced model and is directly related to the partition of the genetic variance in the population. Using different models does not influence the detection of the main and epistatic QTL, but it does influence the estimation and interpretation of genetic effects [30]. Melchinger et al. [7,21] and Kusterer et al. [13,22] advocated the F_2 metric in the RIL-based NCIII and TTC designs for three reasons: (1) it has the advantage that each variance component is proportional to the sum of the squares of the corresponding genetic effects and does not involve any other type of genetic effects that could obscure their interpretation; (2) epistatic interactions by two-way ANOVAs for pairs of marker loci using Z_{3i} was just i_{dd} ; and (3) with digenic epistasis, midparent heterosis $MPH = [d] - [i_{aa}]$ involves only i_{aa} beside dominance effects, whereas under the F_{∞} metric MPH is additionally influenced by i_{dd} . For F₂-based TTC design, neither F₂ nor F_{∞} metric models are orthogonal (**Supporting Information S2**). With the Z_1 and Z_2 the newly defined parameters $(a_k^*, d_k^*, i_{kl} \text{ and } \dot{i}_{kl})$ were all rightly identified and estimated by our full model methods under both metrics (Tables 3, 4, 12 and 13), and with Z_3 the pure epistatic

ns).	
icatio	
) repl	
s (200	
ervals	
er int	
mark	
the I	
ion ir	
posit	
the ו	
ed or	
e plac	
were	
I QTL	
ulated	
e sim	
ile the	
i whi	
mod€	
letric	
. F ₂ m	
under	
of Z ₁ I	
QTL 6	
ping	
map	
ilts of	
Resu	
e 14.	
Table	

u m	$\sigma_{\rm c}^2$	MSe	μ_{Z_1}	QTL1			QTL ₂			QTL ₃			QTL ₂ ×QTL			
				a,*	Position	Power	a_* a_	Position	Power	a ₃ *	Position	Power	\vec{i}_{23}	Position ₂	Position ₃	Power
Paramete	er values		199.25	1.50	45.00		1.50	52.50		-1.75	47.50		2.50	52.50	47.50	
200 5	4.00	3.103 (0.372)	199.934 (0.694)	1.382 (0.199)	45.380 (5.393)	0.970	1.423 (0.210)	51.059 (3.507)	0.995	-1.648 (0.227)	49.096 (3.064)	0.955	2.626 (0.414)	52.674 (6.217)	46.628 (7.763)	0.430
	1.00	1.822 (0.246)	199.535 (0.505)	1.382 (0.229)	45.209 (4.495)	066.0	1.415 (0.185)	50.901 (2.590)	0.985	-1.649 (0.203)	48.993 (2.324)	1.000	2.367 (0.323)	52.369 (5.387)	47.588 (6.719)	0.805
10	4.00	1.696 (0.212)	199.529 (0.510)	1.374 (0.230)	45.632 (4.376)	0.980	1.438 (0.186)	50.952 (2.923)	1.000	-1.651 (0.195)	49.151 (2.174)	1.000	2.360 (0.321)	52.184 (7.483)	48.710 (6.328)	0.815
	1.00	1.062 (0.145)	199.353 (0.241)	1.407 (0.221)	45.281 (3.372)	1.000	1.446 (0.149)	51.105 (2.159)	1.000	-1.698 (0.132)	48.983 (1.823)	1.000	2.328 (0.281)	51.180 (4.350)	48.610 (4.512)	0.970
400 5	4.00	2.960 (0.220)	199.401 (0.333)	1.412 (0.245)	45.133 (3.907)	0.985	1.434 (0.151)	50.673 (1.819)	1.000	-1.653 (0.191)	49.272 (1.600)	1.000	2.319 (0.321)	51.885 (4.285)	48.303 (5.823)	0.935
	1.00	1.743 (0.142)	199.327 (0.139)	1.462 (0.159)	44.936 (2.582)	1.000	1.449 (0.128)	50.911 (1.655)	1.000	-1.690 (0.120)	49.059 (1.454)	1.000	2.312 (0.282)	51.512 (3.547)	48.608 (3.536)	0.985
10	4.00	1.653 (0.128)	199.349 (0.149)	1.468 (0.164)	44.879 (2.565)	1.000	1.439 (0.148)	50.761 (1.395)	1.000	-1.697 (0.136)	49.032 (1.347)	1.000	2.263 (0.301)	51.528 (3.598)	49.020 (2.967	0.985
	1.00	1.048 (0.085)	199.315 (0.129)	1.484 (0.095)	44.978 (1.871)	1.000	1.467 (0.106)	51.103 (1.353)	1.000	-1.716 (0.086)	48.868 (1.138)	1.000	2.315 (0.283)	51.226 (2.697)	48.429 (3.104	0.995
* <i>n</i> denot: ** $\mu_{Z_1} = 2\mu_{J_1}$ doi:10.137	es sample siz $u - \frac{1}{2}i_{d_2d_3} = 2$ 1/journal.por	ze; <i>m</i> is nun × 100.00- ne.0024575.	nber of replic. $\frac{1}{2} \times 1.50 = 199$ t014	ations; and $\sigma_{\rm e}^2$	is residual var 1.50, $a_2^* = a_2 - a_2$	iance for the $\frac{1}{2}id_{2a_3} = 2.00 -$	phenotypic t - $\frac{1}{2} \times 1.00 = 1.$	frait value y_{ij} . 50, $a_3^* = a_3 - \frac{1}{2}$	$\frac{1}{2}i_{a_2d_3} = (-1.0)$	$(0) - \frac{1}{2} \times 1.50 =$	= 1.75 and 2	$\vec{i}_{23} = i_{a_2 a_3} + i_{a_2}$	$d_3 = 1.00 + 1.5$)=2.50, see m	o rodel (3) for o	letails.

ations)
replica
(200
ervals
ker int
e mar
n in th
ositior
the p
ed on
e place
L wer
ed QT
mulat
the si
while
nodel
netric I
r F ₂ π
, unde
L of Z
ng QT
nappii
lts of r
Resul
- 15.
Table

.

u n	$\sigma_{\rm c}^2$	MSe	μ_{Z_2}	QTL1			QTL ₂			QTL ₃			QTL ₂ ×QTL			
				d_{1}^{*}	Position	Power	d_2^*	Position	Power	d_3^*	Position	Power	\tilde{i}_{23}	Position ₂	Position ₃	Power
Paramete	r values		2.50	1.50	45.00		-1.50	52.50		1.50	47.50		2.50	52.50	47.50	
200 5	4.00	2.918 (0.329)	2.500 (0.166)	1.354 (0.196)	44.345 (5.383)	0.970	-1.445 (0.196)	51.141 (3.880)	0.980	1.430 (0.175)	48.471 (3.585)	0.985	2.495 (0.439)	52.555 (7.982)	48.046 (8.1 <i>7</i> 7)	0.755
	1.00	1.735 (0.204)	2.488 (0.120)	1.362 (0.207)	44.709 (4.701)	0.970	-1.392 (0.193)	50.974 (2.755)	0.985	1.399 (0.198)	49.030 (2.688)	066.0	2.358 (0.351)	51.678 (6.702)	47.335 (5.861)	0.940
10	4.00	1.630 (0.187)	2.497 (0.115)	1.378 (0.250)	44.334 (4.362)	066.0	-1.428 (0.188)	51.032 (2.771)	1.000	1.414 (0.187)	48.730 (3.069)	0.995	2.340 (0.403)	52.220 (7.249)	47.897 (6.887)	0.965
	1.00	1.027 (0.126)	2.500 (0.091)	1.445 (0.165)	45.383 (3.277)	1.000	-1.430 (0.142)	50.842 (2.484)	1.000	1.448 (0.115)	49.100 (1.997)	1.000	2.311 (0.350)	51.953 (5.437)	48.031 (4.709)	0.995
400 5	4.00	2.904 (0.237)	2.513 (0.118)	1.357 (0.259)	45.455 (4.525)	0.985	-1.435 (0.174)	50.635 (2.334)	1.000	1.408 (0.209)	49.174 (2.253)	1.000	2.303 (0.372)	51.832 (5.540)	48.400 (6.380)	0.980
	1.00	1.692 (0.132)	2.506 (0.118)	1.461 (0.151)	45.438 (3.090)	1.000	-1.442 (0.131)	50.800 (1.519)	1.000	1.448 (0.120)	49.086 (1.730)	1.000	2.327 (0.273)	51.056 (3.449)	49.012 (3.805)	0.990
10	4.00	1.616 (0.128)	2.504 (0.085)	1.466 (0.139)	45.303 (2.551)	1.000	-1.439 (0.146)	50.937 (1.562)	1.000	1.450 (0.127)	49.144 (1.394)	1.000	2.310 (0.322)	51.562 (4.018)	48.482 (3.988)	0.990
	1.00	1.007 (0.089)	2.487 (0.072)	1.488 (0.080)	44.938 (1.938)	1.000	-1.459 (0.110)	50.962 (1.240)	1.000	1.466 (0.096)	49.047 (1.250)	1.000	2.306 (0.320)	51.389 (4.439)	48.676 (3.299)	0.995
* <i>n</i> denote ** $\mu_{Z_2} = a_1$ doi:10.1371	is sample siz $+a_2+a_3=1$	te; <i>m</i> is nur 1.50+2.00+ 1.0024575.	nber of replic $(-1.00) = 2.$ t015	ations; and $\sigma_{ m s}^2$.50, $d_{ m l}^*=d_{ m l}=1$	is residual vari .50, $d_2^* = d_2 - \frac{1}{2}$	iance for the $i_{a_2a_3} = (-1.0)$	phenotypic t $0) - \frac{1}{2} \times 1.00$ =	rait value y_{iij} . = -1.50 , $d_3^* =$	$d_3 - \frac{1}{2}i_{a_2a_3} = 2$	$2.00 - \frac{1}{2} \times 1.00$	$0=1.50$ and $ ilde{i}_2$	$3 = i_{a_2 a_3} + i_{a_2 a_3}$	= 1.50 + 1.00	= 2.50, see Mo	odel (6) for de	tails.

Table 16. Results of mapping QTL of Z_3 under F_2 metric model while the simulated QTL were placed on the position in the marker intervals (200 replications).

n	m	σ_{ϵ}^2	MSe	μ_{Z_3}	QTL ₂ ×Q	TL ₃						
					$i_{a_2d_3}$	Power	$i_{d_{2}a_{3}}$	Power	$i_{d_2d_3}$	Power	Position ₂	Position ₃
Paran	neter	values		0.50	1.50		1.00		1.50		52.50	47.50
200	5	4.00	9.856 (1.065)	0.505 (0.232)	2.479 (0.319)	0.185	2.335 (0.220)	0.070	3.248 (0.256)	0.055	53.450 (10.253)	45.950 (9.139)
		1.00	6.352 (0.637)	0.496 (0.175)	2.017 (0.237)	0.320	1.865 (0.199)	0.105	2.786 (0.322)	0.075	52.600 (8.580)	46.600 (7.598)
	10	4.00	4.949 (0.514)	0.496 (0.162)	1.839 (0.237)	0.475	1.716 (0.175)	0.115	2.406 (0.291)	0.150	53.100 (8.932)	47.000 (7.569)
		1.00	3.220 (0.325)	0.496 (0.140)	1.610 (0.251)	0.810	1.439 (0.193)	0.255	1.995 (0.254)	0.280	51.950 (7.346)	48.050 (6.073)
400	5	4.00	9.997 (0.689)	0.493 (0.160)	1.850 (0.279)	0.465	1.704 (0.189)	0.120	2.508 (0.298)	0.095	53.650 (8.517)	47.000 (7.298)
		1.00	6.416 (0.485)	0.495 (0.130)	1.624 (0.270)	0.730	1.400 (0.156)	0.260	1.964 (0.235)	0.270	52.600 (6.963)	48.300 (5.592)
	10	4.00	5.057 (0.352)	0.499 (0.119)	1.542 (0.276)	0.865	1.293 (0.188)	0.405	1.811 (0.228)	0.425	52.350 (6.495)	48.600 (4.488)
		1.00	3.276 (0.202)	0.505 (0.089)	1.427 (0.224)	0.985	1.128 (0.147)	0.605	1.609 (0.252)	0.635	51.450 (5.342)	48.500 (4.341)

* n denotes sample size; m is family replication number; and σ_e^2 is residual variance for the phenotypic trait value y_{iii} .

 $\mu_{Z_3} = r_{23}i_{a_2a_3} = 0.5 \times 1.00 = 0.50$, see Model (7) for details.

doi:10.1371/journal.pone.0024575.t016

effects (i_{ad} , i_{da} , and i_{dd}) could also be detected and well estimated under both metrics when the sample size and number of family replications were large in our simulation studies (Tables 5, 11 and 13). The differences under the two metrics may be as follows: (1) the newly defined main effects and model means are different for the Z_1 and Z_2 under the two models; and (2) the F_2 metric model seems to behave better than the F_{∞} metric model (higher power and precision) (data not shown).

The proposed approach in this study assumes that all the QTL stand on the markers. When marker density is high, all the QTL can be detected with a high power and precision. When marker density is sparse, the QTL effects are slightly underestimated because of the recombination between QTL and its adjacent marker. To solve the issue, some virtual marker (treated as missing data) may be inserted. At this time marker imputation techniques may be used.

The drawbacks for our method may lie in two aspects: (1) with Z_1 and Z_2 the augmented epistatic effects (\vec{i} and \tilde{i}) were poorly detected when their corresponding components have an equal strength in opposite directions (Tables 9, 10 and 13). This would result in biased estimate for pure *aa* epistatic effect, such as $i_{a_5a_8}$ in Table 13, and further cause bad estimate for pure dominance effect, such as d_5 and d_8 in Table 12; and (2) The estimation error for the pure main and epistatic effects using the two-step approach seemed to be a little large. This will be studied in the future.

Supporting Information

Supporting Information S1 Statistical genetic models for mapping QTL in the TTC design under the F_{∞} metric model. (DOC)

Supporting Information S2 The expected genetic values of Z_{1i} , Z_{2i} and Z_{3i} under the F_2 and the F_{∞} metric models in the F_2 -based TTC design. (DOC)

Supporting Information S3 The expected genetic values of the Z_{1i}, Z_{2i} and Z_{3i} values under the F_{∞} and the F_2 metric models in the RIL-based TTC design. (DOC)

Table S1 Genetic constitutions of the F_2 -based TTC family means L_{1i} , L_{2i} and L_{3i} . (DOC)

Table S2 Expected genetic value of L_{1i} family under the F_2 and the F_{∞} metric models in the F_2 -based TTC design. (DOC)

Table S3 Expected genetic value of L_{2i} family under the F_2 and the F_{∞} metric models in the F_2 -based TTC design. (DOC)

Table S4 Expected genetic value of L_{3i} family under the F_2 and the F_{∞} metric models in the F_2 -based TTC design. (DOC)

Table S5 Expected genetic values of $Z_{1i} = \bar{L}_{1i} + \bar{L}_{2i}$, $Z_{2i} = \bar{L}_{1i} - \bar{L}_{2i}$ and $Z_{3i} = \bar{L}_{1i} + \bar{L}_{2i} - 2\bar{L}_{3i}$ under the F₂ metric model in the F₂-based TTC design. (DOC)

Table S6 Expected genetic values of $Z_{1i} = \overline{L}_{1i} + \overline{L}_{2i}$, $Z_{2i} = \overline{L}_{1i} - \overline{L}_{2i}$ and $Z_{3i} = \overline{L}_{1i} + \overline{L}_{2i} - 2\overline{L}_{3i}$ under the F_{∞} metric model in the F_2 -based TTC design. (DOC)

Table S7 Expected genetic values of $Z_{1i} = \bar{L}_{1i} + \bar{L}_{2i}$, $Z_{2i} = \bar{L}_{1i} - \bar{L}_{2i}$ and $Z_{3i} = \bar{L}_{1i} + \bar{L}_{2i} - 2\bar{L}_{3i}$ under the F₂ metric model in the RIL-based TTC design. (DOC)

Table S8 Expected genetic values of $Z_{1i} = L_{1i} + L_{2i}$, $Z_{2i} = \bar{L}_{1i} - \bar{L}_{2i}$ and $Z_{3i} = \bar{L}_{1i} + \bar{L}_{2i} - 2\bar{L}_{3i}$ under the F_{∞} metric model in the RIL-based TTC design. (DOC)

References

- Carlborg Ö, Haley CS (2004) Epistasis: too often neglected in complex trait studies. Nat Rev Genet 5: 618–625.
- Moore JH, Williams SM (2005) Traversing the conceptual divide between biological and statistical epistasis: systems biology and a more modern synthesis. BioEssays 27: 637–646.
- Jinks JL, Jones RM (1958) Estimation of the components of heterosis. Genetics 43: 223–234.
- Yu SB, Li JX, Xu CG, Tan YF, Gao YJ, et al. (1997) Importance of epistasis as the genetic basis of heterosis in an elite rice hybrid. Proc Natl Acad Sci USA 94: 9226–9231.
- Lippman ZB, Zamir D (2006) Heterosis: revisiting the magic. Trends in Genetics 23: 60–66.
- Melchinger AE, Piepho HP, Utz HF, Muminovi J, Wegenast T, et al. (2007) Genetic basis of heterosis for growth-related traits in Arabidopsis investigated by testcross progenies of near-isogenic lines reveals a significant role of epistasis. Genetics 177: 1827–1837.
- Melchinger AE, Utz HF, Piepho HP, Zeng ZB, Schön CC (2007) The role of epistasis in the manifestation of heterosis: a systems-oriented approach. Genetics 177: 1815–1825.
- 8. Wright S (1980) Genic and organismic selection. Evolution 34: 825-843.
- Carson HL, Templeton AR (1984) Genetic revolutions in relation to speciation phenomena: the founding of new populations. Annu Rev Ecol Syst 15: 97–131.
- Kearsey MJ, Jinks JL (1968) A general method of detecting additive, dominance and epistatic variation for metrical traits. I. Theory. Heredity 23: 403–409.
- Kearsey MJ, Pooni HS (1996) The genetical analysis of quantitative traits. Chapman and Hall: London.
- Kearsey MJ, Pooni HS, Syed NH (2003) Genetics of quantitative traits in Arabidopsis thaliana. Heredity 91: 456–464.
- Kusterer B, Muminovic J, Utz HF, Piepho HP, Barth S, et al. (2007) Analysis of a triple testcross design with recombinant inbred lines reveals a significant role of epistasis in heterosis for biomass-related traits in Arabidopsis. Genetics 175: 2009–2017.
- 14. Jinks JL, Perkins JM (1970) A general method for the detection of additive, dominance and epistatic components of variation III. F_2 and backcross populations. Heredity 25: 419–429.
- Perkins JM, Jinks JL (1970) Detection and estimation of genotype-environmental, linkage and epistatic components of variation for a metrical trait. Heredity 25: 157–177.
- Frascaroli E, Canè MA, Landi P, Pea G, Giabfranceschi L, et al. (2007) Classical genetic and quantitative trait loci analyses of heterosis in a maize hybrid between two elite inbred lines. Genetics 176: 625–644.
- Li L, Lu K, Chen Z, Mu T, Hu Z, et al. (2008) Dominance, overdominance and epistasis condition the heterosis in two heterotic rice hybrids. Genetics 180: 1725–1742.

Acknowledgments

The authors thank the anonymous reviewers for their comments on an earlier version of the manuscript.

Author Contributions

Conceived and designed the experiments: Y-MZ. Performed the experiments: X-HH. Analyzed the data: X-HH. Contributed reagents/ materials/analysis tools: X-HH. Wrote the paper: Y-MZ X-HH.

- Kearsey MJ, Hyne V (1994) QTL analysis: a simple 'marker-regression' approach. Theor Appl Genet 89: 698–702.
- Zeng ZB (1994) Precision mapping of quantitative trait loci. Genetics 136: 1457–1468.
- Wang DL, Zhu J, Li ZK, Paterson AH (1999) Mapping QTL with epistatic effects and QTL × environment interactions by mixed model approaches. Theor Appl Genet 99: 1255–1264.
- Melchinger AE, Utz HF, Schön CC (2008) Genetic expectations of quantitative trait loci main and interaction effects obtained with the triple testcross design and their relevance for the analysis of heterosis. Genetics 178: 2265–2274.
- Kusterer B, Piepho HP, Utz HF, Schön CC, Muminovic J, et al. (2007) Heterosis for biomass-related traits in Arabidopsis investigated by quantitative trait loci analysis of the triple testcross design with recombinant inbred lines. Genetics 177: 1839–1850.
- Jiang C, Zeng ZB (1995) Multiple trait analysis of genetic mapping for quantitative trait loci. Genetics 140: 1111–1127.
- Reif JC, Kusterer B, Piepho HP, Meyer RC, Altman T, et al. (2009) Unraveling epistasis with triple testcross progenies of near-isogenic lines. Genetics 181: 247–257.
- Zhu C, Zhang R (2007) Efficiency of triple test cross for detecting epistasis with marker information. Heredity 98: 401–410.
- Wang XF, Song W, Yang ZF, Wang YM, Tang ZX, et al. (2009) Improved genetic mapping of endosperm traits using NCIII and TTC designs. Journal of Heredity 100: 496–500.
- Lander ES, Botstein D (1989) Mapping Mendelian factors underlying quantitative traits using RFLP linkage maps. Genetics 121: 185–199.
- Kao CH, Zeng ZB (2002) Modeling epistasis of quantitative trait loci using Cockerham's model. Genetics 160: 1243–1261.
- Yang RC (2004) Epistasis of quantitative trait loci under different gene action models. Genetics 167: 1493–1505.
- Zeng ZB, Wang T, Zou W (2005) Modeling quantitative trait loci and interpretation of models. Genetics 169: 1711–1725.
- Zhang YM, Xu S (2005) A penalized maximum likelihood method for estimating epistatic effects of QTL. Heredity 95: 96–104.
- Xu S (2007) An empirical Bayes method for estimating epistatic effects of quantitative trait loci. Biometrics 63: 513–521.
- Xu S (2010) An expectation–maximization algorithm for the Lasso estimation of quantitative trait locus effects. Heredity 105: 483–494.
- Garcia AAF, Wang S, Melchinger AE, Zeng ZB (2008) Quantitative trait loci mapping and the genetic basis of heterosis in maize and rice. Genetics 180: 1707–1724.
- Cockerham CC, Zeng ZB (1996) Design III with marker loci. Genetics 143: 1437–1456.