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ABSTRACT Humanity’s transition from the outdoor environment to the built envi-
ronment (BE) has reduced our exposure to microbial diversity. The relative impor-
tance of factors that contribute to the composition of human-dominated BE micro-
bial communities remains largely unknown. In their article in this issue, Chase and
colleagues (J. Chase, J. Fouquier, M. Zare, D. L. Sonderegger, R. Knight, S. T. Kelley, J.
Siegel, and J. G. Caporaso, mSystems 1(2):e00022-16, 2016, http://dx.doi.org/10.1128/
mSystems.00022-16) present an office building study in which they controlled for
environmental factors, geography, surface material, sampling location, and human
interaction type. They found that surface location and geography were the strongest
factors contributing to microbial community structure, while surface material had lit-
tle effect. Even in the absence of direct human interaction, BE surfaces were com-
posed of 25 to 30% human skin-associated taxa. The authors demonstrate how tech-
nical variation across sequencing runs is a major issue, especially in BE work, where
the biomass is often low and the potential for PCR contaminants is high. Overall, the
authors conclude that BE surfaces are desert-like environments where microbes pas-
sively accumulate.
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Multicellular organisms have evolved in close association with diverse microbial
consortia. Certain members of these consortia are passed vertically from parent

to offspring (1), while others are acquired from the environment (2). Modern humans
have largely removed themselves from the outdoor environments in which we evolved
(Fig. 1). We now spend most of our lives indoors—in our “built environment” (BE). This
shift in lifestyle may have disrupted the successional processes whereby we acquire a
fully functional adult microbiome (3–5). Microbial dysbioses have been linked to a
number of developmental disorders and disease susceptibility (6–9). Indeed, the hy-
giene hypothesis posits that Western lifestyles are responsible for a wide array of
autoimmune disorders and allergies, which have increased in frequency in industrial-
ized nations (10).

The study of the microbiology of the BE has expanded rapidly over the past several
years, in part because of the rise of culture-independent methods for characterizing
microbial diversity (4). Early work has found that humans rapidly transfer their microbes
to BE surfaces (11–13), and these signatures can be used to forensically identify
individuals (14–16). This transfer seems to be mainly unidirectional—i.e., surfaces look
more human (microbiologically speaking) after an interaction rather than the other way
around. Most of these microbes are likely dead, dying, or dormant— unable to grow on
inert BE surfaces. Despite the inhospitable conditions on BE surfaces, many human-
associated organisms can survive there for extended periods of time (17). Thus, BE
surfaces are potential reservoirs of pathogenic and/or commensal organisms, although
there is a paucity of evidence to show direct transfer of microbes from the BE to
humans.
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Much remains unknown about the relative importance of the different factors that
shape the BE microbiome. Some work has been done to determine how the BE is
influenced by direct or indirect dispersal from humans (11, 18), location within a room
(12, 17, 19), surface material (13), environmental factors (20), and geography (3).
However, these factors are often conflated with one another. Chase et al. (21) set out
to control for these confounding variables in an office building experiment. They
manufactured standardized sampling plates with sensors to detect temperature, hu-
midity, and room occupancy. Each plate came with three sterilized BE surface types, i.e.,
painted drywall, ceiling tile, and carpet. Plates were installed on the floor, the wall, and
the ceiling, at each of three office locations in three different cities (Flagstaff, AZ; San
Diego, CA; and Toronto, ON). Office occupants were instructed not to touch the
sampling plates, to prevent the direct transfer of human-associated microbes. Chase
and colleagues found that the location of a plate (e.g., floor versus ceiling) and
geography were the most important variables in shaping the BE microbial community
composition. Surprisingly, the type of surface— drywall, tile, or carpet— had little
impact on microbial community structure. Unlike prior work (11, 22), building-specific
microbial signatures were weak when other factors were controlled for. The authors
explain that this is likely due to the absence of direct contact between office workers
and the sampling plates. Despite this lack of direct interaction, 25 to 30% of the BE
surface microbial communities appeared to be from human skin. Overall, the authors
suggest that BE surfaces are microbial deserts, wastelands like the Atacama Desert,
where water and nutrients are scarce. They suggest that microorganisms from the
human body or from environmental sources are dispersed onto these BE surfaces,
where they either die or lie dormant, “waiting for liquid water to become active again.”

In addition to dissecting apart the BE determinants of microbial community com-
position, Chase and colleagues addressed two technical issues associated with BE
research. First, they looked at how repeated sampling (dry swabbing) of the same
surface perturbs the resident microbial community. They showed that multiple sam-
plings of the same surface had a minimal effect on microbial community structure,
opening the door to study designs that incorporate longitudinal sampling of the same
surface. Second, they addressed the issue of batch effects (i.e., technical variation)
between multiple sequencing runs by sequencing a subset of samples across all three
of the runs completed in their study. These batch effects are especially pernicious for

FIG 1 Microbial diversity in outdoor environments and BEs. On the left is the silhouette of a cowboy
brushing past a pine tree while riding a horse. On the right is the silhouette of a person sitting in an
office chair and working on a laptop. Blue microbes are human associated, while other colors
represent nonhuman microbial diversity.
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low-biomass samples, where PCR contaminants are much more common. Indeed, the
authors detected a significant batch effect across runs and identified which taxa were
differentially abundant. While the authors discuss strategies for mitigating this technical
variance (e.g., filtering out taxa that differed significantly across runs), future work
should focus on more refined methods for addressing these batch effects in high-
throughput sequencing data. For example, batch effects are a known issue in microar-
ray studies and strategies like factor analysis have been used successfully to remove this
artificial variance from the data (23). Another, complementary, option would be to have
a “gold standard” microbial community sample with a defined composition that
researchers could include as a control in each sequencing run.

In summary, the study conducted by Chase and colleagues provides us with a better
understanding of the basic rules governing community assembly on BE surfaces and
the technical challenges associated with analyzing amplicon sequencing data. Unlike
the lush habitats found in soils, lakes, oceans, and host organisms, BE surfaces appear
to be barren wastelands. Microbial communities on BE surfaces are often the decaying
remnants of the human microbiome. In the absence of direct human contact, microbes
on BE surfaces are sourced from an ambient pool of airborne taxa. The persistence of
microorganisms in the BE is the result of accumulation and dormancy and not active
growth. If we want to reshape the BE microbiome, we need to control the rate of
dispersal from different sources (e.g., environmental versus human). Epidemiological
data suggest that the reduced microbial diversity found in BEs may have the largest
impact on the developing microbiomes of infants and young children. Ultimately, the
BE field will need to determine whether reduced exposure to microbial diversity in the
BE is a major driver behind the hygiene hypothesis.
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