
ORIGINAL RESEARCH
published: 12 July 2021

doi: 10.3389/fnagi.2021.661514

Frontiers in Aging Neuroscience | www.frontiersin.org 1 July 2021 | Volume 13 | Article 661514

Edited by:

Rosalba Morese,

University of Italian Switzerland,

Switzerland

Reviewed by:

Xin Zhang,

Nanjing University, China

Sheetal Sharma,

Panjab University, India

*Correspondence:

Yauhen Statsenko

e.a.statsenko@uaeu.ac.ae;

e.a.statsenko@gmail.com

Maroua Belghali

marouab@uaeu.ac.ae

Received: 30 January 2021

Accepted: 07 May 2021

Published: 12 July 2021

Citation:

Statsenko Y, Habuza T, Charykova I,

Gorkom KN-V, Zaki N,

Almansoori TM, Baylis G,

Ljubisavljevic M and Belghali M (2021)

Predicting Age From Behavioral Test

Performance for Screening Early

Onset of Cognitive Decline.

Front. Aging Neurosci. 13:661514.

doi: 10.3389/fnagi.2021.661514

Predicting Age From Behavioral Test
Performance for Screening Early
Onset of Cognitive Decline

Yauhen Statsenko 1,2*, Tetiana Habuza 2,3, Inna Charykova 4, Klaus Neidl-Van Gorkom 1,

Nazar Zaki 2,3, Taleb M. Almansoori 1, Gordon Baylis 1, Milos Ljubisavljevic 1 and

Maroua Belghali 5,6*

1College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates, 2 Big Data Analytics

Center (BIDAC), United Arab Emirates University, Al Ain, United Arab Emirates, 3College of Information Technology, United

Arab Emirates University, Al Ain, United Arab Emirates, 4 Laboratory of Psychology, Republican Scientific-Practical Center of

Sports, Minsk, Belarus, 5 INSERM, COMETE, GIP CYCERON, Normandie University, UNICAEN, Caen, Research Unit: Aging,

Health and Diseases, Caen, France, 6College of Education, United Arab Emirates University, Al Ain, United Arab Emirates

Background: Neuronal reactions and cognitive processes slow down during aging.

The onset, rate, and extent of changes vary considerably from individual to individual.

Assessing the changes throughout the lifespan is a challenging task. No existing test

covers all domains, and batteries of tests are administered. The best strategy is to study

each functional domain separately by applying different behavioral tasks whereby the

tests reflect the conceptual structure of cognition. Such an approach has limitations that

are described in the article.

Objective: Our aim was to improve the diagnosis of early cognitive decline. We

estimated the onset of cognitive decline in a healthy population, using behavioral

tests, and predicted the age group of an individual. The comparison between the

predicted (“cognitive”) and chronological age will contribute to the early diagnosis of

accelerated aging.

Materials and Methods: We used publicly available datasets (POBA, SSCT) and

Pearson correlation coefficients to assess the relationship between age and tests results,

Kruskal-Wallis test to compare distribution, clustering methods to find an onset of

cognitive decline, feature selection to enhance performance of the clustering algorithms,

and classification methods to predict an age group from cognitive tests results.

Results: The major results of the psychophysiological tests followed a U-shape function

across the lifespan, which reflected the known inverted function of white matter volume

changes. Optimal values were observed in those aged over 35 years, with a period

of stability and accelerated decline after 55–60 years of age. The shape of the age-

related variance of the performance of major cognitive tests was linear, which followed the

trend of lifespan gray matter volume changes starting from adolescence. There was no

significant sex difference in lifelong dynamics of major tests estimates. The performance

of the classification model for identifying subject age groups was high.

Conclusions: ML models can be designed and utilized as computer-aided detectors

of neurocognitive decline. Our study demonstrated great promise for the utility of

classification models to predict age-related changes. These findings encourage further

https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org/journals/aging-neuroscience#editorial-board
https://www.frontiersin.org/journals/aging-neuroscience#editorial-board
https://www.frontiersin.org/journals/aging-neuroscience#editorial-board
https://www.frontiersin.org/journals/aging-neuroscience#editorial-board
https://doi.org/10.3389/fnagi.2021.661514
http://crossmark.crossref.org/dialog/?doi=10.3389/fnagi.2021.661514&domain=pdf&date_stamp=2021-07-12
https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/aging-neuroscience#articles
https://creativecommons.org/licenses/by/4.0/
mailto:e.a.statsenko@uaeu.ac.ae
mailto:e.a.statsenko@gmail.com
mailto:marouab@uaeu.ac.ae
https://doi.org/10.3389/fnagi.2021.661514
https://www.frontiersin.org/articles/10.3389/fnagi.2021.661514/full


Statsenko et al. Predicted Cognitive Age

explorations combining several tests from the cognitive and psychophysiological

test battery to derive the most reliable set of tests toward the development of a

highly-accurate ML model.

Keywords: aging, cognitive decline, biological age, psychophysiological tests, executive functioning, machine

learning, cognitive impairment, neurodegeneration

1. INTRODUCTION

The slowing of neuronal reactions and cognitive processes is a
typical functional outcome of aging. However, the onset, rate,
and extent of changes vary considerably from individual to
individual. Furthermore, the breadth of cognitive function has
led physiologists to describe cognitive performance in terms
of domains of functioning; there is no single test that covers
all domains, and batteries of tests are usually administered.
Therefore, assessing the changes in the cognitive function
throughout the lifespan of an individual is a challenging task.
The best strategy is to study each functional domain by applying
different conditions and behavioral tasks whereby the tests reflect
the conceptual structure of cognition. This makes them suitable
for both scientific research and practical studies. However,
such an approach has limitations, which will be described in
the article.

1.1. Structure of Cognitive Functioning and
Cognitive Tests
The domains of cognitive function are hierarchical. The bottom
of the cognitive construct is responsible for information input
and refers to basic sensory and perceptual processes. The top of
the construct is higher-order cognitive functioning. It maintains
information processing that involves synthesis, accumulation,
and retrieval from memory storage. The functions enable goal-
driven behavior in an individual. The top-level elements are
executive functioning (EF) and cognitive control. The domains
are cross-dependent with the prevalence of top-down vs. bottom-
up regulation. Broadly speaking, EF also encompasses cognitive
control and exerts control over the use of more basic cognitive
processes (Harvey, 2019).

Cognitive domains can be classified into memory, attention,
language, and EF (e.g., reasoning and problem solving). EF
is further classified into inhibition, task switching, working

Abbreviations: AC, asymmetry coefficient; AUC, area under the curve; BAC,

balanced accuracy; CVMR, complex visual-motor reaction; CRT, choice reaction

time; DMT, decision-making time; DSFBT, digit span forward and backward

test; DSST, digit symbol substitution test; DTI, diffusion tensor imaging;

EF, executive functioning; EFT, executive functioning test; FN, false-negative

values; FP, false-positive values; GM, gray matter; LOWESS, locally weighted

scatterplot smoothing; ML, machine learning; NN, neural network; OLS, ordinary

least squares; POBA, psychophysiological outcomes of brain atrophy; PS,

psychophysiological status; PT, psychophysiological test; ROC, receiver operating

characteristic; RT, reaction time; RTV, reaction time variability; SCWT, Stroop

Color and Word Test; SSCT, Stroop Switching Card Test; SVMR, simple visual-

motor reaction; TRVI, the time delay in responding to the targeted stimulus

because of visual interfering objects; TN, true negative values; TP, true positive

values; WM, white matter.

memory updating, and information speed processing, which are EF
domains, or alternatively, cognitive subdomains.

Researchers consider dependent variables of executive
functioning tests (EFTs) to be more sensitive to age-related
changes than estimates of other types of cognitive functioning
(Salthouse et al., 2003). Classical psychophysiological tasks are
used to test EF target-specific functions. Assessments typically
reflect subdomains of each ability, and careful combinations of
tasks reveal patterns of performance that are consistent with a
variety of neurological and neuropsychiatric conditions (Harvey,
2019). Typical limitations of the tasks are as follows:

• Despite the perfect usability of tests, many agree that practice
effects influence follow-up performance on EFTs, which leads
to potential overestimation of cognitive abilities in young
people and underestimation of cognitive decline in older
adults and patients (Overman et al., 2017).

• Because cognitive subdomains (both basic and higher-order)
are closely interconnected, detecting changes that account
for mutual compensation (e.g., speed-accuracy trade-off)
can be difficult. However, such phenomena are common
in physiology and may benefit permanent adjustments to
variant conditions. Changing performance tactics may serve
the surviving strategy. A solution was proposed by Beghali,
where the Stroop switching task was modified by adding
additional switching conditions to allow the assessment of
overall EF using a single test (Belghali and Decker, 2019;
Belghali et al., 2020).

Although age-related effects are more pronounced in EF than in
other cognitive functions, the assumption that EF represents a
distinct construct has received criticism (Salthouse et al., 2003;
Salthouse, 2005). In a study of 261 cases, authors found “only
weak evidence for the existence of distinct constructs corresponding
to EF or to aspects of executive control concerned with inhibition,
updating, or time sharing,” suggesting that researchers should not
merely assume that variables reflect a particular hypothesized
concept without relevant empirical evidence. To overcome such
implications, we validated the Stroop switching card test (SSCT)
in a recent study by comparing Stroop variables with the digital
symbol substitution test, the digit span forward and backward test
(DSFBT), the trail making test (TMT), and the classical Stroop
test (Belghali et al., 2020).

Age-related cognitive changes are the key points of interest
in interdisciplinary studies within the medical and behavioral
sciences. Neurophysiologists, neurologists, and psychiatrists
categorize cognitive processes into functional domains that have
a hierarchical structure. The higher-order cognitive domains are
cognitive control and EF, which account for the acquisition and
processing of ‘information.
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Accurate assessment of cognitive status is important in
neuroscience. To estimate cognition, EFTs are commonly used;
however, there is no strong consensus that EFTs are reliable. In
fact, some researchers have criticized the assumption that EF
represents a distinct construct (Salthouse et al., 2003; Salthouse,
2005).

1.2. Psychophysiological Status and Tests,
Functional Systems, Neural Hypernets
Psychophysiological tests (PTs) are alternative tools for assessing
cognition and are also aimed at quantifying cognitive functioning
domains, such as EF, information-processing speed, attentional
control, and working memory. Commonly, a battery of PTs
is composed of tests that cover all the constituents of
cognition. However, they do not provide a summary assessment
of whether the test results are associated with aging or
disease. Instead, PTs provide an insight into an individual’s
psychophysiological status (PS). PS offers information on
overall test performance, neuropathological changes, type of
temperament, and trait features.

The idea of PS is closely linked to the theory of functional
systems, which is a framework that describes the structure of
an individual’s behavior at the physiological and informational
levels. Furthermore, it clarifies the cognitive architecture of
an individual (Red’ko et al., 2004; Vityaev and Demin, 2018).
According to the theory, goal-motivated activity comprises
afferent synthesis, making a decision, and accepting the final
result of an action (response selection). Thus, to estimate the PS
of a person, clinicians should use a test battery that assesses all
three components: the sensory component of a simple action,
decision-making time, and response selection. A common EF test
comprises these three elements.

All behavioral tests consist of consequent elements: afferent
synthesis as a constituent of cognition, decision-making (an
estimate of information-processing speed), and response selection
(the core of attentional control). Additionally, PTs estimate the
stability of regulatory system functions, which is also known as
the level of neuropsychological stability.

Using a battery of PTs, neurophysiologists do not aim
to target separate cognitive functions. Instead, they target
physiological characteristics of the processes that underlie
higher-order cognitive functions (e.g., EF). Sensorimotor
response assessment in PTs is used to study the mechanisms of
memory, information perception, and information processing,
and by placing time limits or changing task complexity, it is
possible to evaluate performance under various conditions.
This allows psychophysiological compliance to be determined
with some professional requirements. PTs have been validated
as a cost effective and reliable tool to screen for professional
maladjustment in sports and extreme professions (Li et al.,
2019; Boichuk et al., 2020; Myroshnychenho et al., 2020).
Unfortunately, clinical psychology does not meet the
unconditioned cutoff criteria for major tests (Statsenko and
Charykova, 2010).

Modern neurophysiological and neuropsychological studies
have shown that specialized operations and systematic

interactions of brain structures underlie cognition and behavior.
The brain is structured and organized systematically and it
includes projective, associative, integrative, and limbic-reticular
function-specific systems. The systems closely interact with
structures that are excited either simultaneously or alternatively.
The functional elements are dispersed throughout the brain and
separated, but not isolated, from each other. They maintain close
cooperation, so that activation of one element can activate other
elements. The basic unit of a functional system is a neuron, and
a network of interconnected neurons is called a cooperative or
cognitive group (cog). These networks contain an individual’s
innate and acquired knowledge and experience. The complete
set of cogs forms a cognitome. The theory of functional systems
has been further developed into the theory of neural hypernets,
which describes the mind as a network in which the vertices are
networks of functionally connected neurons. The representation
of the mind as an organic and mathematical structure has
fostered research applying experimental and theoretical physics,
graph theory, and statistical mechanics approaches (Sudakov,
1997, 2015).

1.3. Onset of Cognitive Decline
Cognitive abilities (e.g., memory, thinking, and attention) begin
declining from the age of 30. However, the rate of decline
varies among individuals depending on genetics, lifestyle, regular
mental activity, and somatic diseases. Compared with young
and middle-aged adults, the elderly are more prone to lower
mental performance, emotional lability, higher threshold of
unconditioned reflexes, difficulties in developing conditioned
reflexes, and fading of reflexes (Nelson and Luciana, 2001; Park
and Gutchess, 2002). Because cognition reflects the integrated
activity of the whole brain, cognitive impairment develops with
focal and diffuse deterioration across various brain regions.
The incidence of cognitive disorders increases with age, where
3–20% of people aged over 65 years have severe cognitive
impairment (dementia) (Damulin, 2008). The incidence of
mild cognitive impairment in the elderly ranges from 40 to
80% across different age groups (Larrabee and Crook, 1994).
Usually, a diagnosis is made when an individual presents with
evident cognitive deterioration and irreversible brain changes
(e.g., dementia). Therefore, there is a need for improvements
in diagnosis that allow the tracking of minor changes to
detect early neurodegeneration. This will help to provide early
prophylactic interventions and preventivemeasures to the elderly
for sustaining a high level of intelligence.

2. OBJECTIVES

The overall aim of this study was to improve the diagnosis of early
cognitive decline by applying a machine learning (ML) approach
to psychophysiological and cognitive tests. We estimated the
approximate age of onset of cognitive decline in a healthy
population based on behavioral test performance and predicted
individuals’ age groups to compare with the their chronological
age. Our objectives were:
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1. To study the association between age and performance in
psychophysiological and cognitive tests.

2. To estimate the onset of age-related decline in intellectual
functioning.

3. To study sex differences in lifelong dynamics of the
psychophysiological and cognitive test performance.

4. To develop a tool for identifying accelerated cognitive decline
using the test results.

3. MATERIALS AND METHODS

3.1. Methodology of the Study
To address the first objective, we assessed the relationship between
age and test performance. To do so, we calculated Pearson’s
correlation coefficients. For each age group, the relationships
between the continuous features were assessed using the Kruskal-
Wallis test.

For the second objective, we studied the distribution of test
performance values by age. Trendlines that approximate the
distribution functions were determined with the least squares
method to estimate second-order polynomial coefficients.
The parabolic trendline functions were displayed using 95%
confidence intervals, which were calculated using the bootstrap
method. We developed a descriptive model of cognitive decline
by comparing the polynomial regression function fits for the
different tests. To find a possible onset of cognitive decline we
assessed mean values and variance of tests results in age groups.
For this we used descriptive statistics methods.

To address the third objective, we analyzed the patterns of
the sex-specific features of lifelong performance dynamics of
the psychophysiological and cognitive tests. We built ordinary
least squares regression trendlines and expressed results as IQR,
mean ± std or number of cases, and their percentage out of the
observed group. With Kruskal–Wallis test we assessed whether
sex affected the impact of age on test performance (i.e., whether
there was an interaction effect). To examine differences between
the slopes and intercepts we used a t-test.

The fourth objective was multifold. We hypothesized that
in normal aging there is a cutoff age from when cognitive
decline begins. Some clustering techniques allow solutions to be
built based on the number of clusters which can be predefined
by the user. This allows one to test several possible divisions
to determine the optimal model with clear separation of the
identified groups.

To achieve the first part of the fourth objective of determining
the age at which cognitive decline can be identified from
test performance, we utilized a ML approach. We used an
exploratory analysis by assessing the separability of datasets
using unsupervised ML algorithms. We used clustering methods,
such as Simple K-means (Arthur and Vassilvitskii, 2006), canopy
(McCallum et al., 2000), expectation-maximization (Dempster
et al., 1977), and GenClus++ (Islam et al., 2018). Testing
different numbers of clusters based on performance allowed us to
determine the possible onset of cognitive decline. Then we built
pairwise distributions of each attribute by age. The battery of PT
that we used resulted in a large number of dependent variables

(e.g., time estimates and accuracy metrics). For the analysis, we
employed the major tests results explained in section 3.2.1.

For the second part of objective four, we studied the
informative value of the tests for detecting cognitive changes
in the elderly. To enhance the performance of the clustering
algorithms, we used feature-selection methods, which are
designed to minimize overfitting and reduce the time needed
for training, while increasing model performance metrics by
eliminating less informative features from the dataset. We
employed the genetic algorithm (Hall, 1998) and information
gain attribute evaluation (Kononenko and Hong, 1997). The
genetic algorithm retrieves the most relevant features, whereas
information gain attribute evaluation-based ranker lists the
attributes in descending order based on their informative value
for the final prediction. These values are considered as a useful
measure of feature importance in the final model decision.

In the third, final part of the fourth objective, we built an
ML algorithm to predict the age group from an individual’s
cognitive test performance. This fulfills the final aim of detecting
misclassified cases that are susceptible to accelerated brain aging
based on cognitive status assessment. To build the desired
solution, we used several binary classification algorithms, such
as support vector machines (Platt, 1999) with linear and non-
linear (radial basis function) kernels, Gaussian Naive Bayes
(John and Langley, 2013), Bagging meta-estimator (Louppe and
Geurts, 2012), an extra-trees classifier (Geurts et al., 2006),
a random forest classifier (Breiman, 2001), and multilayer
perceptron (Glorot and Bengio, 2010). Because of the relatively
small size of the datasets, we used a stratified five-fold cross-
validation technique to have confidence that the predictions
will generalize to unseen data. To evaluate the performance
of the predictive models, we generated a receiver operating
characteristic (ROC) curve averaged over five folds. We also
calculated mean sensitivity, specificity, balanced accuracy (BAC),
and area under the curve (AUC) values with respect to class.
These performance measures were suitable as the datasets were
balanced across the age attribute. Finally, we determined the
cases that were misclassified by the best predictive model. We
used the confusion matrix and calculated false-positive (FP) and
false-negative values (FN).

3.2. Datasets Description
3.2.1. POBA Dataset
We used the dataset called Psychophysiological outcomes of
brain atrophy (POBA; see section Acknowledgments). The
methodology of the neurophysiological tests used for the dataset
is well-defined and relevant to research on age-related functional
changes. The accurate computerized assessment of PS was
strongly aligned with the purpose of the study. The POBA
dataset does not contain any complicated tests and comprises
simple tasks that are suitable for those with different intelligence
levels. The dataset consisted of 231 cases which included MRI
examinations and psychophysiological testing results of people
aged 4–84 years. Written patient or parental consent for minors
for participation was obtained from each case. All participants
were either patients who suffered from periodic headaches
or were anxious about having organic brain pathology, or
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healthy participants who were examined at the beginning of
their professional sports career. The exclusion criteria were
as follows: organic brain pathology, mental disorder, or head
injury. The dataset is available on demand (see section 7).
A thorough description of the dataset has been previously
published (Statsenko et al., 2020).

We have highlighted only the features used in this study to
determine PT dynamics across the lifespan and for ML analysis.
We used the following PTs:

1. Simple visual-motor reaction (SVMR): Reaction time (RT) is
recorded for a single type of stimuli requiring an identical
response. The result of the test is mean RT (SVMR_mean),
which reflects the participants current functional state and
indicates overall working capacity, type of temperament, and
level of excitability of the central nervous system.

2. A type ofgo/no-go test with similar visual and motor
components as the SVMR but with two types of stimuli
that require different responses. For this reason, it is also
called the complex visual-motor reaction (CVMR). The mean
RT (CVMR_mean) correlates negatively with psychometric
measurements of intelligence (Colman, 2015).

3. Decision-making time (DMT) is defined as the time taken for
response selection. It is measured as CVMR_mean subtracted
by SVMR_mean.

4. Attention study technique: To test attention, identical
triggering stimuli are presented subsequently in different
locations on a computer screen. The mean response time
(AST_mean) reflects the level of attention to visual objects,
stability, concentration of attention, speed of information
processing, and work efficiency.

5. Interference resilience technique: In contrast to the previous
task, this technique includes additional interfering objects
(e.g., circles of different color and size) that overlapping each
other and the targeted stimuli, which requires additional time
for the participant to notice the triggering signal, and respond.
The system calculates the average response time (IRT_mean).

6. The time delay in responding to the targeted stimulus due
to visual interfering objects (TRVI) is the subtraction of
AST_mean from IRT_mean (see Formula 2).

7. Reaction to amoving object (RMO) technique: A circle appears
on the screen with one red and one green colored mark
arranged radially. It becomes quickly filled with a yellow
color in a clockwise direction from a starting point to the
finishing line. The participant responds when the yellow
sector passes through the red finishing mark. The result
is measured as a mean value (RMO_mean) of the positive
(time delays) and negative values (premature responses). A
negative RMO_mean indicates a predominance of excitation
of the central nervous system, whereas a positive RMO_mean
indicates a predominance of inhibition of the central nervous
system. Although RMO test results include a time parameter,
the variable is an additional indicator of reaction accuracy
(e.g., a delayed or proactive reaction).

8. RT variability: The dependent variables mentioned above
measure the mean RTs calculated over 30 subsequent
episodes of testing with varied time intervals. The standard

deviation of RT conveys unique information beyond that
offered by mean performance (Graveson et al., 2016). We
analyzed the SD for each task as a separate dependent
variable (SVMR_variance, CVMR_variance, AST_variance,
IRT_variance, RMO_variance).

9. We used wrist dynamometry to measure the maximum
muscular strength of the right (WDR_MMS) and left hand
(WDL_MMS).

10. Asymmetry coefficient (AC) is calculated as the ratio of the
maximum muscular strength of the wrists (see Formula 3). A
study showed an association between the depth of the central
sulcus (anatomic brain asymmetry) and the predominant use
of the right or left hand for skilled and unskilled activities
(Amunts et al., 2000). As anatomic brain asymmetry accounts
for the functional asymmetry of the extremities, AC may
reflect the difference in power between hands.

DMT = CVMR_mean− SVMR_mean (1)

TRVI = IRT_mean− AST_mean (2)

AC =
WDR_MMS

WDL_MMS
(3)

3.2.2. Stroop Switching Card Test Dataset
We used the SSCT dataset available on demand (see Data
Availability section). A sample of 103 participants aged 15–
75 years volunteered for the experiment. The battery consisted
of standardized neuropsychological tests evaluating cognitive
flexibility (TMT), inhibition (Stroop color and word test
[SCWT]; Golden and Freshwater, 1978), the SSCT (Belghali and
Decker, 2019), updating (forward and backward digit span test;
Wechsler, 1955), and information speed processing (digit symbol
substitution test [DSST]; Wechsler et al., 1997). A single testing
session lasted for approximately 1 h, and each participant was
tested individually. The dataset and the methodology of the study
is described in Belghali et al. (2020). Below is a brief description
of the dataset.

3.2.2.1. Cognitive Flexibility
Cognitive flexibility is the mental ability to switch between
thinking about multiple concepts simultaneously. It is based on
executive functions that involve conscious changes in attention
(cognitive shifting) and unconscious shifts of attention between
tasks (task switching).

The TMT was used to assess flexibility. It is a
neuropsychological test of visual attention and task switching.
The subject connects 25 consecutive targets in a sequential order.
TMT consists of two parts (A and B). In the first part, the targets
are presented as numbers and the participant is required to
connect them. In the second part, the participant is required to
alternate between numbers and letters (i.e., 1-A-2-B-3-C, etc.).
The time of completion for each part is recorded. The SSCT
dataset contains the final outcome of the TMT test, which is
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measured as the Switch Score (SS) or TMT_BA_Time, which is
the time delay between switching attention between numbers
and letters (see Formula 5). Other studies have also used the
ratio of performance (see Formula 6) based on evidence that the
ratio of performance provides an index of EF; although the parts
of the TMT differ in motor control and perceptual complexity
(Arbuthnott and Frank, 2000). The TMT reflects cognitive
abilities (visual-conceptual, visuospatial, and visual-motor
tracking) as well as sustained attention and task alternation. The
results predict physical impairment and mortality in older adults
because poor cognitive function is associated with shorter life
expectancy (Vazzana et al., 2010).

3.2.2.2. Inhibition
Inhibition was assessed using the classical Stroop test and its
modified forms.

The first test was the classical SCWT starting with two basic
tasks: color naming (part A) and word reading (part B). The
third task (part C) contains an interference condition whereby
individuals are asked to name the ink color, which does not
correspond to the written word (e.g., “yellow” written in green
ink). The incongruity between the ink color and the meaning of
the word causes a time delay when performing part C compared
with A and B. The examiner records the completion times of each
task (i.e., STROOP A, STROOP B, and STROOP C) and the
total number of errors in part C. The interference score (IS) is the
dependent variable of interest (see Formula 4).

The SSCT developed by Belghali is a modified version of
the SCWT. In addition to the classic interference condition, it
includes a switching condition, where subjects are instructed
to act in different ways depending on where the words are
printed. The instructions are to either read the conflicting words
(e.g., if “blue” is written in another color, the individual is
instructed to read “blue”) or name the incongruently colored
ink (e.g., if “yellow” is written in green ink, the participant is
instructed to say “green”). The main reasoning behind this task
is that inhibition and switching share brain networks, notably
the prefrontal network. Moreover, inhibition and switching have
been considered two sides of the same coin (Mostofsky and
Simmonds, 2008). Age-related decreases in response inhibition
accounts for rising up of interference on Stroop tasks (Troyer
et al., 2006). Older adults whose executive performance reduces
within 1 year have shown larger switch discrepancy scores (i.e.,
the difference in performance between the SSCT performance
and the classical Stroop task) compared with those whose
executive performance remains stable (Fine et al., 2008).

The following outcomes of the SSCT were used:

1. RT (SSCT_TIME): the global RT to complete the SSCT.
2. The total number of response errors (SSCT_ERROR): reflects

accuracy.
3. The inverse efficiency score (SSCT_IES) by Bruyer and

Brysbaert (Bruyer and Brysbaert, 2011): reflects the RT of the
correct responses and combines the proportion of errors and
RT into one variable (see Formula 7).

Responses are faster and more accurate when incongruent
trials occur immediately after incongruent trials (conflict

resolution) than when they occur after the congruent ones
(conflict adaptation). Some studies have measured conflict
resolution by the difference in response errors (i.e., accuracy)
between incongruent and congruent trials and gauge conflict
adaptation based on the response error difference between
congruent trials following incongruent trials and incongruent
trials following incongruent trials (Puccioni and Vallesi,
2012a,b). However, we used the following approach:

4. Conflict resolution (SSCT_Conflict_Resolution) was measured
as the total number of response errors in incongruent trials
that followed incongruent trials, which is inhibition without a
change in congruence and refers to the ability to select relevant
information while suppressing distracting information that is
irrelevant to the current goal of the task. The subsequent tasks
were congruent regarding the required response.

5. Conflict adaptation (SSCT_Conflict_Adaptation) was
measured as the total number of response errors in congruent
trials that followed incongruent trials, which is inhibition
with a change in congruence and refers to the ability to adjust
responses in accordance with the congruence of both current
and previous trials.

6. Inhibition and switching (SSCT_I_S) is another metric of the
conflict resolution process. In the SSCT, conflict resolution is
applied in two ways. The first involves a cognitive sequence
that involves inhibition exclusively without a change in
congruence (e.g., naming an incongruent ink color preceded
by an incongruent ink color). The second involves both
inhibition and switching without a change in congruence (i.e.,
switching between calling the incongruent ink of colors and
reading the words).

7. Working memory updating (SSCT_Updating) was measured
by the total number of errors while classifying cards after each
trial. It assessed inhibition only and inhibition with switching.

3.2.2.3. Updating
Updating was assessed using the DSFBT, which is a widely-
used neuropsychological test for short-term verbal memory and
is a component of the Wechsler memory scale (Woods et al.,
2011). DSFBT includes two sequences: forward and backward.
For the forward one, the participant repeats a series of numbers
presented by the examiner in the same order. In the backward
sequence, the participant recalls the numbers in the reverse order.
The length of the sequence increases in subsequent trials. Two
trials are presented for each list length. Each trial starts with
two digits until the limit in list length is reached (nine forward
and eight backward). The examiner stops when the subject fails
both trials of the same list length successively or when the
maximal list length is reached. The dependent variable of interest
(DIGIT_SPAN_FWBW) is the total number of lists reported
correctly for both sequences.

3.2.2.4. Information Speed Processing
Information speed processing assessed with the DSST, which is
sensitive to many domains of cognitive dysfunction. It is also
sensitive to changes in cognitive functioning across a wide range
of clinical populations. Symbol-coding paradigms that are similar
to the DSST are included as subtests in the Brief Assessment
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of Cognition in Schizophrenia and Repeatable Battery for the
Assessment of Neuropsychological Status. However, DSST has
low specificity for determining which cognitive domain is
affected (Jaeger, 2018). Performance on the DSST can be affected
by associative learning, motor speed, attention, visuoperceptual
functions (e.g., scanning and ability to write or draw), executive
functions of planning and strategizing, and working memory.
The DSST consists of nine digit symbol pairs (e.g., 1/-, 2/∼ 7/{,
8/X, 9/=), followed by a list of digits. Under each digit, the subject
is required to write down the corresponding symbol as fast as
possible. The number of correctly processed symbols within the
allocated time (Processing_speed) is measured.

IS = STROOP C −
STROOP A+ STROOP B

2
(4)

TMT_BA_TIME = TMT B− TMT A (5)

TMT_BA_RATIO =
TMT B

TMT A
(6)

SSCT_IES =
SSCT_TIME

1− SSCT_ERROR
(7)

3.3. Preprocessing of Data
The POBA dataset consists of a list of deidentified subject
records, with one patient per row, which are stored in a comma-
separated value format file. To convert data into a format
suitable for ML applications, several preprocessing steps are
performed. We cleaned the data by removing missing, unknown,
or inappropriate values. In 26% of cases, values for wrist
dynamometry attributes (WDL_MMS, WDR_MMS, and AC)
were missing. We generated the values of missing attributes
by using a linear regression model, which was trained on the
available data as predictors and missing attributes as outcome
variables. Then, the value of the AC feature was calculated using
Formula 3. Then the numerical variables were normalized by
subtracting the mean value and scaling to the attribute variance.

3.3.1. To Form Clusters and Groups of Participants
To form clusters and groups of participants, we initially used four
age groups. The range of years corresponding to each group was
as follows: Adolescents were aged [0, 20) years, Young adults were
aged [20, 40) years, Midlife adults were aged [40, 60) years, and
Older adults were aged ≥ 60 years. As shown in Figure 1, the
distribution of subjects by age group was similar. Subsequently
we enlarged the groups into two major clusters. The clusters of
the young (<40 years) and older (40 years and above) adults
were almost balanced: 48.5/51.5%. While solving the last task, we
excluded the demographic features from the dataset because they
risked biasing the prediction.

3.4. Performance Evaluation Metrics
We used several objective measures to evaluate the performance
of the clustering and classification methods. Confusion and error

matrices were built for each predictive model to show how
they distinguished between the younger and older classes. The
ROC curve and AUC were used to evaluate the performance
of the classifiers and summarize the trade-off between the true-
positive (TPR) and false-positive rates (FPR), using different
probability thresholds. Themedical decision-making community
has extensively published on the use of ROC graphs for the
diagnostic testing (Fawcett, 2004) of balanced data (Saito and
Rehmsmeier, 2015). Thus, we found that this metric was
appropriate for our needs. We used: Here we use:

TPR(sensitivity) =
TP

TP + FN
(8)

TNR(specificity) =
TN

TN + FP
(9)

FPR =
FP

FP + TN
= 1− specificity (10)

BAC(balanced accuracy) =
Sensitivity+ Specificity

2
(11)

The overall accuracy of the model was defined as follows:

Accuracy =
TP + TN

TP + TN + FP + FN
(12)

where TP,TN, FP, and FN are true-positive, true-negative, false-
positive, and false-negative values, respectively, representing the
confusion matrix of the classification model.

All metrics were calculated for each fold separately, and
averaged values were used as the final measure.

3.5. Hardware and Software
All experiments were conducted using a Linux Ubuntu 18.04
workstation with 24 CPU cores and two NVIDIA GeForce
GTX 1080 Ti GPU with 11 GB GDDR5X memory each,
using the Python programming language and its libraries
for data processing, ML, and data visualization, such as
scikit-learn, NumPy, Pandas, Matplotlib, Seaborn, and Plotly.
For the POBA dataset collection, we used NS-Psychotest
by Neurosoft.

4. RESULTS

4.1. Association Between Test
Performance and Age
Figure 2A describes the association between age and
performance of participants for the PTs (i.e., the POBA
dataset). Figure 2B shows the relationship between age and
cognitive test performance (i.e., the SSCT dataset). The color
intensity and size of the ellipses are proportional to the
correlation coefficients.

The analysis of the PTs showed a positive correlation
between age and all features except AC, which was
negatively associated with age. Age was significantly

Frontiers in Aging Neuroscience | www.frontiersin.org 7 July 2021 | Volume 13 | Article 661514

https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/aging-neuroscience#articles


Statsenko et al. Predicted Cognitive Age

FIGURE 1 | Age distribution of the (A) psychophysiological outcomes of brain atrophy and (B) stroop switching card test datasets.

FIGURE 2 | Correlation matrix heatmap for the (A) psychophysiological outcomes of brain atrophy and (B) stroop switching card test datasets.

associated with all psychophysiological parameters
(p < 0.05) except for TRVI, RMO_mean, and
wrist power.

For the analysis of cognitive tests, associations between test
performance and age were significant and stronger compared
with those between PT performance and age. Test output
values increased with age because they reflected either the
time taken to complete the task or the number of errors
(inaccuracy). The exceptions were information speed processing
from the DSST and accuracy in updating, reflected by the

dependent variable of the DSFB test. Poorer test performance
resulted in lower speed and accuracy estimates. Performance
in the DSST and DSFB were negatively associated with age.
All these changes demonstrate the inevitable decline in mental
processes with age.

Apart from the correlations between age and basic
neurophysiologic and cognitive functions, the diagrams
showed strong associations of age with various attributes of
behavioral test performance. Cognitive domains undergo age-
related changes in parallel; therefore, such associations are not
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TABLE 1 | Correlation matrix of psychophysiological tests performance and age.

Feature

SVMR_mean CVMR_mean DMT AST_mean IRT_mean TRVI RMO_mean AC WDL_MMS AGE

r p-value r p-value r p-value r p-value r p-value r p-value r p-value r p-value r p-value r p-value

Gender 0.095473 0.148039 0.122524 0.063012 0.077047 0.243452 0.158165 0.016128 0.180011 0.006078 0.068097 0.302743 -0.045266 0.493598 0.167460 0.010791 -0.482428 <0.000001 0.201525 0.002084

DMT -0.000722 0.991298 0.671566 <0.000001 1.000000 <0.000001 0.205353 0.001703 0.198933 0.002385 0.039182 0.553503 0.089593 0.174768 0.053556 0.417856 0.045665 0.489790 0.203648 0.001864

SVMR_mean 1.000000 <0.000001 0.740460 <0.000001 -0.000722 0.991298 0.626474 <0.000001 0.716737 <0.000001 0.275004 0.000022 -0.009266 0.888610 0.110957 0.092481 -0.441085 <0.000001 0.137067 0.037363

CVMR_mean 0.740460 <0.000001 1.000000 <0.000001 0.671566 <0.000001 0.602201 <0.000001 0.664766 <0.000001 0.230098 0.000422 0.053350 0.419648 0.118208 0.072948 -0.296128 0.000005 0.238431 0.000255

AST_mean 0.626474 <0.000001 0.602201 <0.000001 0.205353 0.001703 1.000000 <0.000001 0.717224 <0.000001 -0.165172 0.011934 0.025443 0.700491 0.137768 0.036392 -0.425372 <0.000001 0.367574 <0.000001

IRT_mean 0.716737 <0.000001 0.664766 <0.000001 0.198933 0.002385 0.717224 <0.000001 1.000000 <0.000001 0.568806 <0.000001 0.009808 0.882141 0.105885 0.108472 -0.444672 <0.000001 0.361181 <0.000001

TRVI 0.275004 0.000022 0.230098 0.000001 0.039182 0.553503 -0.165172 0.011934 0.568806 <0.000001 1.000000 <0.000001 -0.016148 0.807138 -0.012742 0.847255 -0.127299 0.053341 0.077349 0.241606

RMO_mean -0.009266 0.888610 0.053350 0.419648 0.089593 0.174768 0.025443 0.700491 0.009808 0.882141 -0.016148 0.807138 1.000000 <0.000001 0.052588 0.426334 0.075441 0.253450 0.040866 0.536581

WDL_MMS -0.441085 <0.000001 -0.296128 0.000005 0.045665 0.489790 -0.425372 <0.000001 -0.444672 <0.000001 -0.127299 0.053341 0.075441 0.253450 -0.458617 <0.000001 1.000000 <0.000001 0.106160 0.107552

AC 0.110957 0.092481 0.118208 0.072948 0.053556 0.417856 0.137768 <0.000001 0.105885 0.108472 -0.012742 0.847255 0.052588 0.426334 1.000000 <0.000001 -0.458617 <0.000001 -0.218289 0.000838

AGE 0.137067 0.037363 0.238431 0.000255 0.203648 0.001864 0.367574 <0.000001 0.361181 <0.000001 0.077349 0.241606 0.040866 0.536581 -0.218289 0.000838 0.106160 0.107552 1.000000 <0.000001

The significant associations between features are marked in bold.

TABLE 2 | Correlation matrix of cognitive test performance and age.

Feature

Processing_speed SSCT_TIME Conflict resolution Conflict adaptation SSCT_I_S SCCT_Updating TMT_BA_TIME IS DIGIT_SPAN_FWBW AGE

r p-value r p-value r p-value r p-value r p-value r p-value r p-value r p-value r p-value r p-value

Processing_ speed 1.000000 < 0.000001-0.760452< 0.000001-0.562762< 0.000001-0.569408< 0.000001-0.567443< 0.000001-0.416929 0.000012 -0.308709 0.001510 -0.347707 0.000320 0.541204 < 0.000001-0.641117< 0.000001

SSCT_TIME -0.760452< 0.000001 1.000000 < 0.000001 0.597524 < 0.000001 0.611631 < 0.000001 0.538556 < 0.000001 0.588301 < 0.000001 0.406676 0.000020 0.343364 0.000384 -0.515086< 0.000001 0.682432 < 0.000001

SSCT_ERROR -0.651959< 0.000001 0.697348 < 0.000001 0.904227 < 0.000001 0.832309 < 0.000001 0.836126 < 0.000001 0.605417 < 0.000001 0.448494 0.000002 0.391254 0.000044 -0.457402 0.000001 0.591469 < 0.000001

SSCT_IES -0.738842< 0.000001 0.985101 < 0.000001 0.667223 < 0.000001 0.662397 < 0.000001 0.600535 < 0.000001 0.643902 < 0.000001 0.442140 0.000003 0.349678 0.000294 -0.507645< 0.000001 0.660753 < 0.000001

SSCT_Conflict

resolution

-0.562762< 0.000001 0.597524 < 0.000001 1.000000 < 0.000001 0.704722 < 0.000001 0.644165 < 0.000001 0.371008 0.000114 0.456961 0.000001 0.378832 0.000079 -0.409567 0.000017 0.543748 < 0.000001

SSCT_Conflict

adaptation

-0.569408< 0.000001 0.611631 < 0.000001 0.704722 < 0.000001 1.000000 < 0.000001 0.608635 < 0.000001 0.454229 0.000001 0.387844 0.000052 0.355932 0.000224 -0.417635 0.000011 0.536724 < 0.000001

SSCT_I_S -0.567443< 0.000001 0.538556 < 0.000001 0.644165 < 0.000001 0.608635 < 0.000001 1.000000 < 0.000001 0.516613 < 0.000001 0.254225 0.009561 0.245022 0.012613 -0.337418 0.000491 0.471337 0.000001

SCCT_Updating -0.416929 0.000012 0.588301 < 0.000001 0.371008 0.000114 0.454229 0.000001 0.516613 < 0.000001 1.000000 < 0.000001 0.318142 0.001057 0.304634 0.001756 -0.351070 0.000277 0.385386 0.000058

TMT_BA_TIME -0.308709 0.001510 0.406676 0.000020 0.456961 0.000001 0.387844 0.000052 0.254225 0.009561 0.318142 0.001057 1.000000 < 0.000001 0.269438 0.005919 -0.253960 0.009638 0.442843 0.000003

IS -0.347707 0.000320 0.343364 0.000384 0.378832 0.000079 0.355932 0.000224 0.245022 0.012613 0.304634 0.001756 0.269438 0.005919 1.000000 < 0.000001-0.262351 0.007425 0.483265 < 0.000001

DIGIT_SPAN

_FWBW

0.541204 < 0.000001-0.515086< 0.000001-0.409567 0.000017 -0.417635 0.000011 -0.337418 0.000491 -0.351070 0.000277 -0.253960 0.009638 -0.262351 0.007425 1.000000 < 0.000001-0.352941 0.000256

AGE -0.641117< 0.000001 0.682432 < 0.000001 0.543748 < 0.000001 0.536724 < 0.000001 0.471337 0.000001 0.385386 0.000058 0.442843 0.000003 0.483265 < 0.000001-0.352941 0.000256 1.000000 < 0.000001

The significant associations between features are marked in bold.
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surprising. However, the onset and rate of change may differ
between domains.

Tables 1, 2 show Pearson’s correlation coefficients and p values
for the association between age and psychophysiological test
performance (the POBA dataset) and cognitive test performance
(the SSCT dataset).

4.2. Lookup for the Onset of
Psychophysiological and Cognitive Decline
Most dependent variables of the test batteries are represented by
low values for high performance and vice versa. However,
several dependent variables have lower values for poor
performance, which include the muscle strength parameters
and outputs of the DSST and DFBW tests. To maintain
consistency in the diagrams, we reversed the values for
subsequent analyses (i.e., 1/WDL_MMS, 1/Processing_speed,
and 1/DIGIT_SPAN_FWBW).

Table 3 shows the lifelong dynamics of PT performance.
The minimal values of the variables in young adults indicated
better performance than other groups across all PTs (Figure 3).
The U-shaped curve of the minimal values in those aged 30–
45 years was the common pattern for all age-related changes,
except for those of AC and RMO_mean. AC values showed a
slight descending trend toward 55 years and a similar ascending
trend after 55 years. RMO_mean remained almost unchanged
throughout life.

The lifelong dynamics of cognitive test performance
showed a different pattern. The performance metrics of
the cognitive tests shared a similar overall trend, as seen
in Table 4. Most values showed a rise from adolescence
and an increase throughout life. However, several test
estimates showed a small improvement in young adults,
followed by steady worsening with age (e.g., SSCT_TIME,
SSCT_IES, SSCT_Conflict adaptation, TMT_BA_TIME, and
1/DIGIT_SPAN_FWBW).

Figures 4, 5 illustrate the data in table. Only the
SSCT_Conflict adaptation and SSCT_I_S curves presented
an optimal value in those aged over 25 years with
the following worsening of the parameters. All other
dependent variables of the cognitive tasks progressed steadily
throughout life.

4.3. Sex Differences in Lifelong Test
Performance
Table 3 shows the variance of PT performance by age
and sex. From the averaged group data, men outperformed
women in all PTs except for IRT_variance, which was
similar across both sexes, with a slightly lower value in
women (Figure 6). Table 4 and Figures 4, 7 show data of
the cognitive test performance. No significant variance was
related to sex.

Table 5 summarizes sex-specific lifelong changes of the
variables. No significant differences were found among slopes
or intercepts except for choice RT (CVMR_variance). Figure 6
shows that during adolescence, CVMR_variance remains
unchanged throughout life in men. In contrast, in women,

CVMR_variance increases with age. Figure 7 illustrates the
different trends of changes with age for SSCT_Updating. In
men, it remains relatively stable, whereas in women it increases.
The significant difference in slope indicates different rates
of deterioration between the sexes for this cognitive feature
(see Table 5). There were no sex-related differences in the
dynamics of age-related changes of psychophysiological or
cognitive tests.

4.4. Prediction of the Age Group Using
Machine Learning
To estimate the onset of cognitive decline, we used cluster
analysis. After assessing the outcome metrics of clustering
into several groups, we obtained the best performance using
two clusters when the cutoff value was set to 40 years of
age (see Table 6). We achieved the best performance using
the GenClus++ method (a combination of K-Means and the
genetic algorithm). The misclassification of young participants
was less frequent than that of older adults. This may account
for the cumulative effect of individual lifestyle on cognitive
status. Neurodevelopment in youth appears to be a more
standardized process than brain aging of diverse origin, pace,
and extent.

Initially, the clustering generated low prediction accuracy
(68.4%). To improve the performance of clustering of the
POBA dataset, we resorted to using the feature-selection
method. The genetic algorithm returned the following
list of features that maximized prediction accuracy:
AST_mean, IRT_mean, SVMR_mean, and CVMR_mean
(see Table 7). When we ran the information gain-based
ranker for the SSCT dataset, we retrieved the following
informative features: SSCT_TIME, SSCT_IES, Processing_speed,
TMT_BA_TIME, and SSCT_ERROR. When we fed the
unsupervised ML clustering models with the aforementioned
features, the separability of the subjects by age group
improved considerably.

To estimate the utility of a novel battery of tests for diagnosing
age-related cognitive changes, we built an ML classification
model, which identified the age group of participants as
either below or above 40 years of age. If the prediction is
reliable, it may reflect a subtle biomarker for accelerated aging
(neurodegeneration) in those misclassified by the algorithm.
A cognitive disorder may be diagnosed by estimating the gap
between the chronological and predicted (biological) age. To
make such predictions, a larger dataset is required in future
studies using ML.

In Table 8 methods known for their high performance
in classifying numerical data are compared. Figure 8

shows the ROC curves and AUC values that represent the
performance of classifiers in both datasets. The accuracy
of age group prediction from cognitive test performance
was higher than that of PT performance (maximal
AUC for the SSCT dataset was 0.9962 vs. 0.9382 for the
POBA dataset).
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TABLE 3 | Comparison of test performance by age group and sex for the psychophysiological outcomes of brain atrophy dataset.

Test
Total Female Male

p1−2
n1 = 231 n2 = 134 (58.01%) n3 = 97 (41.99%)

SVMR_mean 260.51 [219.63–285.83] 265.33 ± 57.56 253.84 ± 61.31 <0.0147

Adolescent 282.03 [237.52–307.52] 290.9 ± 82.47 276.23 ± 61.5 0.433

Young adults 221.03 [201.72–235.03] 224.4 ± 25.96 216.69 ± 31.8 <0.0454

Midlife adult 259.76 [224.22–275.98] 269.65 ± 50.34 244.34 ± 59.48 <0.0041

Older adults 288.52 [254.25–304.47] 285.83 ± 50.36 295.71 ± 61.31 0.3423

SVMR_variance 69.88 [41.09–80.82] 70.82 ± 47.22 68.57 ± 48.48 0.3557

Adolescent 89.01 [48.0–90.89] 100.08 ± 82.66 81.75 ± 65.55 0.392

Young adults 49.41 [32.32–58.76] 49.26 ± 21.14 49.6 ± 23.9 0.3855

Midlife adult 67.69 [44.72–82.09] 71.5 ± 36.82 61.76 ± 35.31 0.1447

Older adults 79.54 [54.32–99.51] 75.68 ± 40.62 89.85 ± 47.01 0.0914

CVMR_mean 360.77 [307.45–395.57] 369.13 ± 81.17 349.22 ± 77.4 <0.0259

Adolescent 360.8 [291.42–392.68] 375.09 ± 142.16 351.43 ± 75.82 0.4497

Young adults 324.89 [289.33–346.97] 331.23 ± 47.76 316.73 ± 65.26 0.1236

Midlife adult 362.64 [316.64–393.8] 371.52 ± 60.98 348.79 ± 68.91 <0.0466

Older adults 400.32 [356.04–433.08] 398.07 ± 68.13 406.3 ± 80.78 0.4066

CVMR_variance 108.91 [70.7–118.64] 110.19 ± 79.9 107.14 ± 67.4 0.3801

Adolescent 121.55 [72.3–140.56] 102.73 ± 77.28 133.87 ± 102.52 0.0523

Young adults 91.82 [63.35–94.18] 96.51 ± 102.58 85.78 ± 34.53 0.2263

Midlife adult 92.65 [71.29–110.77] 98.4 ± 33.17 83.68 ± 22.95 0.0616

Older adults 136.69 [91.6–146.96] 137.54 ± 83.25 134.41 ± 45.39 0.1949

AST_mean 362.32 [311.05–412.35] 371.18 ± 68.9 350.09 ± 59.13 <0.0114

Adolescent 355.8 [319.45–389.67] 362.31 ± 69.28 351.54 ± 50.64 0.3839

Young adults 323.06 [293.45–339.52] 329.5 ± 52.82 314.77 ± 35.35 0.2735

Midlife adult 362.4 [317.05–418.52] 372.32 ± 63.1 346.92 ± 56.5 0.056

Older adults 413.62 [372.85–445.45] 411.79 ± 63.08 418.49 ± 54.49 0.2511

AST_variance 92.47 [53.55–115.6] 99.01 ± 60.08 83.42 ± 46.35 0.0533

Adolescent 89.45 [49.52–102.4] 90.95 ± 62.14 88.47 ± 54.17 0.3522

Young adults 67.67 [45.68–75.38] 74.02 ± 47.48 59.5 ± 18.24 0.4038

Midlife adult 89.68 [56.25–119.22] 95.88 ± 50.21 80.0 ± 36.0 0.117

Older adults 127.2 [74.45–168.0] 128.4 ± 65.63 124.0 ± 51.53 0.4962

IRT_mean 428.17 [368.15–471.85] 440.26 ± 77.99 411.48 ± 77.11 <0.0021

Adolescent 423.05 [351.78–462.75] 445.89 ± 102.78 408.09 ± 66.84 0.1365

Young adults 378.82 [344.05–416.9] 385.36 ± 43.16 370.42 ± 49.49 0.1365

Midlife adult 434.55 [377.52–477.58] 448.06 ± 65.5 413.47 ± 73.2 <0.0125

Older adults 482.65 [428.5–529.55] 479.39 ± 71.98 491.35 ± 82.16 0.374

IRT_variance 125.04 [76.75–156.85] 124.21 ± 64.11 126.19 ± 67.76 0.4734

Adolescent 147.01 [90.18–180.02] 150.61 ± 89.17 144.66 ± 70.13 0.4664

Young adults 91.84 [70.42–107.82] 88.71 ± 34.1 95.86 ± 46.43 0.4249

Midlife adult 112.04 [80.95–136.57] 114.84 ± 48.33 107.68 ± 50.54 0.1987

Older adults 159.64 [100.2–193.55] 152.78 ± 65.57 177.93 ± 79.24 0.1264

RMO_mean 0.32 [–18.5–31.35] –2.72 ± 91.16 4.53 ± 58.05 0.4155

Adolescent −8.99 [-22.48–16.67] −11.31 ± 90.65 −7.48 ± 50.55 0.2882

Young adults −2.14 [-12.38–20.95] −1.96 ± 63.88 −2.37 ± 38.5 0.2624

Midlife adult 12.73 [-0.8–47.65] −5.11 ± 124.22 40.56 ± 49.66 <0.0341

Older adults −3.12 [-42.7–34.3] 2.99 ± 71.71 −19.44 ± 82.9 0.2886

RMO_variance 167.86 [84.7–224.35] 183.45 ± 107.07 146.33 ± 95.13 <0.0014

Adolescent 168.85 [80.0–216.25] 198.95 ± 123.68 149.12 ± 82.02 0.1147

Young adults 111.84 [62.53–137.75] 114.94 ± 70.91 107.85 ± 62.19 0.3251

(Continued)
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TABLE 3 | Continued

Test
Total Female Male

p1−2
n1 = 231 n2 = 134 (58.01%) n3 = 97 (41.99%)

Midlife adult 158.75 [88.48–214.9] 182.65 ± 96.42 121.47 ± 75.85 <0.0006

Older adults 242.81 [175.2–299.55] 238.53 ± 100.88 254.22 ± 115.11 0.3562

1 / WDL_MMS 0.05 [0.03–0.06] 0.06 ± 0.04 0.04 ± 0.04 <0.001

Adolescent 0.09 [0.05–0.11] 0.1 ± 0.07 0.08 ± 0.05 0.0714

Young adults 0.03 [0.02–0.04] 0.04 ± 0.01 0.03 ± 0.01 <0.001

Midlife adult 0.04 [0.03–0.05] 0.05 ± 0.02 0.02 ± 0.01 <0.001

Older adults 0.05 [0.04–0.06] 0.06 ± 0.03 0.03 ± 0.01 <0.001

AC 1.11 [1.01–1.19] 1.14 ± 0.19 1.07 ± 0.19 <0.0001

Adolescent 1.21 [1.05–1.34] 1.26 ± 0.2 1.18 ± 0.27 <0.022

Young adults 1.08 [1.0–1.15] 1.09 ± 0.15 1.07 ± 0.11 0.3598

Midlife adult 1.08 [0.99–1.18] 1.15 ± 0.2 0.98 ± 0.14 <0.001

Older adults 1.09 [1.02–1.14] 1.12 ± 0.18 1.02 ± 0.11 <0.01

The significant differences between cohorts are marked in bold.

5. DISCUSSION

5.1. Psychophysiological and Cognitive
Performance With Age
5.1.1. Dynamics of Psychophysiological Attributes

Throughout Life
We used a battery of PTs comprising of cognitive domains
and subdomains. SVMR reflected information processing, DMT
represented task switching and inhibitory control, and IRT
and AST measured attention. RT variability (RTV) across
a set of trials reflected functional stability. To include the
largest possible number of cognitive functions and components,
we applied a comprehensive neurophysiological battery to
study aging. However, we did not intend to explore specific
cognitive subdomains, using specific tests. The idea was
to study the basic neurophysiology that underlies complex
behavior. The acquisition of visual-motor RT and its variance
is straightforward, and the estimates provide an accurate
physiologic assessment of individual neurodynamic properties.

5.1.1.1. RT
In our study, RTs for visual-motor response, attention,
switching, and inhibition were positively associated with
age, which demonstrates age-related neurocognitive slowing.
Measuring RT provides an insight into information processing
that typically includes signal acquisition, decision-making,
and response. There is a fundamental processing speed, i.e.,
the rate at which cognitive operations are executed. The
definition suggests independence of higher-level cognitive
operations from motor operations (Salthouse, 1996). Because
the basic psychophysiological tasks that we used included
motor responses, RTs may reflect EF rather than fundamental
processing speed (Nilsson et al., 2014). The RTs that we
measured were the aggregate output of a series of complex
information-processing transactions that were initiated by the
presentation of a stimulus and terminated by an overt response
(Bashore et al., 1997).

5.1.1.2. Choice RT
Choice RT (CRT) conveys information regarding concentration
and processing speed. By subtracting simple RT from CRT,
central processing time can be assessed, which accounts for 80%
of age-related CRT slowing (Woods et al., 2015; Chintapalli and
Romero-Ortuno, 2021). However, our data showed no significant
difference between the rate of CVMR_mean and SVMR_mean
slowing, which indicates impaired sensorimotor functions, rather
than cognitive performance, and which at baseline explains the
overall CRT slowing.

5.1.1.3. RT Variability
Apart from RT, we also noticed age-related acceleration
of its inconsistency (RTV) (Graveson et al., 2016). A
psychophysiological explanation for this variability relates
to fluctuations in executive control mechanisms. It may also
reflect attentional sustainability (Bunce et al., 1993, 2004; West
et al., 2002). Typical age-related neurocognitive slowing results
in an increase in RTV across the lifespan (Hultsch et al., 2002),
where RTV increases with response slowing (Haynes et al., 2017).
This increase can be reduced by physical exercise (Bauermeister
and Bunce, 2016; Haynes et al., 2017).

The effect of aging on RTV may increase with the complexity
of a cognitive task (West et al., 2002; Bunce et al., 2004; Dixon
et al., 2007), which we observed in the comparison between
AST_variance and IRT_variance slopes and SVMR_variance and
CVMR_variance slopes (see Figure 6 and Table 5).

There are varied opinions regarding the plausible metrics
of RTV. In this study, we used standard deviation, which is
in line with a systematic review that showed similar results
independently, with different ways of assessing RTV (Haynes
et al., 2017). However, another systematic review supported
measures controlled for mean RT (e.g., coefficient of variation)
(Graveson et al., 2016). The idea of adjusting RTV to RT is based
on the high correlations between these variables. Therefore, age-
related changes in RTVmay reflect a general slowing of responses
(Myerson et al., 2007). However, associations between RTV and
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FIGURE 3 | Distribution of reaction time attributes by age for psychophysiological tests and wrist dynamometry.

Frontiers in Aging Neuroscience | www.frontiersin.org 13 July 2021 | Volume 13 | Article 661514

https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/aging-neuroscience#articles


Statsenko et al. Predicted Cognitive Age

TABLE 4 | Comparison of test performance in age groups with regard to gender in SSCT dataset.

Test
Total Female Male

p1−2
n1 = 103 n2 = 56(54.37%) n3 = 47(45.63%)

1 / Processing_speed 0.03 [0.02–0.03] 0.03 ± 0.01 0.03 ± 0.01 0.1049

Adolescent 0.02 [0.02–0.02] 0.02 ± 0.0 0.02 ± 0.0 0.334

Young adults 0.02 [0.02–0.02] 0.02 ± 0.0 0.02 ± 0.01 0.079

Midlife adults 0.03 [0.02–0.05] 0.04 ± 0.02 0.03 ± 0.01 0.0513

Older adults 0.03 [0.02–0.04] 0.03 ± 0.01 0.03 ± 0.01 0.4537

SSCT_TIME 142.93 [81.5–178.0] 151.46 ± 92.75 132.77 ± 75.36 0.2301

Adolescent 84.24 [70.0–95.0] 84.08 ± 20.63 84.38 ± 23.92 0.5

Young adults 82.2 [69.0–95.0] 86.27 ± 21.76 76.1 ± 20.91 0.1728

Midlife adults 176.89 [134.75–201.5] 198.36 ± 75.35 155.43 ± 37.88 0.0805

Older adults 224.32 [150.0–269.0] 226.8 ± 101.94 220.6 ± 93.9 0.423

SSCT_ERROR 3.52 [0.0–6.0] 3.91 ± 3.97 3.06 ± 3.4 0.1537

Adolescent 1.32 [0.0–3.0] 1.17 ± 1.52 1.46 ± 1.45 0.3502

Young adults 1.88 [0.0–3.0] 2.27 ± 2.86 1.3 ± 1.9 0.2267

Midlife adults 3.79 [0.0–6.0] 4.79 ± 3.55 2.79 ± 2.62 <0.0488

Older adults 7.08 [4.0–11.0] 6.93 ± 4.31 7.3 ± 3.72 0.5

SSCT_IES 169.79 [84.35–213.03] 183.69 ± 141.44 153.23 ± 105.97 0.1983

Adolescent 87.74 [70.0–101.25] 87.39 ± 22.75 88.07 ± 25.07 0.4459

Young adults 87.36 [70.0–105.6] 92.41 ± 22.73 79.77 ± 24.2 0.106

Midlife adults 204.27 [144.0–232.29] 237.29 ± 108.98 171.24 ± 48.94 <0.0468

Older adults 295.66 [186.21–367.5] 301.99 ± 173.92 286.17 ± 137.78 0.4014

SSCT_Conflict_

resolution

1.6 [0.0–3.0] 1.62 ± 1.82 1.57 ± 2.01 0.3547

Adolescent 0.52 [0.0–1.0] 0.42 ± 0.76 0.62 ± 0.74 0.2035

Young adults 0.96 [0.0–1.0] 1.13 ± 1.59 0.7 ± 1.19 0.3003

Midlife adults 1.68 [0.0–3.0] 2.0 ± 1.6 1.36 ± 1.63 0.1524

Older adults 3.24 [1.0–5.0] 2.73 ± 2.05 4.0 ± 2.28 0.098

SSCT_Conflict_

adaptation

0.66 [0.0–1.0] 0.73 ± 0.81 0.57 ± 0.76 0.1575

Adolescent 0.36 [0.0–1.0] 0.33 ± 0.62 0.38 ± 0.49 0.3084

Young adults 0.2 [0.0–0.0] 0.27 ± 0.44 0.1 ± 0.3 0.1685

Midlife adults 0.64 [0.0–1.0] 0.86 ± 0.74 0.43 ± 0.73 0.0548

Older adults 1.44 [1.0–2.0] 1.4 ± 0.8 1.5 ± 0.67 0.4371

SSCT_I_S 0.91 [0.0–2.0] 1.05 ± 1.16 0.74 ± 0.91 0.1106

Adolescent 0.4 [0.0–1.0] 0.42 ± 0.64 0.38 ± 0.62 0.4604

Young adults 0.6 [0.0–1.0] 0.73 ± 1.0 0.4 ± 0.66 0.2136

Midlife adults 0.93 [0.0–2.0] 1.07 ± 0.96 0.79 ± 0.94 0.2107

Older adults 1.72 [1.0–3.0] 1.87 ± 1.31 1.5 ± 0.92 0.1632

SSCT_Updating 0.31 [0.0–0.0] 0.41 ± 0.77 0.19 ± 0.49 0.0644

Adolescent 0.04 [0.0–0.0] 0.0 ± 0.0 0.08 ± 0.27 0.1892

Young adults 0.12 [0.0–0.0] 0.13 ± 0.34 0.1 ± 0.3 0.4219

Midlife adults 0.39 [0.0–0.25] 0.5 ± 0.73 0.29 ± 0.7 0.1444

Older adults 0.68 [0.0–1.0] 0.93 ± 1.06 0.3 ± 0.46 0.0772

TMT_BA_TIME 56.46 [33.5–75.5] 56.04 ± 29.01 56.96 ± 35.51 0.4148

Adolescent 45.24 [33.0–58.0] 47.17 ± 13.89 43.46 ± 18.16 0.3315

Young adults 40.76 [24.0–52.0] 40.2 ± 18.9 41.6 ± 11.28 0.3488

Midlife adults 60.79 [43.75–86.5] 63.79 ± 32.27 57.79 ± 39.11 0.2675

Older adults 78.52 [58.0–107.0] 71.73 ± 32.3 88.7 ± 41.81 0.0785

IS 46.51 [29.5–58.75] 49.38 ± 23.23 43.11 ± 24.19 0.0717

Adolescent 29.3 [17.5–44.0] 29.96 ± 12.18 28.69 ± 18.97 0.4352

Young adults 40.42 [24.5–51.0] 46.73 ± 19.2 30.95 ± 13.91 <0.0132

(Continued)
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TABLE 4 | Continued

Test
Total Female Male

p1−2

n1 = 103 n2 = 56(54.37%) n3 = 47(45.63%)

Midlife adults 53.57 [42.75–63.88] 54.07 ± 18.95 53.07 ± 23.11 0.3312

Older adults 61.92 [45.0–76.5] 63.17 ± 25.94 60.05 ± 22.31 0.4889

1/DIGIT_SPAN_FWBW 0.06 [0.05–0.07] 0.06 ± 0.01 0.06 ± 0.01 0.1264

Adolescent 0.06 [0.05–0.06] 0.06 ± 0.01 0.06 ± 0.01 0.4649

Young adults 0.05 [0.04–0.06] 0.05 ± 0.01 0.05 ± 0.01 0.0616

Midlife adults 0.06 [0.06–0.07] 0.07 ± 0.01 0.06 ± 0.01 0.1368

Older adults 0.06 [0.05–0.07] 0.06 ± 0.01 0.06 ± 0.01 0.4096

The significant differences between cohorts are marked in bold.

clinical outcomes (e.g., dementia, falls, and death) suggest that
neurocognitive variance is not simply related to general slowing
(Graveson et al., 2016; Haynes et al., 2017).

5.1.1.4. Attention
Rather than using choice and simple reactions exclusively,
we employed attention study techniques (e.g., AST and IRT),
which stemmed from the importance of evaluating attention.
By driving goal-oriented behavior, attention determines the
performance of any activity. Aging results in a reduced ability
to concentrate on an object. Typical symptoms of advanced
age neurodynamic disorders are talking around, inability to
sustain attention, being easily distracted, and difficulty recalling
information against a noisy background (Tanila et al., 1997).
Age-related decline in attention may reduce the performance
for simultaneously carrying out tasks. For example, RT increases
in the elderly when they are asked to concurrently achieve
postural stability. Furthermore, slower responses during a choice
reaction test are a potential predictor of faster decline in mobility
(Chintapalli and Romero-Ortuno, 2021). Although it is not well-
understood, mobility and cognitive impairment accompany each
other throughout life.

5.1.1.5. Visual-Motor Task Performance
Although we used PTs with visual paradigms, it was still
challenging to analyze performance of tasks that relied on visual
sensory functioning because they comprise several components:
sensory acquisition, cognitive appraisal, and processing. Each
component may undergo age-related changes that result in the
wrong behavior of the entire system. Despite being derived from
sensory components, poor performance may be misinterpreted
as a sign of cognitive decline. Increased age results in a decline
in visual search performance; however, the reasons for this
association remain unclear (Monge et al., 2017).

5.1.1.6. Brain Functional Asymmetry
A possible reason for a negative association between AC and age
is that the force of each wrist differs because of the asymmetrical
atrophy of the brain during aging. This reduces the dominant
position of the motor cortex of one side. Another reason is a
reduction in white matter (WM) connectivity during life. Fiber
loss in the corpus callosum disconnects the two hemispheres and
reduces the suppression of the non-dominant hemisphere by the

contralateral hemisphere (Teipel et al., 2009). If motor cortex
activity becomes equal across hemispheres, AC will reduce.

5.1.2. Lifelong Trend of Cognitive Performance
Tasks vary across POBA and SSCT studies depending on
cognitive complexity. They range from those involving low
cognitive demands (e.g., SVMR in the POBA dataset) to those
requiring more complex cognition (e.g., cognitive tasks in the
SSCT dataset). On average, the cognitive tasks comprised in
the SSCT dataset are more demanding compared with the
battery of PTs. This may also explain why decline starts early
in life according to cognitive tests, whereas psychophysiological
findings begin to worsen only from middle age.

5.1.2.1. Task Switching and Conflict Resolution
Conflict resolution is an important cognitive ability that
enables the suppression of automatic responses that may
have been suitable previously but are inappropriate in a
new context (Ho et al., 2019). Our findings on the lifelong
dynamics of SSCT_Conflict_Resolution, SSCT_I_S, and
1/DIGIT_SPAN_FWBW are consistent with previous studies
that showed poor dual-tasking abilities in older adults. The ability
to switch between concurrent tasks is supported by executive
control, which becomes weaker with age (Graveson et al., 2016).
Executive cognitive control requires operations, such as conflict
monitoring and response inhibition. Conflict monitoring is
the evaluative component of cognitive control, as it detects the
occurrence and level of conflict. The disproportionate deficits
in inhibitory processing have shown to discriminate individuals
with normal aging and MCI. Conflict resolution follows conflict
monitoring and inhibits task-irrelevant responses and screens
for task-relevant information (Cullen et al., 2007). The SSCT_I_S
reliably reflects the ability to inhibit irrelevant responses and
switch to a correct behavior (Belghali et al., 2020).

5.1.2.2. Interference Score
Interference score is a dependent variable of SCWT, the
diagnostic value of which is based on the interference effect.
The effect leads to slower cognitive speed during incongruent
trials compared with congruent trials. The effect is larger
in cognitively-impaired people compared with cognitively-
preserved individuals (Ho et al., 2019). In our study, IS increased
steadily across the lifespan (see Figure 5).
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5.1.2.3. Processing Speed
In the battery of cognitive tests we used, DSST enabled us to
assess information-processing speed, which showed significant
age-related changes. Processing speed is particularly sensitive to
age and mediates the decline in higher-order cognitive domains
(Nilsson et al., 2014). An alternative point of view is that under
appropriate control, processing speed accounts for most age-
related differences in executive deficits (Verhaeghen and Cerella,
2002). For example, a study of three groups of participants, with
mean ages of 22, 70, and 85 years, respectively, showed common
perceptual and orienting attention patterns, and differences were
observed for processing speed only (Muiños et al., 2016).

5.1.2.4. Attention
Attention as a cognitive domain was also measured by the
cognitive tests. This is because major complex activities require
attentional resources. Multitasking suffers with advanced age
because of the reduced ability to flexibly switch attention
(known as intellectual rigidity). TMT reflects cognitive flexibility
and involves attention. Thus, it is not surprising that its
dependent variable, TMT_BA_TIME, decreased across the
lifespan. Numerous studies have shown that aging results in
disturbances of concentration and attention.

Similarly to attention, working memory is also involved
in many cognitive tasks (e.g., the SSCT and DSST). Changes
in the dependent variables of the tests (SSCT_Updating and
Processing_speed) signify working memory decline with age.

5.2. Onset of Decline in
Psychophysiological and Cognitive
Performance
Cognitive declinemay start at different ages. There is no common
age of onset in any population. Previous studies have shown that
the decline is already evident at middle age. The most affected
functions are EF (Singh-Manoux et al., 2012) and processing
speed (Salthouse, 2009; Zimprich and Mascherek, 2010). A
recent study revealed that most age-related cognitive changes
occur at the age of 50–65 years, with only a few age-related
differences being evident before the age of 50 years (Ferreira
et al., 2015). However, in healthy educated adults, some aspects
of cognitive impairment have shown to start during their 20s
and 30s (Salthouse, 2009). Some studies have suggested that
crystallized intelligence continues to increase during adulthood,
whereas decline in physiological cognitive functions (e.g., fluid
intelligence, memory, and especially processing speed) starts
earlier (Zimprich and Mascherek, 2010).

There is a considerable body of evidence that has implicated
brain structural changes in age-related EF deficits. Below is the
discussion of our findings of previous brain morphology studies,
which give insight into the pathomorphological mechanisms of
neurocognitive slowing.

5.2.1. White Matter Changes and

Psychophysiological Worsening

5.2.1.1. Reaction Time and Processing Speed
RT and processing speed. RT estimates and RTV of the PT that
we used followed a U-shaped function across the lifespan, which

is consistent with the inverted U-shaped function ofWM volume
changes. WM volume increases until early middle age (35 years
of age), which is followed by a period of stability, and finally
an accelerated decline after late middle age (55–60 years of age).
Furthermore, there is evidence that indices ofWM integrity from
diffusion tensor imaging (DTI) strongly correlate with processing
speed. WM integrity changes start early in adulthood and show
greater decline after the age of 60 (Ferreira et al., 2014; Nilsson
et al., 2014).

A recent study found that age-related differences in two
components of processing speed do not occur simultaneously.
The cognitive component of processing speed integrates all the
results. The slowing of the component occurs before the age of
50 years, whereas the motor component slows during the age of
50–65 years (Ferreira et al., 2015).

5.2.1.2. RT Variance
The trial-to-trial volatility of RT across a task (RTV) is closely
related to brain structural features and provides an insight
into brain changes across the lifespan. RTV occurs because of
the consequences of WM decline, such as less distinct cortical
representations and increased neural noise. Independent of RT,
RTV has been shown to be associated with the prevalence of WM
lesions (hyperintensities on FLAIR). RTV is a measure of WM
integrity alone (in DTI studies) and general neurological integrity
at a biological level (Deary et al., 2006; Nilsson et al., 2014).
Findings regarding the age at which RTV begins to increase
are inconsistent. However, in line with our findings, age-related
increases in variability are thought to begin in middle age or
earlier (Haynes et al., 2017).

5.2.2. Gray Matter Atrophy and Cognitive Decline
Age-related changes in gray matter (GM) also mediate cognitive
performance across the lifespan (Ferreira et al., 2014). The shape
of age-related variance of major cognitive test performance is
close to a straight line, which is similar to the linear trend of
decreases in GM volume across the lifespan. The neural centers
that comprise GM are responsible for information synthesis (e.g.,
decision making) and establishing links (e.g., associative thinking
and working memory).

5.2.2.1. Inhibitory Process
A study using the Stroop test showed that age-related differences
in cognitive inhibition occur at age 50–65 years alongside the
onset of verbal fluency and premotor function decline (Ferreira
et al., 2015). However, in our study, impairment started early in
life (from adolescence), with a slow progression throughout life
(see IS changes in Figure 5).

5.2.2.2. Attention
Attention is an internal cognitive process for directing focus
toward objects or locations while managing distractions.
According to its sources, attention can be broken down into
networks that carry out alerting and executive control functions.
Several studies have suggested that age-related cognitive decline,
especially EF, begins early in life, childhood (Finch, 2009;
Salthouse, 2009), or middle age (Zhou et al., 2011). Age-related
deterioration of the prefrontal lobe and dopaminergic system
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FIGURE 4 | Distribution of reaction time and accuracy attributes in Stroop switching card test by age.

accounts for the impairment of executive attention after the
age of 40 (Zhou et al., 2011). In a recent study, decline in the
attentional domain was found to occur during the transition from
middle age (50 years) to old age (65 years) (Ferreira et al., 2015).

Our data showed that performance in PTs that utilize attention
begins to deteriorate at middle age. In contrast, performance in
the cognitive tests used in the study shows an early onset of
decline. Estimating the onset of decline in attention is difficult
because of the lack of tasks that purely measure attention.

5.2.2.3. Working Memory
EF decline in working memory occurs before the age of 50,
which is reflected by changes in the manipulation of visual and
verbal information. Changes in the latter are less prominent,
as the visual modality is more demanding than the verbal
modality, and more complex components are more vulnerable
to change across the lifespan. Difficulties in verbal learning

that start during middle age are likely to be more related to
frontal lobe impairment than middle lobe impairment (Ferreira
et al., 2015). The procedural memory component undergoes
age-related changes that manifest as an increase in errors and
time of execution, which are more related to inhibitory control
(performed by the frontal lobe) and processing speed (Lezak
et al., 2004; Ferreira et al., 2015).

It is difficult to estimate the onset of working memory decline
using the tests that we included because the battery of tests used
do not specifically measure working memory status.

5.3. Socio-Demographic Correlates in
Age-Related Cognitive Impairment
Sociodemographic correlates, such as sex and education, can
influence cognitive test performance. Literacy and higher
educational level correlates with superior test performance on

Frontiers in Aging Neuroscience | www.frontiersin.org 17 July 2021 | Volume 13 | Article 661514

https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/aging-neuroscience#articles


Statsenko et al. Predicted Cognitive Age

FIGURE 5 | The distribution of the Stroop switching card test, trial making test, Stroop color and word test, digit span forward and backward test, and digit symbol

substitution test by age.
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FIGURE 6 | Sex-related differences in reaction time attributes and results of wrist dynamometry.
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FIGURE 7 | Sex-related differences in the Stroop switching card test, trial making test, Stroop color and word test, digit span forward and backward test, and digit

symbol substitution test across the lifespan.

several cognitive domains (Ho et al., 2019). For our analysis of
both datasets, we took into consideration the educational level
of participants. For instance, we used literacy as an inclusion
criterion. Moreover, we included adults who indicated that
they completed a professional course after finishing general
education. Another way to control for the level of intelligence
is by considering the years of formal education. However,
this has several limitations. Firstly, the intensity of training
is not considered. Secondly, it does not reflect the level of
intellectual activity after completion of formal education (e.g.,
postgraduate study). Furthermore, there is evidence that the

effects of intelligence and formal education on the development
of dementia differ. Schmand showed that a low reading test score
predicted incident dementia better than a low level of education.
Furthermore, the study found that a high occupational level had
a protective effect (Schmand et al., 1997).

5.3.1. Sex Differences in Age-Related Cognitive

Impairment
Despite some variation in psychophysiological and cognitive
findings across the lifespan, we found significant test
performance differences related to sex. The linear trends of
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TABLE 5 | Interaction coefficients for the comparison of intercepts and slopes for the psychophysiological outcomes of brain atrophy and Stroop switching card test

datasets.

A comparison of the intercepts A comparison of the slopes

A cross-gender comparison Estimate ± Std.Error p-value Estimate ± Std.Error p-value

SVMR Mean -5.5398 ± 17.0673 0.746 -0.0740 ± 0.3739 0.843

in females vs. males Variance -9.8509 ± 13.8649 0.478 0.1805 ± 0.3038 0.553

CVMR Mean -14.48187 ± 22.57078 0.5218 0.04636 ± 0.49450 0.9254

in females vs. males Variance 42.6654 ± 21.431 0.0477 -1.0625 ± 0.4695 0.02459

AST Mean 2.8253±17.6758 0.873 -0.3607±0.3873 0.353

in females vs. males Variance 7.6835 ± 15.3078 0.616202 -0.4315 ± 0.3354 0.199539

IRT Mean -24.2166 ± 21.2315 0.25524 0.1578 ± 0.4652 0.73476

in females vs. males Variance 7.51771 ± 18.87285 0.6908 -0.03684 ± 0.41348 0.9291

RMO Mean -0.04731 ± 22.90908 0.998 0.22319 ± 0.50191 0.657

in females vs. males Variance -14.3708 ± 28.6184 0.616047 -0.2828 ± 0.6270 0.652444

MMS 1/WDL -0.0074758 ± 0.0103231 0.46970 0.0003275 ± 0.0002262 0.14892

in females vs. males 1/WDR -0.0044287 ± 0.0074259 0.5515 -0.0002823 ± 0.0001627 0.0840

AC -0.012251 ± -0.012251 0.8198 -0.001863 ±0.001177 0.1148

SSCT TIME -0.9656 ± 28.6265 0.973 -0.3570 ± 0.6342 0.575

in females vs. males ERROR -0.591655 ± 1.382154 0.67 -0.003264 ± 0.030619 0.915

IES 5.3695 ± 43.5334 0.902 -0.7681 ± 0.9644 0.428

Conflict resolution -0.67041 ± 0.73378 0.363 0.01670 ± 0.01626 0.307

Conflict adaptation -0.079453 ± 0.307563 0.797 -0.001345 ± 0.006813 0.844

Updating 0.313096 ± 0.2566 0.2566 -0.012768 ± 0.006079 0.0382

I_S -0.056327 ± 0.426148 0.895 -0.005542 ± 0.009440 0.558

TMT_BA_TIME -6.1996 ± 13.2474 0.640824 0.1950 ± 0.2935 0.507837

IS -13.5758 ± 9.5060 0.15640 0.1958 ± 0.2106 0.35477

1/DIGIT_SPAN_FWBW -4.820e-03 ± 5.060e-03 0.3432 4.676e-05 ± 1.121e-04 0.6775

1/Processing_speed -8.548e-04 ± 4.835e-03 0.86 -6.251e-05 ± 1.071e-04 0.561

The significant differences between intercepts and between slopes are marked in bold.

TABLE 6 | Performance of clustering machine learning methods for the psychophysiological outcomes of brain atrophy and Stroop switching card test datasets assessed

using the confusion matrix and prediction accuracy.

All features Selected features

Method Class POBA dataset SSCT dataset POBA dataset SSCT dataset

ỹ õ A, % ỹ õ A, % ỹ õ A, % ỹ õ A, %

Simple K-Means Arthur and Vassilvitskii, 2006
Young 90 22

62.77
45 5

76.70
88 24

64.94
49 1

78.64
Older 64 55 19 34 57 62 21 32

Canopy McCallum et al., 2000
Young 87 25

64.50
36 14

71.84
89 23

63.2
50 0

84.41
Older 57 62 15 38 62 57 14 39

Expectation maximization Dempster et al., 1977
Young 82 30

65.37
40 10

76.70
83 29

66.67
49 1

84.47
Older 50 69 21 32 48 71 17 36

GenClus++ Islam et al., 2018
Young 87 25

67.53
48 2

77.67
87 25

68.40
49 1

82.52
Older 50 69 21 32 48 71 17 36

* Rows correspond to clusters; whereas columns correspond to values predicted by clustering method.

ỹ,õ - number of predicted subjects belonging to the group young and old groups respectively.

A - the accuracy of correctly-predicted instances using the confusion matrix (see section 3.4).

The largest accuracy value for each datasets is marked in bold.

the age-related changes for choice RT and updating in the SSCT
test (see Table 5) had significantly different slopes. However,
we did not observe significant sex differences in the lifelong
dynamics of major test estimates. There is currently limited

agreement in the literature on sex differences. Longitudinal
studies comparing changes in cognitive function and probability
of Alzheimer’s dementia in men and women have revealed
confronting results (Barnes et al., 2003).
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TABLE 7 | Features retrieved using the information gain-based ranker method.

POBA dataset SSCT dataset

Attribute Cognitive and neuropsychological features Attribute Cognitive and neuropsychological features

AST_mean Attention, information processing SSCT_TIME Information processing

IRT_mean Attention, information processing SSCT_IES Updating, information processing

SVMR_mean Information processing Processing_speed Information processing

CVMR_mean Cognitive flexibility (switching), Information processing TMT_BA_TIME Cognitive flexibility, Information processing

RMO_mean Neuropsychological stability SSCT_ERROR Accuracy

TRVI Attention IS Information processing

DMT Information processing SSCT_Conflict_adaptation Switching, inhibition

WDL_MMS Muscle strength SSCT_Conflict_resolution Switching, inhibition

WDR_MMS Muscle strength DIGIT_SPAN_FWBW Working memory updating

AC Functional asymmetry SSCT_I_S Switching, inhibition

SSCT_Updating Working memory updating

TABLE 8 | Performance of the machine learning classification models for the psychophysiological outcomes of brain atrophy and Stroop switching card test datasets

assessed by sensitivity, specificity, and area under the curve values.

Performance metrics

Method Class POBA dataset SSCT dataset

Sens. Spec. BAC AUC Sens. Spec. BAC AUC

SVM non-linear Platt, 1999
Young 0.66 0.7

0.68 0.7442
0.92 0.87

0.895 0.9907
Older 0.7 0.66 0.87 0.92

SVM linear Platt, 1999
Young 0.69 0.66

0.675 0.7724
0.86 0.91

0.885 0.9762
Older 0.66 0.69 0.91 0.86

Gaussian Naive Bayes John and Langley, 2013
Young 0.71 0.64

0.675 0.7121
0.88 0.83

0.855 0.9429
Older 0.64 0.71 0.83 0.88

Extra-trees classifier Geurts et al., 2006
Young 0.73 0.61

0.67 0.7471
0.93 0.9

0.915 0.9854
Older 0.61 0.73 0.9 0.93

Bagging meta-estimator Louppe and Geurts, 2012
Young 0.55 0.71

0.63 0.7246
0.94 0.89

0.915 0.9962
Older 0.71 0.55 0.89 0.94

Random Forest Breiman, 2001
Young 0.74 0.59

0.675 0.7202
0.9 0.87

0.885 0.9675
Older 0.59 0.74 0.87 0.9

Multi-layer Perceptron Glorot and Bengio, 2010
Young 0.97 0.86

0.915 0.9382
0.95 0.98

0.965 0.9927
Older 0.86 0.97 0.98 0.95

The largest AUC value for each dataset is marked in bold.

5.4. Identification of Accelerated Decline
The idea of studying EF in normal aging was motivated by the
increasing evidence that deficits in certain EFs may arise at early
stages of neurodegenerative disease (Ho et al., 2019). The most
commonly-documented cognitive changes associated with old
age are decline in memory, attention, and speed of processing
of incoming information. All components of processing, from
stimulus acquisition to response execution, decline with age.
There is no strong consensus regarding whether the rate of
decline is a process specific or common across all components
(Bashore et al., 1997). Previous studies have shown that a
set of influences on information-processing speed occur with
advancing age. The best way to characterize these influences is by
combining a variety of processing speed measures, which may be
acquired from different tasks or acquisitionmethods (e.g., latency
of evoked potentials and RT) (Bashore et al., 1997).

In our study, the linear trendlines for the variance of test
estimates across the lifespan represent tendencies toward decline
of functioning, specifically for information processing, attention,
and switching. They all followed a common trend with a similar
rate of progression. The scatterplots indicate that age-related
neurocognitive slowing is an unavoidable process that occurs at a
permanent rate.

The graphs show that age-related decline in functioning does
not separate the population into obvious cohorts that can be
easily observed in scatterplots. Visually, we could not estimate
a threshold value that would indicate the onset of cognitive
decline. Nevertheless, the results obtained are promising. For
now, the classification algorithms can be used for screening
purposes (see section 5.4.2). The short acquisition time allows
testing of each patient for signs of enforced brain aging.
Future studies of patients with dementia using the same PTs

Frontiers in Aging Neuroscience | www.frontiersin.org 22 July 2021 | Volume 13 | Article 661514

https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/aging-neuroscience#articles


Statsenko et al. Predicted Cognitive Age

FIGURE 8 | Classification performance of each method in terms of the mean receiver operating characteristic curve using a stratified five-fold cross-validation

technique (area under the curve values close to 1 indicate a high level of diagnostic rate, whereas a value close to 0.5 shows poor performance).

will provide further support for our findings. Using a larger
sample size will improve the performance metrics so that the
battery of PTs will be a reliable predictor of the age group.
Although, cognitive monitoring is not a replacement for a
thorough neuropsychological assessment, its use as a supplement
may provide indices of key cognitive domains during a brief
consultation (Ho et al., 2019).

5.4.1. The Separability of Data and Onset of Decline
To improve prediction accuracy, we used feature selection. We
expected that the highly-prevalent decline in some cognitive
domains would be largely responsible for age-related functional
fading. The time estimates for the attention study technique and
motor-visual reaction tests were ranked the highest. All selected
features reflected information-processing speed. Additionally,
other cognitive domains and subdomains (e.g., attention and
task switching) were involved. This is relevant to the recently-
formulated assumption that slowing of functioning is a major
outcome of aging. The dependent variables that were derived
from studies of attention (TRVI), motor reaction (DMT), and
RMO_mean had a value output of zero. From the perspective
of the ranking method, these features can be considered as
redundant because they do not provide additional information
for the final model decision.

5.4.2. Reflection of Age-Related Cognitive Changes

With the Psychophysiological Tests
Multilayer perceptron or traditional fully-connected three-layer
NN models show significantly higher AUC values (89.6%)
compared with other methods using the POBA dataset. The NN
is a model that mimics the behavior of data and finds hidden

patterns within it. The sensitivity and specificity of the young
class were retrieved at 89 and 81%, respectively. The model
was more sensitive to the young class than to the older class,
which is in line with the trend observed in our assessment of the
separability of the data.

Our results demonstrate that cognitive tests and PTs may
serve a diagnostic purpose as a screening tool. They are
rapid, standardized, fully automated, easy to administer, highly
reproducible, and have sufficient sensitivity and specificity (see
section 5.4.2).

6. STRENGTHS AND LIMITATIONS OF THE
STUDY

A limitation of the study is its cross-sectional design. This implies
that participants of different ages were born and raised at a
different time. Thus, the Flynn or antiFlynn effect may have an
influence, which is the change in intelligence test scores across
generations, and it may influence mean RTs (Woodley et al.,
2013). Such effects have been reported during previous decades in
various countries (Woodley, 2012). However, there is increasing
evidence that the effect is due to changes in test-taking behavior
over time rather than significant variability in intelligence (Must
and Must, 2013).

Another limitation of the study is that the datasets we used
were not completely comparable, as they were acquired within
the last 5 years in different countries. However, the last decade of
research has shown that cognitive differences between countries
are becoming smaller (Meisenberg and Woodley, 2013), which
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reduces the potential differences between societies and partly
overcomes the limitation of this study.

In contrast to studies that used no specific criterion for
normative performance, we proposed an approach that may have
clinical utility. The ML classification algorithm may serve as a
reliable tool for detecting individuals with accelerated cognitive
impairment. If the algorithm misclassifies a participant into
an incorrect age group, the individual may be considered at
risk of cognitive deterioration. This potential application of our
approach for clinical purposes is a strength of the study. To
implement the classifier in practice, the study will need to be
extended in a larger sample of healthy participants. Further
research is required to investigate the dynamics of the identified
measures in normal and pathological-aging populations.

Comprehensive psychophysiological assessment and detailed
analysis of cognitive functions usingML-based modeling allowed
us to detect early cognitive decline. Our study is one of few that
have explored a broad variety of cognitive measures in a cohort
of young and middle-aged adults. Knowledge of the early stages
of normal aging will facilitate early advanced diagnostics and
prevention of pathological aging.

7. CONCLUSION

• The study introduced the concept of a predicted “cognitive”
age that can be forecast from a set of tests and compared
with the chronological age. In cases where there is a
significant difference between the predicted and actual age,
the participant may be considered susceptible to accelerated
brain aging. This will allow the individual to undergo advanced
diagnostic procedures and follow-up examinations.

• In our study all RT and variance estimates followed a U-
shaped function across the lifespan, which reflected the known
inverted U-shaped function of WM volume changes, with
optimal values observed in early middle age (35 years),
followed by a period of stability, and accelerated decline after
late middle age (55–60 years). The shape of the age-related
variance of the major cognitive test performance was close to
a straight line, which was similar to the linear trend of the
decrease in GM volume across the lifespan. The neural centers
comprising GM are responsible for information synthesis
(e.g., decision making) and establishing links (e.g., associative
thinking and working memory).

• Overall, the battery of cognitive tasks we used was more
demanding compared with the PTs, which may explain why
the analysis of the cognitive tests showed a decline starting
early in life. In contrast, the psychophysiological findings
(simple and complex RT and its variance across trials)
suggested that the onset of functional decline occurred at
middle age.

• Our study suggested that cognitive aging results from the
convergence of several processes described in recent findings.
These processes were a decline in EF, overall cognitive slowing,
and impairment in visual processing. The tests we used may
serve a diagnostic purpose as a screening tool for early
neurocognitive slowing. The batteries may be used as subtle

biomarkers of neurodegeneration for individuals who are
misclassified by the algorithm.

• The study did not show considerable sex differences in the
lifelong dynamics of major test estimates, except for choice
RT and updating in the SSCT test that showed a significantly-
faster decline in women than in men.

• The performance of the classification model to identify
the subjects’ age group was promising. The sensitivity and
specificity of the identification of the young class were
97 and 86%, using the PTs. The metrics of the cognitive
tests were 95 and 98%, respectively. We observed better
performance of the ML algorithms with the cognitive tests
than the PTs as predictors (balanced accuracy was 96.5 vs. 94%,
respectively), which is because of the linear change in cognitive
estimates compared with the U-shaped change of the lifelong
neurophysiological dynamics.

• ML models can be designed and utilized as a computer-aided
detector of neurocognitive decline. Our study showed great
promise for the use of classification models as predictors of
age-related changes. Our results encourage us to explore a
combination of tests from the battery to derive a more reliable
set of tests based on performance metrics. Moreover, further
investigations of other cognitive and PTs are warranted.

• Future research is required to improve the performance
characteristics of the ML model by using a larger sample
size and an enriched test dataset that includes patients with
dementia.

DATA AVAILABILITY STATEMENT

The datasets presented in this study can be found in online
repositories. The names of the repository/repositories and
accession number(s) can be found below: The datasets generated
for this study are available on request at the site of Big Data
Analytics Center (BIDAC) at https://bi-dac.com.

ETHICS STATEMENT

The studies involving human participants were reviewed and
approved by United Arab Emirates University Human Research
Ethics Committee (Notice Number: ERH_2019_4006 19_11)
and CERSTAPS (Ethical Committee of Sport and Physical
Activities Research (Notice Number: 2016-26-04-13). Written
informed consent to participate in this study was provided by the
participants’ legal guardian/next of kin.

AUTHOR CONTRIBUTIONS

YS formulated the objectives, collected POBA dataset, and
wrote the manuscript. TH did machine learning, formulated the
methodology, and prepared graphs and tables. IC constructed
the batteries of tests. KG, NZ, and TA contributed to
literature review and data analysis. GB and ML supervised the
research and formulated the conclusion. MB constructed the
test battery, collected the SSCT dataset, and participated in
manuscript writing.

Frontiers in Aging Neuroscience | www.frontiersin.org 24 July 2021 | Volume 13 | Article 661514

https://bi-dac.com
https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/aging-neuroscience#articles


Statsenko et al. Predicted Cognitive Age

FUNDING

This work was supported by the UAEU StartUp grant 31M442
Psychophysiological Outcomes of Brain Atrophy (PI: YS) and

UAEU StartUp grant G00003264 Executive dysfunction in
overweight and obese children and adolescents: Moving from
observation to intervention by Physical-Executive Dual-task
Training (PI: MB).

REFERENCES

Amunts, K., Jäncke, L., Mohlberg, H., Steinmetz, H., and Zilles, K.

(2000). Interhemispheric asymmetry of the human motor cortex

related to handedness and gender. Neuropsychologia 38, 304–312.

doi: 10.1016/S0028-3932(99)00075-5

Arbuthnott, K., and Frank, J. (2000). Trail making test, part B as a measure

of executive control: validation using a set-switching paradigm. J. Clin. Exp.

Neuropsychol. 22, 518–528. doi: 10.1076/1380-3395(200008)22:4;1-0;FT518

Arthur, D., and Vassilvitskii, S. (2006). “k-means++: the advantages of careful

seeding,” in Proceedings of the Eighteenth Annual ACM-SIAM Symposium

on Discrete Algorithms (Stanford, CA: Society for Industrial and Applied

Mathematics), 1027–1035.

Barnes, L. L., Wilson, R. S., Schneider, J. A., Bienias, J. L., Evans, D. A., and

Bennett, D. A. (2003). Gender, cognitive decline, and risk of ad in older persons.

Neurology 60, 1777–1781. doi: 10.1212/01.WNL.0000065892.67099.2A

Bashore, T. R., Ridderinkhof, K. R., and van der Molen, M. W. (1997). The decline

of cognitive processing speed in old age. Curr. Direct. Psychol. Sci. 6, 163–169.

doi: 10.1111/1467-8721.ep10772944

Bauermeister, S., and Bunce, D. (2016). Aerobic fitness and intraindividual reaction

time variability in middle and old age. J. Gerontol. Ser. B Psychol. Sci. Soc. Sci.

71, 431–438. doi: 10.1093/geronb/gbu152

Belghali, M., and Decker, L. (2019). Stroop switching card test: brief screening

of executive functioning across the lifespan. Front. Hum. Neurosci. 13:16.

doi: 10.3389/conf.fnhum.2019.229.00016

Belghali, M., Statsenko, Y., and Laver, V. (2020). Stroop switching card test: brief

screening of executive functions across the lifespan. Aging Neuropsychol. Cogn.

doi: 10.1080/13825585.2020.1844865. [Epub ahead of print].

Boichuk, R., Iermakov, S., Vintoniak, O., Hrabchuk, A., and Bieliavskyi, I. (2020).

Influence of psychophysiological factors on the effectiveness of competitive

activity of volleyball players (girls) aged 16 to 18. J. Phys. Educ. Sport 20,

2392–2399.

Breiman, L. (2001). Random forests. Machine Learn. 45, 5–32.

doi: 10.1023/A:1010933404324

Bruyer, R., and Brysbaert, M. (2011). Combining speed and accuracy in cognitive

psychology: is the inverse efficiency score (IES) a better dependent variable than

the mean reaction time (RT) and the percentage of errors (PE)? Psychol. Belgica

51, 5–13. doi: 10.5334/pb-51-1-5

Bunce, D., MacDonald, S. W., and Hultsch, D. F. (2004). Inconsistency in serial

choice decision and motor reaction times dissociate in younger and older

adults. Brain Cogn. 56, 320–327. doi: 10.1016/j.bandc.2004.08.006

Bunce, D. J., Warr, P. B., and Cochrane, T. (1993). Blocks in choice

responding as a function of age and physical fitness. Psychol. Aging 8, 26–33.

doi: 10.1037/0882-7974.8.1.26

Chintapalli, R., and Romero-Ortuno, R. (2021). Choice reaction time and

subsequent mobility decline: prospective observational findings from

the Irish longitudinal study on ageing (tilda). eClinicalmedicine 31:193.

doi: 10.1016/j.eclinm.2020.100676

Colman, A. M. (2015). A Dictionary of Psychology. Oxford: Oxford Quick

Reference.

Cullen, B., O’Neill, B., Evans, J. J., Coen, R. F., and Lawlor, B. A. (2007). A review

of screening tests for cognitive impairment. J. Neurol. Neurosurg. Psychiatry 78,

790–799. doi: 10.1136/jnnp.2006.095414

Damulin, I. (2008). Vascular dementia: some pathogenetic, diagnostic and

therapeutic aspects. Russ. Med. J. 16, 253–258. Available online at: https://

pharmateca.ru/ru/archive/article/7800

Deary, I. J., Bastin, M. E., Pattie, A., Clayden, J. D., Whalley, L. J., Starr,

J. M., et al. (2006). White matter integrity and cognition in childhood

and old age. Neurology 66, 505–512. doi: 10.1212/01.wnl.0000199954.81

900.e2

Dempster, A. P., Laird, N. M., and Rubin, D. B. (1977). Maximum likelihood

from incomplete data via the em algorithm. J. R. Stat. Soc. Ser. B 39, 1–22.

doi: 10.1111/j.2517-6161.1977.tb01600.x

Dixon, R. A., Garrett, D. D., Lentz, T. L., MacDonald, S. W., Strauss, E.,

and Hultsch, D. F. (2007). Neurocognitive markers of cognitive impairment:

exploring the roles of speed and inconsistency. Neuropsychology 21, 381–399.

doi: 10.1037/0894-4105.21.3.381

Fawcett, T. (2004). Roc graphs: notes and practical considerations for researchers.

Mach. Learn. 31, 1–38. Available online at: https://citeseerx.ist.psu.edu/

viewdoc/download?doi=10.1.1.123.4749&rep=rep1&type=pdf

Ferreira, D., Correia, R., Nieto, A., Machado, A., Molina, Y., and Barroso, J. (2015).

Cognitive decline before the age of 50 can be detected with sensitive cognitive

measures. Psicothema 27, 216–222. doi: 10.7334/psicothema2014.192

Ferreira, D., Molina, Y., Machado, A., Westman, E., Wahlund, L.-

O., Nieto, A., et al. (2014). Cognitive decline is mediated by gray

matter changes during middle age. Neurobiol. Aging 35, 1086–1094.

doi: 10.1016/j.neurobiolaging.2013.10.095

Finch, C. E. (2009). The neurobiology of middle-age has arrived. Neurobiol. Aging

4, 515–520; discussion: 530–533. doi: 10.1016/j.neurobiolaging.2008.11.011

Fine, E. M., Delis, D. C., Wetter, S. R., Jacobson, M. W., Jak, A. J.,

McDonald, C. R., et al. (2008). Cognitive discrepancies versus apoe

genotype as predictors of cognitive decline in normal-functioning elderly

individuals: a longitudinal study. Am. J. Geriatr. Psychiatry 16, 366–374.

doi: 10.1097/JGP.0b013e3181629957

Geurts, P., Ernst, D., andWehenkel, L. (2006). Extremely randomized trees.Mach.

Learn. 63, 3–42. doi: 10.1007/s10994-006-6226-1

Glorot, X., and Bengio, Y. (2010). “Understanding the difficulty of training deep

feedforward neural networks,” in Proceedings of the Thirteenth International

Conference on Artificial Intelligence and Statistics (Portland; Milwaukie, OR),

249–256.

Golden, C. J., and Freshwater, S. M. (1978). Stroop Color and Word Test:

A Manual for Clinical and Experimental Uses. Chicago, IL: Stoelting.

doi: 10.1037/t06065-000

Graveson, J., Bauermeister, S., McKeown, D., and Bunce, D. (2016). Intraindividual

reaction time variability, falls, and gait in old age: a systematic review. J.

Gerontol. Ser. B Psychol. Sci. Soc. Sci. 71, 857–864. doi: 10.1093/geronb/gbv027

Hall, M. A. (1998). Correlation-based feature subset selection for machine learning

(thesis). University of Waikato, Hamilton, New Zealand.

Harvey, P. D. (2019). Domains of cognition and their assessment. Dialog. Clin.

Neurosci. 21:227. doi: 10.31887/DCNS.2019.21.3/pharvey

Haynes, B. I., Bauermeister, S., and Bunce, D. (2017). A systematic review of

longitudinal associations between reaction time intraindividual variability and

age-related cognitive decline or impairment, dementia, and mortality. J. Int.

Neuropsychol. Soc. 23, 431–445. doi: 10.1017/S1355617717000236

Ho, B.-L., Lin, S.-F., Chou, P.-S., Hsu, C.-Y., Liou, L.-M., and Lai, C.-L. (2019).

Impaired conflict monitoring in cognitive decline. Behav. Brain Res. 363, 70–76.

doi: 10.1016/j.bbr.2019.01.043

Hultsch, D. F., MacDonald, S. W., and Dixon, R. A. (2002). Variability in reaction

time performance of younger and older adults. J. Gerontol. Ser. B Psychol. Sci.

Soc. Sci. 57, P101–P115. doi: 10.1093/geronb/57.2.P101

Islam, M. Z., Estivill-Castro, V., Rahman, M. A., and Bossomaier, T. (2018).

Combining k-means and a genetic algorithm through a novel arrangement of

genetic operators for high quality clustering. Expert Syst. Appl. 91, 402–417.

doi: 10.1016/j.eswa.2017.09.005

Jaeger, J. (2018). Digit symbol substitution test: the case for sensitivity over

specificity in neuropsychological testing. J. Clin. Psychopharmacol. 38, 513–519.

doi: 10.1097/JCP.0000000000000941

John, G. H., and Langley, P. (2013). Estimating continuous distributions in

bayesian classifiers. arXiv preprint arXiv:1302.4964. Available online at: https://

arxiv.org/pdf/1302.4964.pdf

Frontiers in Aging Neuroscience | www.frontiersin.org 25 July 2021 | Volume 13 | Article 661514

https://doi.org/10.1016/S0028-3932(99)00075-5
https://doi.org/10.1076/1380-3395(200008)22:4;1-0;FT518
https://doi.org/10.1212/01.WNL.0000065892.67099.2A
https://doi.org/10.1111/1467-8721.ep10772944
https://doi.org/10.1093/geronb/gbu152
https://doi.org/10.3389/conf.fnhum.2019.229.00016
https://doi.org/10.1080/13825585.2020.1844865
https://doi.org/10.1023/A:1010933404324
https://doi.org/10.5334/pb-51-1-5
https://doi.org/10.1016/j.bandc.2004.08.006
https://doi.org/10.1037/0882-7974.8.1.26
https://doi.org/10.1016/j.eclinm.2020.100676
https://doi.org/10.1136/jnnp.2006.095414
https://pharmateca.ru/ru/archive/article/7800
https://pharmateca.ru/ru/archive/article/7800
https://doi.org/10.1212/01.wnl.0000199954.81900.e2
https://doi.org/10.1111/j.2517-6161.1977.tb01600.x
https://doi.org/10.1037/0894-4105.21.3.381
https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.123.4749&rep=rep1&type=pdf
https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.123.4749&rep=rep1&type=pdf
https://doi.org/10.7334/psicothema2014.192
https://doi.org/10.1016/j.neurobiolaging.2013.10.095
https://doi.org/10.1016/j.neurobiolaging.2008.11.011
https://doi.org/10.1097/JGP.0b013e3181629957
https://doi.org/10.1007/s10994-006-6226-1
https://doi.org/10.1037/t06065-000
https://doi.org/10.1093/geronb/gbv027
https://doi.org/10.31887/DCNS.2019.21.3/pharvey
https://doi.org/10.1017/S1355617717000236
https://doi.org/10.1016/j.bbr.2019.01.043
https://doi.org/10.1093/geronb/57.2.P101
https://doi.org/10.1016/j.eswa.2017.09.005
https://doi.org/10.1097/JCP.0000000000000941
https://arxiv.org/pdf/1302.4964.pdf
https://arxiv.org/pdf/1302.4964.pdf
https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/aging-neuroscience#articles


Statsenko et al. Predicted Cognitive Age

Kononenko, I., and Hong, S. J. (1997). Attribute selection for modelling. Fut.

Generat. Comput. Syst. 13, 181–195. doi: 10.1016/S0167-739X(97)81974-7

Larrabee, G. J., and Crook, T. H. (1994). Estimated prevalence of age-associated

memory impairment derived from standardized tests of memory function. Int.

Psychogeriatr. 6, 95–104. doi: 10.1017/S1041610294001663

Lezak, M. D., Howieson, D. B., Loring, D. W., and Fischer, J. S. (2004).

Neuropsychological Assessment. New York, NY: Oxford University Press.

Li, Y., Cherkashin, I., Cherkashina, E., and Kopylova, V. (2019). Interrelation of

indicators of efficiency of throws and individually typological properties of the

higher nervous activity and sensorimotor functions of athletes in basketball.

SHS Web Conf. 70:09004. doi: 10.1051/shsconf/20197009004

Louppe, G., and Geurts, P. (2012). “Ensembles on random patches,” in Joint

European Conference on Machine Learning and Knowledge Discovery in

Databases (Bristol, PA: Springer), 346–361. doi: 10.1007/978-3-642-33460-3_28

McCallum, A., Nigam, K., and Ungar, L. H. (2000). “Efficient clustering of high-

dimensional data sets with application to reference matching,” in Proceedings of

the Sixth ACM SIGKDD International Conference on Knowledge Discovery and

Data Mining (Boston, MA: Citeseer), 169–178. doi: 10.1145/347090.347123

Meisenberg, G., and Woodley, M. A. (2013). Are cognitive differences between

countries diminishing? Evidence from TIMSS and PISA. Intelligence 41,

808–816. doi: 10.1016/j.intell.2013.03.009

Monge, Z. A., Geib, B. R., Siciliano, R. E., Packard, L. E., Tallman,

C. W., and Madden, D. J. (2017). Functional modular architecture

underlying attentional control in aging. Neuroimage 155, 257–270.

doi: 10.1016/j.neuroimage.2017.05.002

Mostofsky, S. H., and Simmonds, D. J. (2008). Response inhibition and response

selection: two sides of the same coin. J. Cogn. Neurosci. 20, 751–761.

doi: 10.1162/jocn.2008.20500

Mui nos, M., Palmero, F., and Ballesteros, S. (2016). Peripheral vision,

perceptual asymmetries and visuospatial attention in young, young-old

and oldest-old adults. Exp. Gerontol. 75, 30–36. doi: 10.1016/j.exger.2015.

12.006

Must, O., and Must, A. (2013). Changes in test-taking patterns over time.

Intelligence 41, 780–790. doi: 10.1016/j.intell.2013.04.005

Myerson, J., Robertson, S., and Hale, S. (2007). Aging and intraindividual

variability in performance: analyses of response time distributions. J. Exp. Anal.

Behav. 88, 319–337. doi: 10.1901/jeab.2007.88-319

Myroshnychenho, Y., Tropin, Y., and Kovalenko, J. (2020). Model characteristics

of psychophysiological indicators of qualified kickboxers. Slobozhanskyi Herald

Sci. Sport 8, 34–44. Available online at: http://journals.uran.ua/sport_herald/

article/view/217708/pdf_274

Nelson, C. A., and Luciana, M. (2001). Handbook of Developmental Cognitive

Neuroscience. Cambridge, MA: MIT Press.

Nilsson, J., Thomas, A. J., O’Brien, J. T., and Gallagher, P. (2014). White matter

and cognitive decline in aging: a focus on processing speed and variability. J.

Int. Neuropsychol. Soc. 20, 262–267. doi: 10.1017/S1355617713001458

Overman, M. J., Pendleton, N., O’Neill, T. W., Bartfai, G., Casanueva, F. F., Finn,

J. D., et al. (2017). Evaluation of cognitive subdomains, 25-hydroxyvitamin D,

and 1, 25-dihydroxyvitamin d in the european male ageing study. Eur. J. Nutr.

56, 2093–2103. doi: 10.1007/s00394-016-1247-4

Park, D. C., and Gutchess, A. H. (2002). Aging, cognition, and culture:

a neuroscientific perspective. Neurosci. Biobehav. Rev. 26, 859–867.

doi: 10.1016/S0149-7634(02)00072-6

Platt, J. (1999). Probabilistic outputs for support vector machines and comparisons

to regularized likelihood methods. Adv. Large Margin Class. 10, 61–74.

Puccioni, O., and Vallesi, A. (2012a). Conflict resolution and adaptation in normal

aging: the role of verbal intelligence and cognitive reserve. Psychol. Aging 27,

1018–1026. doi: 10.1037/a0029106

Puccioni, O., and Vallesi, A. (2012b). High cognitive reserve is associated with a

reduced age-related deficit in spatial conflict resolution. Front. Hum. Neurosci.

6:327. doi: 10.3389/fnhum.2012.00327

Red’ko, V. G., Prokhorov, D. V., and Burtsev, M. S. (2004). “Theory of functional

systems, adaptive critics and neural networks,” in 2004 IEEE International Joint

Conference on Neural Networks (Budapest), 1787–1792.

Saito, T., and Rehmsmeier,M. (2015). The precision-recall plot is more informative

than the roc plot when evaluating binary classifiers on imbalanced datasets.

PLoS ONE 10:e0118432. doi: 10.1371/journal.pone.0118432

Salthouse, T. A. (1996). General and specific speed mediation of adult age

differences in memory. J. Gerontol. Ser. B Psychol. Sci. Soc. Sci. 51, P30–P42.

doi: 10.1093/geronb/51B.1.P30

Salthouse, T. A. (2005). Relations between cognitive abilities and

measures of executive functioning. Neuropsychology 19:532.

doi: 10.1037/0894-4105.19.4.532

Salthouse, T. A. (2009). When does age-related cognitive decline begin?Neurobiol.

Aging 30, 507–514. doi: 10.1016/j.neurobiolaging.2008.09.023

Salthouse, T. A., Atkinson, T. M., and Berish, D. E. (2003). Executive functioning

as a potential mediator of age-related cognitive decline in normal adults. J. Exp.

Psychol. Gen. 132:566. doi: 10.1037/0096-3445.132.4.566

Schmand, B., Smit, J. H., Geerlings, M. I., and Lindeboom, J. (1997). The

effects of intelligence and education on the development of dementia.

A test of the brain reserve hypothesis. Psychol. Med. 27, 1337–1344.

doi: 10.1017/S0033291797005461

Singh-Manoux, A., Kivimaki, M., Glymour, M. M., Elbaz, A., Berr, C., Ebmeier,

K. P., et al. (2012). Timing of onset of cognitive decline: results from

whitehall ii prospective cohort study. BMJ 344:d7622. doi: 10.1136/bmj.

d7622

Statsenko, E. A., and Charykova, I. A. (2010). Psycho-physiological criteria for

overtraining in athletes. Voprosy kurortologii fizioterapii i lechebnoi fizicheskoi

kultury 2, 50–54. Available online at: https://europepmc.org/article/med/

21086610

Statsenko, Y., Habuza, T., Gorkom, K. N., Zaki, N., and Almansoori, T. M.

(2020). Applying the inverse efficiency score to visual-motor task for studying

speed-accuracy performance while aging. Front. Aging Neurosci. 12:574401.

doi: 10.3389/fnagi.2020.574401

Sudakov, K. V. (1997). The theory of functional systems: general postulates and

principles of dynamic organization. Integr. Physiol. Behav. Sci. 32, 392–414.

doi: 10.1007/BF02688634

Sudakov, K. V. (2015). “Theory of functional systems: a keystone of integrative

biology,” in Anticipation: Learning from the Past, ed M. Nadin (Richardson, TX:

Springer), 153–173. doi: 10.1007/978-3-319-19446-2_9

Tanila, H., Sipilä, P., Shapiro, M., and Eichenbaum, H. (1997). Brain aging:

impaired coding of novel environmental cues. J. Neurosci. 17, 5167–5174.

doi: 10.1523/JNEUROSCI.17-13-05167.1997

Teipel, S. J., Pogarell, O., Meindl, T., Dietrich, O., Sydykova, D., Hunklinger, U.,

et al. (2009). Regional networks underlying interhemispheric connectivity:

an eeg and dti study in healthy ageing and amnestic mild cognitive

impairment. Hum. Brain Mapp. 30, 2098–2119. doi: 10.1002/hbm.

20652

Troyer, A. K., Leach, L., and Strauss, E. (2006). Aging and response inhibition:

normative data for the victoria stroop test.Aging Neuropsychol. Cogn. 13, 20–35.

doi: 10.1080/138255890968187

Vazzana, R., Bandinelli, S., Lauretani, F., Volpato, S., Lauretani, F., Di

Iorio, A., et al. (2010). Trail making test predicts physical impairment

and mortality in older persons. J. Am. Geriatr. Soc. 58, 719–723.

doi: 10.1111/j.1532-5415.2010.02780.x

Verhaeghen, P., and Cerella, J. (2002). Aging, executive control, and

attention: a review of meta-analyses. Neurosci. Biobehav. Rev. 26, 849–857.

doi: 10.1016/S0149-7634(02)00071-4

Vityaev, E. E., and Demin, A. V. (2018). Cognitive architecture based

on the functional systems theory. Proc. Comput. Sci. 145, 623–628.

doi: 10.1016/j.procs.2018.11.072

Wechsler, D. (1955). Manual for the Wechsler Adult Intelligence Scale. New York,

NY: Psychological Corp.

Wechsler, D., et al. (1997). Wechsler Memory Scale (WMS-III), Vol. 14. San

Antonio, TX: Psychological Corporation.

West, R., Murphy, K. J., Armilio, M. L., Craik, F. I., and Stuss, D. T.

(2002). Lapses of intention and performance variability reveal age-related

increases in fluctuations of executive control. Brain Cogn. 49, 402–419.

doi: 10.1006/brcg.2001.1507

Woodley, M. A. (2012). The social and scientific temporal correlates of

genotypic intelligence and the flynn effect. Intelligence 40, 189–204.

doi: 10.1016/j.intell.2011.12.002

Woodley, M. A., Te Nijenhuis, J., and Murphy, R. (2013). Were the victorians

cleverer than us? The decline in general intelligence estimated from a meta-

analysis of the slowing of simple reaction time. Intelligence 41, 843–850.

doi: 10.1016/j.intell.2013.04.006

Woods, D. L., Kishiyama, M. M., Lund, E. W., Herron, T. J., Edwards, B.,

Poliva, O., et al. (2011). Improving digit span assessment of short-term verbal

memory. J. Clin. Exp. Neuropsychol. 33, 101–111. doi: 10.1080/13803395.2010.

493149

Frontiers in Aging Neuroscience | www.frontiersin.org 26 July 2021 | Volume 13 | Article 661514

https://doi.org/10.1016/S0167-739X(97)81974-7
https://doi.org/10.1017/S1041610294001663
https://doi.org/10.1051/shsconf/20197009004
https://doi.org/10.1007/978-3-642-33460-3_28
https://doi.org/10.1145/347090.347123
https://doi.org/10.1016/j.intell.2013.03.009
https://doi.org/10.1016/j.neuroimage.2017.05.002
https://doi.org/10.1162/jocn.2008.20500
https://doi.org/10.1016/j.exger.2015.12.006
https://doi.org/10.1016/j.intell.2013.04.005
https://doi.org/10.1901/jeab.2007.88-319
http://journals.uran.ua/sport_herald/article/view/217708/pdf_274
http://journals.uran.ua/sport_herald/article/view/217708/pdf_274
https://doi.org/10.1017/S1355617713001458
https://doi.org/10.1007/s00394-016-1247-4
https://doi.org/10.1016/S0149-7634(02)00072-6
https://doi.org/10.1037/a0029106
https://doi.org/10.3389/fnhum.2012.00327
https://doi.org/10.1371/journal.pone.0118432
https://doi.org/10.1093/geronb/51B.1.P30
https://doi.org/10.1037/0894-4105.19.4.532
https://doi.org/10.1016/j.neurobiolaging.2008.09.023
https://doi.org/10.1037/0096-3445.132.4.566
https://doi.org/10.1017/S0033291797005461
https://doi.org/10.1136/bmj.d7622
https://europepmc.org/article/med/21086610
https://europepmc.org/article/med/21086610
https://doi.org/10.3389/fnagi.2020.574401
https://doi.org/10.1007/BF02688634
https://doi.org/10.1007/978-3-319-19446-2_9
https://doi.org/10.1523/JNEUROSCI.17-13-05167.1997
https://doi.org/10.1002/hbm.20652
https://doi.org/10.1080/138255890968187
https://doi.org/10.1111/j.1532-5415.2010.02780.x
https://doi.org/10.1016/S0149-7634(02)00071-4
https://doi.org/10.1016/j.procs.2018.11.072
https://doi.org/10.1006/brcg.2001.1507
https://doi.org/10.1016/j.intell.2011.12.002
https://doi.org/10.1016/j.intell.2013.04.006
https://doi.org/10.1080/13803395.2010.493149
https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/aging-neuroscience#articles


Statsenko et al. Predicted Cognitive Age

Woods, D. L., Wyma, J. M., Yund, E. W., Herron, T. J., and Reed, B. (2015).

Age-related slowing of response selection and production in a visual choice

reaction time task. Front. Hum. Neurosci. 9:193. doi: 10.3389/fnhum.2015.

00193

Zhou, S. S., Fan, J., Lee, T. M., Wang, C. Q., and Wang, K. (2011). Age-

related differences in attentional networks of alerting and executive control

in young, middle-aged, and older chinese adults. Brain Cogn. 75, 205–210.

doi: 10.1016/j.bandc.2010.12.003

Zimprich, D., and Mascherek, A. (2010). Five views of a secret: does

cognition change during middle adulthood? Eur. J. Ageing 7, 135–146.

doi: 10.1007/s10433-010-0161-5

Conflict of Interest: The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be construed as a

potential conflict of interest.

Copyright © 2021 Statsenko, Habuza, Charykova, Gorkom, Zaki, Almansoori,

Baylis, Ljubisavljevic and Belghali. This is an open-access article distributed

under the terms of the Creative Commons Attribution License (CC BY). The use,

distribution or reproduction in other forums is permitted, provided the original

author(s) and the copyright owner(s) are credited and that the original publication

in this journal is cited, in accordance with accepted academic practice. No use,

distribution or reproduction is permitted which does not comply with these terms.

Frontiers in Aging Neuroscience | www.frontiersin.org 27 July 2021 | Volume 13 | Article 661514

https://doi.org/10.3389/fnhum.2015.00193
https://doi.org/10.1016/j.bandc.2010.12.003
https://doi.org/10.1007/s10433-010-0161-5
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/aging-neuroscience#articles

	Predicting Age From Behavioral Test Performance for Screening Early Onset of Cognitive Decline
	1. Introduction
	1.1. Structure of Cognitive Functioning and Cognitive Tests
	1.2. Psychophysiological Status and Tests, Functional Systems, Neural Hypernets
	1.3. Onset of Cognitive Decline

	2. Objectives
	3. Materials and Methods
	3.1. Methodology of the Study
	3.2. Datasets Description
	3.2.1. POBA Dataset
	3.2.2. Stroop Switching Card Test Dataset
	3.2.2.1. Cognitive Flexibility
	3.2.2.2. Inhibition
	3.2.2.3. Updating
	3.2.2.4. Information Speed Processing


	3.3. Preprocessing of Data
	3.3.1. To Form Clusters and Groups of Participants

	3.4. Performance Evaluation Metrics
	3.5. Hardware and Software

	4. Results
	4.1. Association Between Test Performance and Age
	4.2. Lookup for the Onset of Psychophysiological and Cognitive Decline
	4.3. Sex Differences in Lifelong Test Performance
	4.4. Prediction of the Age Group Using Machine Learning

	5. Discussion
	5.1. Psychophysiological and Cognitive Performance With Age
	5.1.1. Dynamics of Psychophysiological Attributes Throughout Life
	5.1.1.1. RT
	5.1.1.2. Choice RT
	5.1.1.3. RT Variability
	5.1.1.4. Attention
	5.1.1.5. Visual-Motor Task Performance
	5.1.1.6. Brain Functional Asymmetry

	5.1.2. Lifelong Trend of Cognitive Performance
	5.1.2.1. Task Switching and Conflict Resolution
	5.1.2.2. Interference Score
	5.1.2.3. Processing Speed
	5.1.2.4. Attention


	5.2. Onset of Decline in Psychophysiological and Cognitive Performance
	5.2.1. White Matter Changes and Psychophysiological Worsening
	5.2.1.1. Reaction Time and Processing Speed
	5.2.1.2. RT Variance

	5.2.2. Gray Matter Atrophy and Cognitive Decline
	5.2.2.1. Inhibitory Process
	5.2.2.2. Attention
	5.2.2.3. Working Memory


	5.3. Socio-Demographic Correlates in Age-Related Cognitive Impairment
	5.3.1. Sex Differences in Age-Related Cognitive Impairment

	5.4. Identification of Accelerated Decline
	5.4.1. The Separability of Data and Onset of Decline
	5.4.2. Reflection of Age-Related Cognitive Changes With the Psychophysiological Tests


	6. Strengths and Limitations of the Study
	7. Conclusion
	Data Availability Statement
	Ethics Statement
	Author Contributions
	Funding
	References


