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RNA interference (RNAi) is a valuable and revolutionary technology that has been widely
applied in medicine and agriculture. The application of RNAi in various industries requires
large amounts of low-cost double-stranded RNA (dsRNA). Chemical synthesis can only
produce short dsRNAs; long dsRNAs need to be synthesized biologically. Several
microbial chassis cells, such as Escherichia coli, Saccharomyces cerevisiae, and
Bacillus species, have been used for dsRNA synthesis. However, the titer, rate of
production, and yield of dsRNA obtained by these microorganism-based strategies is
still low. In this review, we summarize advances in microbial dsRNA production, and
analyze the merits and faults of different microbial dsRNA production systems. This review
provides a guide for dsRNA production system selection. Future development of efficient
microbial dsRNA production systems is also discussed.
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INTRODUCTION

The large-scale use of chemical pesticides creates tremendous ecological pressure on soil, water, air,
and the human living environment. After the long-term use of chemical pesticides, resistance,
resurgence, and residue (3R) problems have become increasingly prominent (Tudi et al., 2021). The
emergence of RNA interference (RNAi) technology has brought new hope of solving these problems.
In this technology, double-stranded RNA (dsRNA) enters a host and triggers the RNAi effect—the
expression of the complementary target gene is silenced, which affects the growth and development
of the target organism, thus achieving pest control (Fire et al., 1998; Fletcher et al., 2020; Zhu and
Palli, 2020). RNAi pesticides are considered novel, and ecofriendly, because RNAi technology uses
precise targeting and the pesticide agent could be easily degradable.

However, several problems need to be solved before this technology can be widely applied, such as
efficient, high-throughput target gene acquisition, dsRNA delivery strategies in different organisms
(insects, plants, fungi, bacteria, and viruses), the stability of the dsRNA in field application, and
construction of multi-species integrated control strategies in complex ecological environments
(Zhang et al., 2013). Besides, large-scale, low-cost synthesis of dsRNA is crucial for applying RNAi
technology in agriculture (Silver et al., 2021). Chemical synthesis of RNA is suitable for the synthesis
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of short RNAs, such as small interfering RNAs (siRNAs), because
the synthesis error rate increases and the yield decreases when the
length of the target RNA product increases (Mu et al., 2018). In
vitro synthesis strategies relying on T7/SP6 RNA polymerase and
in vivo synthesis by engineered bacteria are often used for dsRNA
synthesis. The in vitro synthesis strategy can produce high-purity
dsRNA, but the cost is relatively high. Moreover, this method
requires auxiliary materials, such as DNA templates, enzymes,
and nucleotides (Mu et al., 2018). The in vivo synthesis strategy
produces low-cost dsRNA in high yields, but this strategy requires
later purification of the product and inactivation of the
engineered microbial strain (Mendiola et al., 2020).
Nevertheless, the in vivo synthesis strategy is more likely to
reduce dsRNA production costs and increase yields in the
future (Cooper et al., 2021). In this review, applications of
microbe-mediated dsRNA expression systems are summarized,
and the selection of efficient microbial dsRNA production
systems is discussed.

Escherichia coli dsRNA Expression
Systems
E. coli is a commonly used bacterium for dsRNA expression
because of its clear genetic background and convenient genetic
manipulation. E. coli strain HT115 (DE3), which is RNase III
deficient, and L4440 vector with a pair of oppositely oriented T7
promoters (one on each side of the multiple cloning site) are
widely used as an expression strain and vector for dsRNA
production (Timmons et al., 2001; Voloudakis et al., 2015).
After introduction of the L4440 vector ligated with the target
fragment into strain HT115 (DE3), large amounts of T7 RNA
polymerase can be synthesized on induction by isopropyl β-D-1-
thiogalactopyranoside (IPTG); the T7 RNA polymerase binds to
the T7 promoter in L4440, which mediates the transcription of
downstream DNA sequences into RNA. As a result, two
complementary RNAs are synthesized, which in turn form the
target dsRNA (Voloudakis et al., 2015).

The production of dsRNA using engineered bacterial
expression was first attempted by Timmons and Fire (1998),
and the corresponding RNAi phenotype was verified after feeding
to the nematode Caenorhabditis elegans, showing that dsRNA
expressed by bacteria can induce RNAi effects (Timmons et al.,
2001). Using this dsRNA generation strategy, RNAi effects were
induced in a variety of insects, such as Spodoptera exigua (Tian
et al., 2009), Bactrocera dorsalis (Li et al., 2011), Chilo
infuscatellus (Zhang et al., 2012), Spodoptera exigua
(Vatanparast and Kim, 2017), Plagiodera versicolora (Zhang
et al., 2019), Tuta absoluta (Bento et al., 2020), Harmonia
axyridis (Ma et al., 2020), Spodoptera littoralis (Caccia et al.,
2020), Agrilus planipennis (Leelesh and Rieske, 2020). In
addition, expressed virus dsRNA can protect a plant or animal
against viral infection. For example, E. coli strain HT115 (DE3)
was used to express dsRNA of the Chinese Sacbrood Virus
(CSBV) VP1, which was fed to Chinese honeybees (Apis
cerana) and effectively prevented the virus infecting the bees
(Zhang et al., 2016). Treating Nicotiana benthamiana with
dsRNAs of fragments of two major plant viruses, Pepper Mild

Mottle Virus (PMMoV) and Plum Pox Virus (PPV), effectively
reduced the infection of N. benthamiana by these two viruses
(Tenllado et al., 2003). All these results show that engineered
E. coli can synthesize dsRNAs, and the dsRNA produced can
induce RNAi effects in the corresponding target organisms.

The yield of dsRNA synthesized in E. coli has been improved
over time. An average of 4 μg of dsRNA was obtained per ml of
E. coli culture in 2003 (Tenllado et al., 2003), and 45 μg hairpin
dsRNA per ml of bacteria (optical density at 600 nm � 1) in 2013
(Posiri et al., 2013). The increase of dsRNA yield is due to the
fermentation methods and operation parameters used
(Thammasorn et al., 2015; Papic et al., 2018). dsRNA
production using batch fermentation and fed-batch
fermentation was compared in a 10 L fermenter, and the
dsRNA titer in fed-batch fermentation (95.0 ± 21.5 μg/ml) was
nearly 30-fold that found in batch fermentation (3.4 ± 0.5 μg/ml)
(Thammasorn et al., 2015). The nutrition can also affect the final
dsRNA yield, and the production of dsRNA using Terrific broth
(TB) (6.2 ± 0.2 μg/ml) was higher than that using Luria-Bertani
(LB) broth (2.6 ± 0.8 μg/ml). After further optimization, the yield
was close to 0.06 g/g, the maximum production rate reached
11.1 mg L−1 h−1 by batch fermentation and 15.2 mg L−1 h−1 by
fed-batch fermentation (Papic et al., 2018). Therefore, the dsRNA
yield is related to bacterial growth, and fed-batch fermentation
resulted in a higher dsRNA yield by sustainably supplying
nutrition.

Modification of the expression vector and host strain can
further improve the efficiency of dsRNA synthesis. dsRNA
production using a new E. coli expression system, pET28-BL21
(DE3) RNase III- was thrice than that of L4440-HT115 (DE3)
(Ma et al., 2020).

Moreover, extraction methods are closely linked to the yield of
dsRNA. The titer of dsRNA extracted from E. coli by ultrasonic
crushing and phenol extraction was 19.5 μg/ml, while sonication
and heating before dsRNA extraction increased the titer of
dsRNA by 2.5- to 5- fold (Ahn et al., 2019).

Nowadays, large-scale synthesis of dsRNA in E. coli has
developed, but further increasing the titer, rate, and yield
(TRY) of dsRNA production is essential for future applications.

Saccharomyces cerevisiae dsRNA
Expression Systems
The model eukaryotic species Saccharomyces cerevisiae has also
been used as a chassis for dsRNA production. S. cerevisiae has a
clear genetic background, easy genetic engineering methods, and
well-developed fermentation processes (Nandy and Srivastava,
2018). Besides, S. cerevisiae does not contain the core genesDicer-
2 and Argonaute-2 of the RNAi pathway (Drinnenberg et al.,
2009), which allows efficient dsRNA synthesis in S. cerevisiae
compared with E. coli and other bacterial species (Zhong et al.,
2019). Similarly, plant chloroplast does not contain RNAi
pathway, and dsRNA can be enriched to 0.4% of total RNA in
plant chloroplast; expression of dsRNA in plant chloroplast can
be used to protect plants from being fed by insects, which would
be more efficient than expressing dsRNA form the plant leaves
(Zhang et al., 2015).
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Feeding the fruit fly Drosophila suzukii with recombinant
yeast expressing insect dsRNA targeting y-Tubulin resulted in
a significant reduction in larval survivorship, adult motility, and
reproduction (Murphy et al., 2016). Moreover, feeding D. suzukii
with genetically modified S. cerevisiae expressing dsRNA
(targeting y-tubulin23C) resulted in a significant decrease in
the fitness of D. suzukii in the environment (Abrieux and
Chiu, 2016).

The expression of dsRNA in S. cerevisiae has also been
validated in the mosquito Aedes aegypti. Fez2 and lrc were
selected as target genes in A. aegypti, and shRNAs of these
genes were expressed in S. cerevisiae. When the genetically-
modified S. cerevisiae was heated, dried, and fed to insects,
this led to >95%mortality of A. aegypti (Hapairai et al., 2017).
The same effects were observed with Aedes albopictus, Anopheles
gambiae, and Culex quinquefasciatus (Mysore et al., 2017; Mysore
et al., 2019a; Mysore et al., 2019b). In this way, biocontrol
strategies for specific mosquito species can be developed, to
effectively suppress human diseases transmitted by mosquitoes.

Many insects, livestock, aquaculture species and humans
consume yeast. Therefore, developing efficient yeast expression
systems might increase the possibility of applying yeast-derived
dsRNA commercially (Duman-Scheel, 2019). The dsRNA
produced by S. cerevisiae can also serve as a potential oral
delivery system for shRNA to mammalian cells (mouse
intestinal DCs) and be used in human disease therapeutics
(Zhang et al., 2014; Duman-Scheel, 2019). Several companies
have developed yeast dsRNA expression systems. In May 2019,
Renaissance BioScience filed a patent application for the
production and delivery of bioactive dsRNA ingredients using
yeasts.

In the future, large-scale production of dsRNA in S. cerevisiae
can be enhanced by improving the expression vectors (Crook
et al., 2014), the promoters for the dsRNA transcription
(Voineagu et al., 2008), the length of the hairpins (Yoshimatsu
and Nagawa, 1989), and the sites of integration positions (Kim
et al., 2015).

Bacillus dsRNA Expression Systems
Some B. subtilis strains are classified as probiotics for human and
animal consumption (Rosales-Mendoza and Angulo, 2015).
Therefore, this species has also been selected for dsRNA
expression. The dsRNA (daf-2, unc-62) expression vector
pBSR was introduced into B. subtilis, and feeding C. elegans
this genetically-modified B. subtilis strain induced RNAi effects
(Lezzerini et al., 2015). A B. subtilis strain with dsVP28 expression
was able to effectively prevent shrimp infection with white spot
syndrome virus (WSSV); the survival rate of shrimp treated with
the B. subtilis strain was 91.67%, while that in the control group
was only 28.57% (Saelim et al., 2020).

Bacillus thuringiensis (Bt) is an effective biopesticide
production strain that has been widely used for control of
lepidopteran pests. Bt has been used as an expression host for
dsRNA production. In the vector pBTdsSBV-VP1, two spore-
producing-dependent cyt1Aa promoters in opposite direction
were linked to theVP1 gene of Sacbrood virus (SBV), and a Shine-
Dalgarno sequence (GAAAGGAGG) was added at specific

positions, which increased the stability of the RNA. Transfer
of pBTdsSBV-VP1 into Bt strain 4Q7 led to the expression of
dsRNA. Feeding the total RNA extracted from this Bt strain to
Apis cerana (honeybees) infected with SBV virus significantly
reduced the viral infection of the insects (Park et al., 2020).

The Bt-based dsRNA production platform has some
advantages compared with other platforms. The cry
sporulation-dependent gene promotor was used for dsRNA
expression, and the dsRNA could be produced during the
sporulation phase of Bt. Moreover, other expression systems
(like E. coli, B. subtiis, S. cerevisiae expression systems) require
an inducer (IPTG or others) to induce dsRNA expression, but no
inducer is needed for expression in Bt. Finally, Bt cells can
undergo enzyme-associated autolysis after sporulation, thus
cell lysis is not required for dsRNA extraction (Park et al., 2020).

With the increase of insect resistance to Bt, the use of Bt as a
platform for dsRNA expression would help with pest control via a
Bt + RNAi strategy (Caccia et al., 2020; Kang et al., 2021).
Therefore, the Bt dsRNA expression system could be a useful
dsRNA production platform for the introduction of RNAi in
organisms.

Insect-Symbiotic Bacteria dsRNA
Expression Systems
There are abundant symbiotic bacteria in the oral tract and gut of
insects, and they interact directly with the insects and plants.
Some symbiotic bacteria can easily be genetically manipulated, so
they might be potentially efficient dsRNA production platforms
for insect control. The use of insect-symbiotic bacteria to express
dsRNA for insect control is known as symbiont-mediated RNAi
(SMR) (Taracena et al., 2015; Whitten et al., 2016; Whitten and
Dyson, 2017; Whitten, 2019; Asgari et al., 2020).

Rhodococcus rhodnii (R. rhodnii), a symbiotic bacterium of the
triatomine Rhodnius prolixus, was used to express RHBP-specific
hairpin RNA; the gene expression products of RHBP can
suppress R. prolixus by affecting its adult oviposition
(Taracena et al., 2015). Subsequently, two symbiotic bacterial
strains, R. rhodnii and BFo2 (a member of the Enterobacteriales),
were isolated from the insects R. prolixus and Frankliniella
occidentalis (western flower thrips), respectively. The RNase III
gene was knocked out and dsRNA expression cassettes was
expressed in these two insect symbiotic bacteria; when the
engineered bacteria were taken up by insects, the dsRNA
functioned in the hosts, inducing RNAi effects (Whitten et al.,
2016).

Snodgrassella alvi, a core gut symbiotic bacterium of the
honeybee A. mellifera, was modified as a dsRNA-producing
host. The dsRNA produced by the engineered S. alvi can
suppress gene expression in A. mellifera. Moreover, this
dsRNA can suppress genes of parasitic Varroa mites and kill
them, which protects the honey-bees from the Varroa mites, the
most threatening pest to the world’s beekeeping industry
(Leonard et al., 2020). Based on this technology, a new
bioproduct, “BioDirect” was registered as dsRNA for the
prevention and control of Varroa mites. This is the first
dsRNA biopesticide active ingredient submitted to the U.S.
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Environmental Protection Agency (EPA) for exogenous
application in agriculture.

Thus, SMR is not only potential pest control agents, but can
also be beneficial for insect protection. SMR depends on both the
specificity of RNAi toward the targeted insect gene, and
the specificity of the symbiotic bacterium for its host. This
dual specificity makes SMR a precision control tool, and this
tool is obviously different from chemical insecticides. However,
there are issues that need to be addressed before symbiotic
bacteria can reliably serve as dsRNA expression hosts. The
first is to find suitable symbiotic bacteria that stably colonize
the host insects; the bacterial content should also be relatively
high in the host insect. The second is that the symbiotic bacteria
must be able to express dsRNA efficiently and stably. Thus, the
acquisition and modification of symbiotic bacteria and
colonization of the engineered symbiotic bacteria in the host
need to be addressed before applying SMR for dsRNA
production.

Nevertheless, this SMR strategy is specific for pest control
without increasing environmental stress, and it might be widely
used in the future.

CONCLUSION AND PERSPECTIVES

Genetic engineering of microorganisms for large-scale production of
dsRNA is feasible. Currently, E. coli, Bacillus, S. cerevisiae and several
other symbiotic bacteria have mature expression systems for dsRNA
production. As most of these bacteria are probiotics and/or model
species, they might be the most suitable microbial hosts for diverse
dsRNA production. Corynebacterium glutamicum has also been
shown to efficiently synthesize dsRNA longer than 1 kbp in a
yield >1 g/L of culture (Hashero et al., 2021). Besides, microalgae

can also be engineered as dsRNA expression vectors, and shrimps
and crabs can be protected from bacterial or viral infection by feeding
on microalgae expressing dsRNA (Saksmerprome et al., 2009;
Somchai et al., 2016; Charoonnart et al., 2019). Fungi (Chen
et al., 2015) and viruses (Dubreuil et al., 2009; Kumar et al.,
2012) have also been engineered to produce dsRNA, and better
results have been obtained.

The dsRNA synthesized by microbes can be used directly in live
or inactivated microbes. However, engineered microbes entering a
host induce immune responses, which might compromise the
desired RNAi effects. Moreover, the engineered microbes may
spread into the environment, and lead to sustainable expression
of dsRNA, whichmight affect non-target species in the environment.
Besides, plasmid-based expression elements may be transferred
inter-species, resulting in biological contamination problems
(Mendelsohn et al., 2020). dsRNA produced in engineered
bacteria cannot be secreted directly outside the cell. Therefore,
lysis, extraction and purification are required to obtained dsRNA
production. The lysis of cells can be performed by ultrasonication,
enzymatic lysis, boiling lysis, while sodium dodecyl sulfate (SDS) can
be used to enhance the lysis (Posiri et al., 2013). After the cell wall is
broken, the nucleic acid can be released to obtain a crude extract of
dsRNA. Then, use appropriate RNA extraction methods, such as
TRIzol reagent or other RNA extraction reagents, to obtain pure
dsRNA production. Extracting and purifying dsRNA from
engineered bacteria will avoid or reduce the problems mentioned
above. However, these processes are relatively cumbersome and need
to be further optimized. The dsRNA obtained through microbial-
production can be directly applied to pest control by spraying, and
the nanocarrier-mediated transdermal dsRNA delivery system can
facilitate the development of sprayable RNA pesticides (Zheng et al.,
2019; Yan et al., 2020).Whichmethod to use also needs to be selected
according to different environments (Figure 1).

FIGURE 1 | The process and use method of microbial dsRNA production system.

Frontiers in Bioengineering and Biotechnology | www.frontiersin.org September 2021 | Volume 9 | Article 7537904

Guan et al. Microbial dsRNA Production System

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
www.frontiersin.org
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#articles


There are also some further technical issues in this field that
need to be solved. For example, substrates for industrial
fermentation can be contaminated with various bacteria, and
such contaminants can inhibit growth of the desired (dsRNA-
expressing) bacteria and reduce the efficiency of the fermentation
process, thus significantly reducing productivity (Seo et al., 2020).
Antimicrobial decontamination strategies have been developed,
but the metabolites produced and antibiotics used to avoid
contamination by other microorganisms are released,
inevitably putting pressure on the environment and increasing
risks to human health (Kraemer et al., 2019). Once these
problems are solved and dsRNAs can be produced by large-
scale fermentation, they will have broad application prospects
and bring huge economic benefits.

dsRNA production methods have been continuously
optimized in recent years to adapt to production needs and
promote the application of this technology. The cost of
dsRNA was approximately US$12,000/g in 2008, dropping to
US$60/g in 2018, and in 2020, RNAGri had the ability to produce
tons of dsRNA at a cost of US$1/g, Greenlight’s GreenWorX™

system can further reduce the cost of dsRNA synthesis to
< US$0.5/g (Cagliari et al., 2019; Suhag et al., 2020; Taning
et al., 2020), which will provide material for the economical
large-scale application of dsRNA-based pesticides.

The large-scale application of RNAi technology relies on
the construction of efficient and appropriate microbial cell
factories for dsRNA production. With the development of
synthetic biology, global rewiring of the expression systems of
model species to increase dsRNA expression levels will be
possible. In the future, active engineered microorganisms for

dsRNA production and low-cost purified dsRNA will become
available leading to greener agriculture without chemical
pesticides to protect plants from insects and microbial
infections.
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