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The therapeutic potential of mesenchymal stem cells (MSCs) has been investigated

in many preclinical and clinical studies. This potential is dominantly based on the

immunosuppressive properties of MSCs. Although the therapeutic profiles of MSC

transplantation are still not fully characterized, accumulating evidence has revealed that

B cells change after MSC infusion, in particular inducing regulatory B cells (Bregs). The

immunosuppressive effects of Bregs have been demonstrated, and these cells are being

evaluated as new targets for the treatment of inflammatory diseases. MSCs are capable

of educating B cells and inducing regulatory B cell production via cell-to-cell contact,

soluble factors, and extracellular vesicles (EVs). These cells thus have the potential

to complement each other’s immunomodulatory functions, and a combined approach

may enable synergistic effects for the treatment of immunological diseases. However,

compared with investigations regarding other immune cells, investigations into how

MSCs specifically regulate Bregs have been superficial and insufficient. In this review,

we discuss the current findings related to the immunomodulatory effects of MSCs on

regulatory B cells and provide optimal strategies for applications in immune-related

disease treatments.

Keywords: mesenchymal stem cells (MSCs), regulatory B cells (Bregs), cell-to-cell contact, soluble factors,

extracellular vesicles (EVs)

INTRODUCTION

Mesenchymal stem cells (MSCs) are multipotent stromal cells existing in many human tissues that
can be rapidly expanded in vitro to meet the needs of clinical and basic research. The term MSCs
was coined by Caplan in 1991 (1). Since Friedenstein and coworkers demonstrated the osteogenic
potential of a minor subpopulation of BM cells that rapid adherence to tissue culture vessels and
have a fibroblast-like appearance of their progeny in culture (2), MSCs have been derived from lots
of tissues in different species (3, 4). However, MSCs still lack specific markers for identification. The
International Society for Cell Therapy (ISCT) established three basic criteria for the identification
of MSCs in 2006: (1) demonstration of plastic-adherent growth; (2) exhibition of the following
phenotypic characteristics: expression of CD105, CD73, and CD90 in more than 95% of cells; a
lack of expression of CD45, CD34, CD14, CD11b, CD79a, and CD19 in the majority of cells; and a
lack of expression of HLA-DR; and (3) demonstration of the ability to differentiate into osteoblasts,
adipocytes, chondroblasts in vitro (5). MSCs can exhibit important roles in tissue regeneration and
repair (6), maintenance of bone marrow hematopoietic microenvironment homeostasis (7), and
immunomodulation of inflammation (8).
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Given the current considerable safety and efficacy in pre-
clinical and clinical studies, the roles of MSCs in regenerative
medicine have attracted widespread attention, especially their
immunomodulatory effects on autoimmune diseases and
transplantions, such as Crohn’s disease (CD) (9), rheumatoid
arthritis (RA) (10), and systemic lupus erythematosus (SLE)
(11), as well as graft-versus-host disease (GvHD) (12), kidney
transplantation (KTx) (13, 14), liver transplantation (LTx)
(15, 16), chronic lung allograft dysfunction (CLAD) (17)
and small bowel transplantation (SBTx) (18), and even their
roles in immune-mediated cell therapies (19). MSCs exhibit
functional characteristics related to immune regulation and
have consistently been shown to play roles in regulating innate
and adaptive immune responses via a variety of pathways, such
as cell-to-cell contact (20), soluble factors (21), and exosomes
derived from MSCs (22). For instance, MSCs possess the ability
to secrete regulatory molecules and cytokines that can modulate
PBMC maturation, proliferation, differentiation, migration, and
functional activation (23–25).

B cells are essential immune effector cells that are pivotal
in adaptive immune responses and play roles in autoimmunity
through antigen presentation, antibody secretion, and
complement activation. Previous studies have shown that MSCs
are capable of regulating B cell proliferation and differentiation,
inhibiting B cell apoptosis, etc., and they can also suppress the
adaptive immune response by indirectly regulating dendritic cell
(DC)-mediated antigens. Another mechanism by which MSCs
may exert effects on autoimmune diseases in the short and long
term is their induction of regulatory B cells (Bregs), especially
types that promote the secretion of interleukin (IL)-10, which
promote B cells to exhibit immunosuppressive functions and
modulate the immune environment homeostasis of patients with
autoimmune diseases or solid organ transplantation such kidney
transplantation and liver transplantation.

A relatively large number of studies have been published to
confirm the clinical phenomenon and mechanisms regarding
MSCs regulating regulatory B cells. In addition, previous
studies have shown the regulatory effects in animal disease
models and the safety, feasibility and potential effectiveness of
allogeneic transplantation of MSCs in clinical trials to treat
immune-related diseases. It seems necessary to better understand
how the underlying mechanisms of MSC-mediated Breg or
combined MSC/Breg cell therapies can be successfully applied
in clinical fields. In this review, we discuss MSC functions
related to Bregs and the possible mechanisms by which MSCs
induce Bregs in vivo and in vitro, especially with regard to
IL-10-producing Bregs.

CURRENT DEFINITION AND
UNDERSTANDING OF REGULATORY
B CELLS

B cells, an important cells for the adaptive immune response,
have the ability to present antigens, secrete antibodies, and
activate the immune system (26), which have been observed in
autoimmune diseases, infections and cancers. Several subsets of

B cells exert regulatory functions similar to those of regulatory
T cells (Tregs) and are collectively termed regulatory B cells
(Bregs). Previous studies have shown that Bregs could inhibit
Th1 and Th17 responses and induce FoxP+3 Treg pools to play
a key role in maintaining peripheral tolerance (27). Regulatory
B cells have been found in various B cell subpopulations,
including B1 B cells, B2 B cells, and plasma cells (28). Breg-
mediated immunosuppression is an important manner for the
maintenance of peripheral tolerance (29). However, there is
still no clear consensus on the definition and classification of
Bregs. As their heterogeneity, Bregs may express one or more of
regulatory factors [including IL-10, IL-35, transforming growth
factor (TGF)-β, and programmed cell death 1 ligand 1 (PD-L1)]
and exert suppressive effects on cognate T cells (27, 30–32). Since
three inhibitory cytokines, IL-10, TGF-β, and IL-35, having been
identified as key inhibitory inflammatory factors for Bregs, Bregs
can be divided into three categories: IL-10+, TGF-β+, and IL-
35+ Bregs. Among these, the IL-10+ Bregs, also called B10 cells,
are the major cell type in mediating immunosuppression. IL-10+

Bregs have been widely regarded as important immunoregulatory
cells in various inflammatory diseases, such as RA (33), chronic
intestinal inflammatory conditions (34), SLE (35), CD (36),
Collagen Induced Arthritis (CIA) (37), and GVHD (38). Besides,
Bregs also play an important role in transplantation, including
KTx (39, 40), cardiac allografts (41), liver transplantation (42)
and so on. The various subpopulation phenotypes among IL-10+

Bregs are shown in Table 1.
The term “regulatory B cells” were firstly introduce by

Bhan and Mizoguchi. Using T-cell receptor (TCR)-α−/−mice,
µMT mice, and TCR-α−/−µMT mice, they found that colitis
pathogenesis does not require B cells, but B cells are presumably
involved in the elimination of apoptotic cells, which contributed
to suppressing colitis (60). Similarly, Michael Hahne et al.
reported that LPS-activated B cells expressing FAS ligands
(FasL) can clear activated T cells such as FAS-expressing T
cells, and transfer of LPS-activated B cells could ameliorate
the development of diabetes in NOD mice (61). Subsequently,
Atsushi Mizoguchi et al. found that under conditions of
chronic enteritis, B cell subsets, characterized by upregulation
of CD1d expression, can produce IL-10 and attenuate IL-1
upregulation and signal transducer and activator of transcription
(STAT)3 activation, which indicates that B cells producing IL-
10 could serve as regulatory cells in immunologically mediated
inflammatory responses (34). Later, Claudia Mauri et al. used
agonistic anti-CD40 and collagen to stimulate arthritic B cells,
increasing the secretion of IL-10 in B cell subsets to control
the proinflammatory Th1 type response while reducing secretion
of interferon (IFN)-γ; the findings proved that these B cells
play important roles in immune regulation in arthritis models
(33). Niamh E. Mangan et al. have also reported that the
induction of IL-10-producing B cells can modulate allergic
responses in worm-infected mice (62, 63). Besides, studies of
Bregs in transplantation have also been conducted. Lal Girdhari
et al. proved that CD40 costimulatory blockade induces IL-10
producing Marginal Zone Precursor (MZP) Bregs, especially IL-
21R+ MZP Bregs, performing a key function in restoring graft
survival (50).
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TABLE 1 | Phenotypes of IL-10+ Bregs.

Species Phenotype Function

Mouse CD138high (43) Anti-Salmonella immunity

CD19+CD5+CD1dhigh (44, 45) Treg induction; inhibition of Th17

response

CD1dhighCD23highCD21int (46) Protective role in the mucosa

CD19+CD43+CD80+CD86+CD40+

(47)

Inhibition of Th1 response

CD19+CD43+CD5+ (48) Amelioration of cGVHD

CD1dhigh (49) Treg induction

CD5+CD1dhi (41) Inhibition of Th1 cells activation;

induction of islet allograft

tolerance

CD19+CD24highCD38high (30) Suppression of Th1 cell

differentiation

IL-21R+ MZP (50) Induction transplantation

tolerance

Human CD5+ IL-10+ (51) Inhibition of Th1 response

CD19+CD25highCD27high

CD86highCD1dhigh IL-10highTGF-βhigh

(52)

Suppression of CD4+ T cell

proliferation

CD19+CD38+CD1d+ IgM+CD147+

CD25+ (53)

Suppression of antitumor

immune responses

CD24highCD27+ (42, 54) Negatively regulate monocyte

cytokine production; predicted

the occurrence of acute allograft

rejection in liver transplantation

CD154+ (55) A character of SLE patients

CD25+CD71+CD73lowPD-L1+ (56) Suppress antigen-specific

immune responses

CD27intCD38+ (57) Production of IL-10

CD5highCD38lowPD-1high (58) Inhibition of Th1 and Th17

differentiation

CD23+CD43+(59) Inhibition of T cell response

MSCS PLAY ANTI-INFLAMMATORY ROLES
IN IMMUNE DISEASES BY INCREASING
BREGS

There have been many discoveries shown that MSCs exert
immunomodulatory functions to affect B cells. In 2006, Anna
Corcione et al. first discovered that hMSCs can directly interact
with B cells to prevent their proliferation and death while
promoting arrest during the G0-G1 phase of the cell cycle.
They found that the expression of CXCR4, CXCR5, and
CCR7 in B cells was downregulated as a result of inhibition
of human B cell proliferation, differentiation into antibody-
secreting cells, and chemotaxis in vitro (64). In 2007, Patrizia
Comoli et al. reported MSCs induced by allo-stimulation in vitro
are capable of modulating B-cell allo-responses via inhibiting
antibody production, suggesting that third-party MSCs are
able to suppress allo-specific antibody production in vitro,
and may therefore help overcome a positive cross-match in
sensitized transplant recipients (65). In 2009, it was reported
that MSCs inhibit B cell terminal differentiation by releasing

cytokines to downregulate B cell Blimp-1 expression both in
vitro and in vivo (66). Moreover, Elisabetta Traggiai et al.,
through polyclonal stimulation of B cells isolated from children
with systemic lupus erythematosus and healthy donors, found
that bone marrow MSCs can promote the proliferation of
transitional cells and naive B cells and their differentiation
into immunoglobulin-secreting cells, moreover, MSCs strongly
promote the proliferation of memory B cells and their
differentiation into plasma cells (67).

Many previous studies have focused on MSCs inducing the
production of regulatory T cells to exert immunosuppressive
functions. Similarly, the modulation of regulatory B cells
by MSCs also plays important roles in the treatment of
many diseases. For example, in experimental autoimmune
encephalomyelitis (EAE), an experimental model of human
multiple sclerosis (MS), CD1dhighCD5+ regulatory B cells
were upregulated after MSC administration and exert anti-
inflammatory and immunosuppressive effects (68). Experiments
have also found that human umbilical cord MSCs (hUC-
MSCs) protect experimental mice by increasing the numbers of
CD5+ Bregs that produce IL-10 and correcting Treg/Th17/Th1
imbalance in a colitis model (69). Furthermore, Y Peng et al.
have reported that the numbers of CD5+IL-10+ regulatory B
cell subset are increased in patients with refractory chronic
graft-versus-host disease after MSC treatment (70). Minglu Yan
et al. reported that human synovial membrane-derived MSCs
can inhibit the maturation and differentiation of B cells; induce
CD21highCD23high transitional 2 (T2) cells, CD23lowCD21high

marginal zone (MZ) cells, and CD5+CD1d+IL-10 cells in the
spleen; and increase the numbers of immature transitional
B cells, such as IL-10+ cells, thus reducing the severity of
arthritis in mice (71). Kunal S. Gupte et al. reported that
co-culture of adipose tissue-derived MSCs (AD-MSCs) from
15 potential kidney donors with peripheral blood PBMCs
could induce IL-10-secreting B cells, demonstrating the promise
of cell therapies for immune diseases after transplantation
(72). Studies demonstrated that MSC infusions contributed to
long-term stabilization of renal allograft function, likely via
triggering an active peripheral immunomodulation to induce

long term immunophenotyping of naïve and CD24highCD38high

transitional B-cell subsets in kidney allograft recipients (73).

Along with this, another recent study held by Davide Piloni

el at. proved that CD19+CD24highCD38high Breg cell subset
also showed key functions in the long term acceptance of
lung graft (74). These discoveries of B-cell subsets provide not
only a potential marker of MSC-induced immunomodulation
associated with transplantation tolerance, but also a prospective
view in IL-10 producing B cells key functions among SOT
applications. Recently, Di Lu et al. found that allogeneic MSC
transplantation can promote the levels of IL-4 and IL-10 and the
induction of Bregs in an aGVHD mouse model with complete
mismatch of MHC and significantly inhibit the expression of
CD69 and CD86 on B lymphocytes to prolong survival, thus
demonstrating that B lymphocytes play an important role in
the development of aGVHD and that B lymphocytes are targets
of the immune regulatory cascade in MSCs (75). Studies based
in vitro experiments or preclinical and clinical researches have
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TABLE 2 | Summary of the studies on MSC-mediated effects to Bregs.

Study Disease or study type Key findings

Chen et al. (76) Clinical trial: BOS after allo-HSCT Increased CD5+B cells and IL-10-producing CD19+CD5+ Bregs

Chen et al. (59) Colitis model Induced the novel CD23+CD43+Bregs subset

Planella et al. (77) Invitro study The PF as well as the CM could increase induced CD24highCD38high B cells

Lu et al. (75) Acute GVHD model Decreased IL-4 and increased IL-10+Bregs

Li et al. (78) EAE model Increased CD5+ IL-10+ B cells

Mehdipour et al. (79) Invitro study Decreased TNF-α+/ IL-10+ B cells ratio in B cell-ASCs co-culture

Luk et al. (80) Invitro study Under immunological quiescent conditions, MSC increased IL-10+CD38high CD24high

Bregs

Yan et al. (71) CIA model Increased CD21highCD23high T2 cells, CD23lowCD21high MZ cells, and

CD5+CD1d+ IL-10+Bregs

Gupte et al. (72) Invitro study Increased IL-10-secreting Bregs from baseline of patients

Cho et al. (81) Animal in-vivo study Induced IL-10-expressing Bregs in an EBI3-dependent manner

Zhang et al. (82) Clinical trial: NS after allo-HSCT Induced CD19+CD5+ IL-10+ Bregs

Hermankova et al. (83) Invitro study IFN-γ-treated MSCs inhibited IL-10 production by activated B cells via cell-contact and

the Cox-2 pathway

Chao et al. (69) Colitis model Boosted the numbers of CD5+ B cells and IL-10-producing CD5+ Bregs

Peng et al. (70) Clinical trial: refractory cGvHD Increased IL-10-producing CD5+ B cells

Franquesa et al. (84) Invitro study Reduced plasmablast formation and induce IL-10-producing CD19+CD24highCD38high

Bregs

Park et al. (85) SLE model Increased IL-10-producing Bregs

Garimella et al. (86) CIA model Increased the CD19+CD1dhighCD5+ Bregs in the spleens of ASC-treated CIA mice

Wang et al. (87) Cardiac allograft model MSC-expressing B7-H1 neutralization reduced IL-4high IL-10highCD83low B cells

Guo et al. (68) EAE model Upregulated CD1dhighCD5+Bregs

BOS, Bronchiolitis obliterans syndrome; HSCT, Hematopoietic Stem Cell Transplantation; GVHD, graft-versus-host disease; EAE, experimental autoimmune encephalomyelitis; CIA,

collagen-induced arthritis; NS, Nephrotic syndrome; SLE, systemic lupus erythematosus.

reported the induction of Bregs by MSCs as we summarized in
Table 2.

HOW MSCS REGULATE BREG
GENERATION

Accumulating evidence has revealed the importance of Bregs
and Tregs in the maintenance of immune tolerance, and MSC-
mediate disease improvements are often associated with the
induction of Bregs and Tregs. It’s well-known that MSCs
regulate Tregs proliferation, survival, and function mainly
through several pathways. Firstly, cell-to-cell contact, through
which interactions among different molecules expressed by
MSCs and T lymphocytes (such as ICOSL and ICOS, Notch
and Notch ligands), upregulates the production of IL-10 and
the proliferation of Tregs. Followed, the secretion of soluble
factors by MSCs, including TGFβ, CCL2, IL-6, IL-7, PGE2,
IDO, HO-1, and HLA-G5, can regulate Treg generation (88–90).
Moreover, antigen-presenting cell dependence; in this pathway,
MSCs affect antigen-presenting cells (dendritic cells, monocytes,
macrophages) to induce regulatory phenotypes and promote
Treg activity through IL-10 and TGF-β1, although the detailed
mechanism has not been fully elucidated. In addition, MSC-
derived extracellular vesicles, containing specific RNA, proteins
and other biological molecules, induce the polarization of CD4+

T cell into Tregs (91).

Compared to MSCs inducing Tregs, the specific mechanisms
by which MSCs regulate the generation of Breg are still not
sufficiently clear. Several studies have focus on the mechanism
that induces the generation of Bregs. H Li et al. found that T
follicular regulatory (Tfr) cells could induce IL-10+ Breg cells,
as higher frequency of IL-10+ Breg cells was observed when
incubation with Tfr cells (92). Moreover, tolerogenic DC (tolDC),
one type of DC with immuno-suppressive properties, were
reported to induce the IL-10 producing Breg, as wells as the IL-10
producing type 1 regulatory T cells (Tr1) (93). Cynthia M. Fehres
et al. described that a proliferation-inducing ligand (APRIL)
induced IL-10+B cells production in EAE and CHS models, as
APRIL promoted the differentiation of naïve human B cells to
IL-10-producing IgA+ B cells (94). It has been postulated by
some investigators that the conditions in the microenvironment
are key factors for the induction of Bregs. Notably, Toll-like
receptor (TLR), CD40, and BCR-induced signaling are vital for
Breg function (95–97). In view of previous studies that have
assessed multiple modulatory mechanisms of MSCs, we illustrate
below the relationship between MSCs and Bregs from several
perspectives, which also summarized in the Figure 1.

Cell-to-Cell Contact
MSCs can regulate immune responses through direct cell-to-cell
contact. Via interaction with surface molecules and/or receptors,
MSCs might directly regulate their downstream pathways
in B cells, thereby affecting B cell activation, proliferation,
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FIGURE 1 | The role of MSCs in regulating the IL-10 producing regulatory B cells. MSCs perform functions on modulating IL-10 producing regulatory B cells via many

manners, including (1) Cell-to-cell contact: MSCs play roles in B cells via PD1-PDL1 pathway to inhibit antigen-dependent proliferation and differentiation, and induce

Bregs. (2) Soluble factors: IL-10-producing Breg subsets, including CD5+ Bregs, CD24highCD38high Bregs, CD1d+CD5+ Bregs, and CD23+CD43+ Bregs, are

mediated by MSCs-secreting soluble factors. (3) Extracellular Vesicles: MSCs-EVs could inhibit B cell proliferation and BCR-mediated Ca2+ mobilization, regulate

PI3K-AKT signaling pathway in B cells that is critical for Breg cell development, and induce CD24highCD38high B cell subpopulation, a classic phenotype of Bregs, but

without IL-10 production. Based on the current data, MSCs-EVs might be involved in MSCs regulating IL-10 producing B cells.

survival, differentiation, and Bregs induction. For instance, M.
Franquesa et al. experimentally demonstrated that hASCs can act
independently of T cells and directly on B cells to promote the
production of CD19+CD24highCD38high and IL-10-production
regulatory B cells (84). Although cell-to-cell contact manner have
been confirmed to be involved in MSCs inducing Bregs by the
transwell co-culture (59, 80), little is known about the particular
molecules. One of the major molecules involved in this cell-
to-cell interaction of MSCs is the costimulatory molecules is
programmed death ligand-1 (PD-L1, also known as B7-H1). PD-
L1 is well-known for its role in immune checkpoint regulation
(98). Its receptor, programmed cell death protein 1 (PDCD1;
also known as PD1), is an immunoglobulin-superfamily member
that over-expressed upon programmed cell death as its primary
function described to attenuate the immune response (99,
100). Francesca Schena et al. found that BM-MSCs inhibit
antigen-dependent proliferation and differentiation of follicle

and MZ B cells in vitro through the PD-1/PD-L1pathway,
and ameliorate the inflammatory response in systemic lupus
erythematosus mice (101). H Wang et al. reported that the
expression of B7-H1 on MSCs was required for IL-10-producing
Bregs development in recipients and MSC-mediated suppression
of antibody production and B cell proliferation, which contribute
to the induction of immune tolerance to allografts in mouse
cardiac allograft model by the combination therapy of MSCs and
rapamycin (RAPA) (87).

Soluble Molecule Interactions
Cyclooxygenase-2 (COX-2)/PGE2
Prostaglandins (PGs) are small molecule derivatives of
arachidonic acid produced by cyclooxygenase (102).
Prostaglandin E2 (PGE2), the main product of cyclooxygenase
in myeloid cells and stromal cells, is a biologically active factor
whose synthesis was regulated by COX-2 and shown to regulate
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multiple aspects of inflammation in immune cells (103). Many
studies have shown that MSCs exert their therapeutic ability
mainly dependent on PGE2 secretion (104, 105). MSCs-derived
PGE2 also contribute to their induction of Tregs (106). In
B cells, Tae-Hoon Shin et al. show that COX-2 signals are
necessary for MSCs to inhibit the proliferation and maturation
of B lymphocytes, result of inhibiting the secretion of IgE
by mature B cells in a mouse atopic dermatitis (AD) model
(107). R Chen et al. shown that PGE2 could induce B10 cells
via the MAPKs/AKT-AP1 axis or aryl hydrocarbon receptor
(AhR) signaling (108). Recently, COX-2/PGE2 pathway is also
found to involved in MSCs induce CD23+CD43+ Bregs, which
significantly reducing the clinical and histopathological severity
of induced colon inflammation and ameliorating gastrointestinal
mucosal tissue damage in mice (59). However, IFN-γ-primed
MSCs were reported to inhibit the production of IL-10 by
LPS-activated B cells through the COX-2 pathway (83). PGE2
has shown to exert paradoxes function in regulating immune
response (103), more experiments might need to uncover the
key mechanisms and targets of PGE2-mediated effects on MSCs
inducing Bregs. The immune status of MSCs may be another
cause needed pay attention to, as the microenvironment is one
of the major factors that affecting the immuno-regulatory ability
of MSCs.

Indolamine-2,3-dioxygenase (IDO)
IDO catalyzes the first and rate-limiting step of tryptophan
catabolism in the kynurenine pathway, and its downstream
metabolites include kynurenine (KYN) and 3-hydroxyanthranilic
acid. It is worth noting that IDO has been shown to regulate
the expression of inflammation-related genes, either by itself
as a signaling factor or through the production of biologically
active intermediates via the kynurenine pathway, such as 3-
hydroxyanthranilic acid and kynurenic acid (KYNA). IDO could
inhibited T cell proliferation and modulated regulatory T cell
differentiation (109, 110). G Wang et al. demonstrated IDO
is necessary to the therapeutic effects of human umbilical
cord-derived MSC (hUC-MSC) for treating acute lung injury
(ALI) (111). Based on previous studies, the IDO expression in
MSCs require priming by IFN-γ and pro-inflammatory cytokines
that enhance IDO levels via JAK/STAT signaling (112, 113).
IFN-γ-pretreated MSCs inhibit the production of IgG and
the proliferation of B cells, largely dependent on tryptophan
catabolism by IDO (80). Human umbilical cord-derived MSCs
(hUC-MSCs) can control EAE by increasing the proportion and
promoting the function of CD5+IL-10+ B cells. After co-culture
with MSCs, CD5+ B cells show a stronger ability to inhibit T cell
proliferation and proimmflamatory cytokines secretion, as well
as to induce Tregs (78), and these enhanced immunomodulation
of CD5+ B cells by MSCs were reversed when blocking the IDO
pathway. Moreover, MSCs increased the frequency of CD5+ Breg
cells by enhancing their proliferation and survival via the IDO
pathway (70).

IL-35
Interleukin-35 is a novel anti-inflammatory cytokine belonging
to the IL-12 cytokine family that can be applied as a potential

therapy for chronic inflammation and autoimmune diseases
(114). Human IL-35, which functions as an important immuno-
modulator, seems to inhibit mature inflammation rather than
prevent inflammation as IL-35 is not constitutively expressed
in human tissue (27, 115, 116). IL-35 has reported to induce
both Tregs and Bregs (117). IL-35 could induce the conversion
of B cells into Bregs, including IL-35+ Bregs and IL-10+ Bregs.
Mice deficient in p35 or EBI3, the two subunits of IL-35,
exhibit an exacerbation in EAE and experimental autoimmune
uveitis (EAU) with less Bregs (27, 43). Studies have revealed that
overexpression of IL-35 in hMSCs can increase the proportion
of Tregs among lamina propria lymphocytes (LPLs) and induce
an immunosuppressive microenvironment via inhibition of the
expression of TNF-α, IFN-γ, and IL-17 in the lamina propria
(114). Similarly, IL-35 also takes part in MSCs inducing Bregs.
Kyung-Ah Cho et al. have proven that MSCs are capable of
ameliorating B-cell activation induced by hormonal stimulation,
and directly inducing the population of immunosuppressive IL-
10-secreting Breg cells in an IL-35-dependent manner without
acting on T cells; both these MSCs-mediated effects require
MSCs-derived EBI3, a critical subunit of IL-35 (81).

SDF-1α-CXCR7
Stromal cell-derived factor-1α (SDF-1α, also known as CXCL12)
is a crucial process involved in the chemotaxis of stem
cells/progenitor cells (118). Previous studies have reported that
the migration and survival of MSCs have been enhanced via
up-regulation of SDF-1 receptors, CXCR4 and CXCR7, under
hypoxic preconditioning stimulation, which likely contribute to
improving the therapeutic effect in renal ischemia/reperfusion
(I/R) injury in animal model (119). According to Marie-Luise
Humpert et al. research, CXCR7, is an atypical chemokine
receptor, binds CXCL12 and CXCL11 to regulate CXCR4/SDF-1-
mediated the migration of plasmablasts during B-cell maturation
(120). Moreover, Yan Qin et al. demonstrated that low
concentration of SDF-1 promoted MSCs to induce IL-10-
producing Bregs while high concentrated inhibited MSCs
induction of IL-10+Breg cells, but overexpressed CXCR7 of
MSCs can reverse this inhibitory effect. The result supported
that SDF-1α-CXCR7 axis play key roles in MSCs regulating
IL-10-producing Bregs, especially CD1d+CD5+IL-10+Bregs, by
regulating paracrine actions (121). In addition, endometrial
regenerative cells (ERCs), mesenchymal-like stromal cells, have
been found to induce a donor-specific allograft tolerance in
mouse cardiac allograft models, which is depended on SDF-1
mediated increasing levels of regulatory immune cells including
IL-10 producing CD1dhigh CD5high CD83low Bregs (122).

B Cell-Activating Factor (BAFF)
B cell-activating factor (BAFF) is a member of the tumor necrosis
factor superfamily known to play a critical role in the survival and
maturation of B cells by binding to the receptors BCMA (B cell
maturation antigen) and TACI (transmembrane activator and
CAML interactor) (123). BAFF is also critical for naive circulating
B cell and MZ B cell homeostasis. BAFF is expressed in a wide
variety of cell types, including macrophages, dendritic cells and
neutrophils, and even functions in an autocrine manner (124).
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Using BAFF-transgenic (Tg) mice, BAFF has been demonstrated
to induce CD4+Foxp3+ Treg cells to suppress T-cell responses
(125), suggesting a regulatory role of BAFF in vivo. Followed,
low dosages of BAFF was found to possess the ability to induce
IL-10 producing Bregs with the phenotype of CD1dhiCD5+,
moreover, the number of IL-10-producing B cells in the marginal
zone regions were increased when treated with BAFF in vivo
(126). Interestingly, MSCs were reported to express BAFF both
in mRNA and protein (127), indicating that MSCs might have
the ability to induce Bregs via secreting BAFF. In clinical studies,
MSCs are shown to decrease the plasma levels of BAFF in
patients with cGVHD or refractory rheumatoid arthritis (RA),
accompanied with regulating the activity of B cells and alteration
in B cell subpopulation (128, 129). However, more experiments
still need to confirm the BAFF-mediated effects on MSCs
inducing Bregs, and reveal the underling mechanisms.

MSC-EVs
An increasing number of studies have shown that MSCs perform
many paracrine functions by releasing extracellular vesicles
(EVs). In particular, small EVs (50–200 nm in diameter) (130)
can be obtained from cell culture supernatants of MSCs cultured
under different culture conditions and have been reported
to possess therapeutic effects in different preclinical models.
MSC-derived exosomes function through horizontal transfer of
proteins, mRNA, and regulatory microRNAs (131). MSC-EVs
have become promising therapeutic agents (132). Drirh Khare
et al. identified 39 upregulated genes by sequencing exosomes
derived from MSCs cocultured with B cells, including SerpinB2,
PTGS2, CXCL8 (IL8), and MZB1 (marginal zone B and B1
cell specific protein) (133–136). These genes are involved in a
variety of classic immunosuppressive effects, including inhibition
of T cell activation, B cell proliferation, and BCR-mediated Ca2+

mobilization, proving that mesenchymal stromal cell exosomes
affect the expression and function of B lymphocytes (137).
Recently, L Guo et al. reported that MSC-EVs prevent fibrosis
of skin in sclerodermatous cGVHD mouse model via blocking
the TFH/GC B cells interaction and reduce the ratio of BAFF
to B cells in vivo (138). MSC-derived soluble protein-enriched
fractions (MSC-PFs) have effects comparable to those of MSCs
and can promote B cells to produce IL-10. MSC-EVs induce
CD24highCD38high B cells to the same extent as MSCs while the
resulting cells do not produce IL-10 (77). MiR-155, a microRNA
that significant increase in MSCs prime with IFN-γ and TNF-
α (139), promotes IL-10 production in CD24hiCD27+ Bregs
directly by inhibiting the expression of Jarid2, resulting in
reduction of H3K27me3 binding to the IL10 promoter (139).
In addition, MSCs-EVs are found to regulate the PI3K-AKT
signaling pathway in B cells (140), combined with PI3K-Akt
pathway in B cells is critical for Breg cell development, it is
conceivable that MSCs might regulate the Bregs via their EVs to
modulate the PI3K-AKT signaling pathway in B cells. Of course,
there are still many unknowns in this field, and more research is
needed to uncover the role of MSCs-EV in regulating Bregs.

Nevertheless, the potential for MSC-EVs immunomodulation
remains promising, although the mechanisms of MSC-EVs
in Breg induction is not yet well-understood. Moreover,

MSC-EVs are traditionally derived from highly heterogeneous
MSC cells. Due to the diversity of MSCs, the complexity of
MSCs preparation, the lack of standardized quality assurance
procedures for various methods of production and isolation of
EVs, and the limited reproducibility of in vitro and in vivo
functional assays. Four associations (SOCRATES, ISEV, ISCT,
and ISBT) have proposed specific harmonized standards for
MSC-EV preparation, which will help promote the development
of clinical applications in this field (141).

CONCLUSIONS

Investigations in the past few years have provided new insights
into the functions of MSCs in immune system modulation
and the potential of MSC-based cell therapies, which have
been extensively assessed in clinical studies for their efficacy
in degenerative, autoimmune, or inflammatory diseases. The
mechanisms by which MSCs perform their therapeutic functions
are multifaceted, but in general, these cells are thought to be able
to balance the inflammatory and regenerative microenvironment
of damaged tissue in the presence of severe inflammation.
Studies on the interactions between immune systems and
MSCs have shown that enhancement of the immunoregulatory
activity of MSCs is essential during tissue regeneration. Over
past decades, numerous studies have been conducted to clarify
the immunomodulatory effects of MSCs on immune cells.
Completed and ongoing clinical trials and in vivo studies
on the therapeutic effects of MSCs against immune-mediated
diseases have proven that MSCs can increase the generation
of Bregs. It has been suggested that MSCs can increase the
secretion of IL-10 by Bregs to treat inflammatory diseases,
but research on specific mechanisms is still relatively scarce.
Undeniably, the effectiveness of related B cell-based treatments
greatly depends on the functions of Bregs, especially IL-10-
secreting Bregs. Numerous studies on Bregs have revealed that
B10 cells have powerful potential to ameliorate inflammatory
disorders, exhibiting promise for use in the treatment of
autoimmune diseases. On the one hand, regulatory B cells
have not been clearly defined, and there is a lack of identified
markers. At present, Bregs are still defined on the basis of
their functions, which make breakthroughs in related research
difficult. We have reviewed previous studies on effective MSC-
mediated promotion of the production of IL-10+ Bregs. To
a certain extent, MSCs have multiplicative potential; they are
able to induce Bregs and/or increase Breg production through

a wide range of verified direct and indirect mechanisms. In
the future, further studies are needed to discover reliable
markers for defining different subpopulations of Bregs, clarify
the heterogeneity among different subpopulations of Bregs used
in specific treatments and clarify the potential mechanisms by
which MSCs regulate Bregs. In clinical applications of MSCs
combined with Bregs for the treatment of immune diseases,
the stability and flexibility of the treatments should be closely
considered and optimized to achieve appropriate modulation of
inflammatory responses at different stages of disease progression.
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