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ABSTRACT

COMPASS is a method for homology detection and
local alignment construction based on the compar-
ison of multiple sequence alignments (MSAs). The
method derives numerical profiles from given MSAs,
constructs local profile-profile alignments and ana-
lytically estimates E-values for the detected similar-
ities. Until now, COMPASS was only available for
download and local installation. Here, we present a
new web server featuring the latest version of
COMPASS, which provides (i) increased sensitivity
and selectivity of homology detection; (ii) longer,
more complete alignments; and (iii) faster computa-
tional speed. After submission of the query MSA or
single sequence, the server performs searches
versus a user-specified database. The server
includes detailed and intuitive control of the
search parameters. A flexible output format, struc-
tured similarly to BLAST and PSI-BLAST, provides
an easy way to read and analyze the detected profile
similarities. Brief help sections are available for all
input parameters and output options, along with
detailed documentation. To illustrate the value of
this tool for protein structure-functional prediction,
we present two examples of detecting distant
homologs for uncharacterized protein families.
Available at http://prodata.swmed.edu/compass

INTRODUCTION

Accurate detection of sequence similarity between dis-
tantly related proteins is essential for many fields,
including protein structure prediction, protein engineer-
ing, and comparative genomics. The performance of an
automatic method for sequence comparison can be
characterized by sensitivity, selectivity and accuracy of
produced sequence alignments. All these parameters can
be significantly improved by comparing multiple sequence
alignments (MSAs) rather than individual sequences. The
improvement comes from evolutionary information about

residue preferences at sequence positions in the family
represented by the MSA. This information can be
extracted from MSAs in two numerical forms: ‘tradi-
tional’ position-specific profiles and hidden Markov
models (HMMs). The well-known and popular methods
for profile-sequence or HMM-sequence comparison
include PSI-BLAST (1,2), HMMER (3), SAM-T (4,5)
and others. A newer generation of methods involves the
comparison of two profiles (6–10) or two HMMs (11,12),
with several corresponding web servers available (13–16).
These methods further improve the quality of homology
detection and alignment construction (17,18). There is a
number of publicly available web servers aimed at protein
structure prediction that use these and a variety of other
techniques [for example, (19–23)].
COMPASS (9) is an established method for profile-

based comparison of MSAs. COMPASS derives numer-
ical profiles from given MSAs, constructs optimal local
profile-profile alignments, and analytically estimates
E-values for the detected similarities. As previously
shown by us (9) and independently verified by others
(12,18), COMPASS is a sensitive and selective tool for
detection of remote sequence similarity that offers
accurate local alignments. In many cases, COMPASS
provides accurate homology detection and structure
prediction that would be difficult or impossible to produce
by PSI-BLAST (9,24).
As a standalone package, COMPASS has been used by

different research groups (24–31). Until now, COMPASS
was only available for download and local installation.
Here, we present a new web server featuring the recently
improved version of COMPASS.

METHODS

To compare two MSAs, COMPASS performs four steps:
(i) processing input MSAs and generating numerical
profiles; (ii) calculating scores between individual posi-
tions of the compared profiles; (iii) finding optimal local
alignment of the two profiles; and (iv) assessing statistical
significance of the optimal alignment score (9).
Methodologically, COMPASS is a generalization to

profile-profile comparison of the PSI-BLAST approach to
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profile-sequence comparison. Numerical profiles rep-
resent effective counts and frequencies of 21 symbols
(20 residue types and gaps) at each position of the input
MSAs. To search with a query MSA against a database
of MSAs, the database profiles are pre-computed in
advance. Scores for the similarity between individual
profile positions are calculated using our original
formula (9) and then rescaled so that their distribution is
similar to a standard distribution with well-known
properties (such as BLOSUM62 substitution scores).
Rescaled positional scores are used to find the optimal
local alignment using the Smith–Waterman algorithm.
The statistical significance of the optimal alignment
score is estimated using a simple formula for E-value
(the expected number of hits in a random database with a
score equal to or greater than the observed score). The
parameters of this formula are based on our extensive
simulations of random profile comparisons (9). As the
final result of the search, a list of the most significant hits
for the submitted query is displayed, followed by the
optimal profile-profile alignments.
According to our results (9) and independent evalua-

tions (12,18), COMPASS performance has been demon-
strated to be among the top methods for profile
comparison, by both the quality of homology detection
and the accuracy of local alignment construction. The
presented web server features a newer version of
COMPASS, with several major modifications to improve
performance.

(i) Higher quality of homology detection. Evaluation of
the statistical significance of hits is improved by
using a more realistic null model of random profile
comparison. The original random model involved
the profiles composed of randomly sampled posi-
tions from real MSAs. The score statistics were
modeled depending on the profile lengths only, and
a rough linear approximation of the dependency was
used (9). We developed a new random model that
captures additional important features of real
profiles. First, in order to reproduce local correla-
tions between different positions of MSA, we
generate random profiles from fragments of real
profiles corresponding to individual elements of
secondary structure. Second, to model more accu-
rately the distribution parameters K and � (2,9) for
optimal profile-profile scores, we introduce their
dependence on the profile ‘thickness’ (sequence
divergence within the profiles). Finally, we use
more precise non-linear functions (combinations of
quadratic and square-root) to describe the depen-
dency of these parameters on profile length and
‘thickness’. According to our preliminary results,
the new version of COMPASS shows roughly
20–25% improvement in the quality of similarity
detection.

(ii) Longer, more complete local alignments. Rescaling of
individual positional scores is modified, so
that alignment coverage increases. In the
original version, this procedure was similar to the
composition-based statistic in PSI-BLAST (2),

which standardized positional scores by adjusting
the distribution parameter lambda (describing
mainly the distribution width). In the new version,
in order to make the rescaled distribution closer to
standard, the mean of the distribution is also forced
to a fixed value. As a result, positional scores are
more compatible with the gap penalties that were
empirically optimized for the standard substitution
matrices (e.g. BLOSUM 62). The optimal align-
ments on average become longer and cover similar-
ity regions better without compromising the overall
alignment accuracy.

(iii) Improved speed. Several algorithmic modifications,
as well as a general code optimization, lead to
an order of magnitude improvement in computa-
tional speed over the original version. The resulting
computational efficiency is now comparable to
that of the fastest profile-profile methods (12,15),
with a typical search taking a few minutes on
one processor. This time period may increase when
the server is heavily loaded or when the user
requires generation of the query profile by
PSI-BLAST search, which may take longer for
queries with a large number of homologs in the
sequence database.

(iv) Flexible control of input options. The server’s front
page (Figure 1A) allows the user to upload the
query in several common alignment formats, choose
the database and adjust search parameters and
output options. The query MSA or single sequence
can be either pasted in the input window or
uploaded from a file. The available profile databases
currently include PFAM (32), COG, KOG (33,34)
and PSI-BLAST alignments produced from
sequences with known 3D structure: chain repre-
sentatives of the PDB database (35) and domain
representatives of SCOP classification (36).
The PDB representatives are full chains extracted
from the whole set of available 3D structures (35),
based on a 70% cutoff of sequence identity.
The SCOP representatives are structural domains
defined and classified by expert analysis into
families, superfamilies, folds and classes (36).
These representatives are based on 40% identity
and are taken from the ASTRAL database (37).
The PDB and ASTRAL sequences are used as
queries for PSI-BLAST searches against NCBI nr
database. The resulting MSAs of detected
homologs are used to generate COMPASS profiles.
To allow for the choice of different levels of
sequence divergence within MSAs, the user can
choose profiles corresponding to different numbers
of PSI-BLAST iterations. PFAM (32), COG
and KOG (33,34) databases include families of
both known and unknown 3D structure, which
cover protein sequence space more completely
and provide alternative ways of family classification.
These databases typically represent tighter sequence
grouping, with more consideration of protein
function, and clustering of orthologs from differ-
ent genomes. PFAM profiles are generated by
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COMPASS from full family alignments provided by
PFAM. COG and KOG profiles are generated from
MSAs produced from the database sequences by
MUSCLE (38). The profile databases are regularly
updated when new versions of original databases are
available.

In order to gain more confidence in detected similarities
and to find the best search conditions for a specific query,
tuning the parameters controlling the generation of
profiles and the construction of profile-profile alignments
is advisable. The user can modify several such parameters.
First, the input MSA (or sequence) can be used as a query

Figure 1. (A) Front page of the COMPASS server. The main section allows the user to submit the query (by pasting in the window or
by specifying the file), to choose the search database, and (if needed) to enter the email address to receive the results. The section of
input processing options allows the user to choose whether a PSI-BLAST run is needed to enrich the query profile with additional sequence
homologs and to define the parameters of profile construction. The section of search options can be used to adjust the main parameters of
the search. The section of output options allows for flexible formatting of the search results. A brief explanation of each option is available
by clicking on the option’s name. Additional sections include the links to more detailed documentation and to the FTP page with standalone
COMPASS package. (B) Search results for uncharacterized PFAM DUF185 as a query, supporting the structure and function prediction
for this family. The list of hits among SCOP domains consistently includes members of the same superfamily of S-adenosyl-L-methionine-dependent
methyltransferases (SAM-Mtases) (c.66.1). (C) Example of profile-profile alignment. The header includes brief information about the hit: database
identifier, protein description, full length of the MSA (‘length’), the length of the profile after purging positions with high gap content
(‘filtered length’), effective number of sequences as a characteristic of sequence divergence within MSA (‘Nef f ’), followed by COMPASS score and
E-value. In this example, the top and consensus sequences for compared profiles are displayed. Position matches with positive scores are
marked by ‘þ’, identical residues in the two consensus sequences are marked by the residue symbol. Invariant glutamates of Motifs I and II (39)
involved in ligand binding are marked with red dots, glycine-rich motif is circled. D: A recently solved structure for a member of DUF185 family
(PDB ID 1zkd) confirms our prediction. Side chains of the invariant glutamate residues are shown in red, glycine-rich loop is circled.
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for PSI-BLAST search, in order to produce a more diverse
MSA of this family. The user can adjust the maximal
number of iterations, as well as the requirements for a
detected homolog to be included in the alignment:
maximal E-value, minimal coverage of the query and
minimal sequence identity to the query. Second, ‘Gap
fraction threshold’ allows the user to control the maximal
content of gaps in the MSA columns included in the
COMPASS profile. If a column contains too many gaps,
it is disregarded in the process of profile comparison,
and shown in the final output as lower-case letters for
residues and dots for gaps. The default value of this
parameter is 0.5.
In the construction of profile-profile alignments, ‘Gap

penalties’ are score penalties for opening and extending a
new gap. ‘Effective length of the database’ is the
parameter used in the calculation of E-values for the
profile-profile alignments. For a given optimal alignment
score, there is roughly a linear dependence of E-value on
the assumed database length. ‘Matrix’ is a substitution
matrix of the user’s choice, BLOSUM62 by default. As
described above, the choice of the matrix affects the
rescaling of scores between individual profile positions
that are used in the construction of the profile-profile
alignment. Changing the scale of the positional scores
would (i) make gap insertion more or less likely, affecting
the resulting alignments, and (ii) change the optimal
alignment scores and E-values.
Among the output formatting options, many are similar

to those of PSI-BLAST. ‘Expect’ and ‘significance thresh-
old’ are, respectively, the E-value cutoffs for the hit to be
included in the output and to be considered significant.
The hits outside the significance threshold are shown as
potentially not meaningful. The user can also limit
the total number of hits to display (‘Display up to’).
Some output options are specific to profile-profile
comparison. For example, the displayed profile-profile
alignments can include different numbers of top sequences
from the input MSAs (‘Top sequences to show’), as well as
consensus sequences (‘Show consensus sequences’).
Brief help sections are provided for every adjustable
parameter, as well as a link to more detailed documenta-
tion (Figure 1A).

(v) User-friendly output. The general structure of the
output is similar to that of PSI-BLAST: the list of
top hits is sorted by E-value and split into those
below and above the significance threshold, followed
by optimal profile-profile alignments with brief
information about each hit. However, there are
several significant differences, mainly in the format
of alignments. The user can display the consensus
sequences of profiles, as well as multiple top
sequences from the input MSA. The number of
top sequences displayed can range from zero (to
show consensus only) to all sequences of the MSA.
The complete query MSA is retrieved by clicking on
the consensus link. Another feature for fast and
convenient analysis is links to the original databases,
which provide immediate access to information
available for detected protein families.

Examples of remote similarity detection

As an illustration, we describe the detection of distant
sequence similarities that lead to fold predictions for two
uncharacterized PFAM families annotated as ‘DUF’
(domain of unknown function). First, the COMPASS
server detects homology between DUF185 (corresponding
to COG1565 of the COG database) and SCOP domains of
the S-adenosyl-L-methionine-dependent methyltransferase
(SAM-Mtase) fold. Using the full DUF185 (PFAM 19.0)
alignment as a query, with the default input parameters
(Figure 1A), the server returns a list of hits that
consistently belong to the same SCOP superfamily
(c.66.1), both above and below the E-value cutoff
(Figure 1B). In this list, each line consists of four fields:
the identifier in the original database (implemented as a
link to the database), a brief description of the protein, the
COMPASS score and the corresponding E-value.

The next section of the output includes profile-profile
alignments between the query and the hits. Each align-
ment is accompanied by a header with a brief information
about the hit. Unlike the PSI-BLAST format, the
alignments can include different numbers of top sequences
from input MSAs and/or consensus sequences. Figure 1C
shows an example of such an alignment, with a single top
sequence and consensus displayed for each profile. To
distinguish the gaps introduced by COMPASS from the
gaps that already occur in the input alignments, the
former are shown as equal signs (¼). The alignment in
Figure 1C includes the region of similarity between the
query (profile for DUF185) and a homologous profile
based on the PSI-BLAST alignment for structural domain
1i4wA. In addition to similar patterns of hydrophobicity
and small residues, DUF185 shows a strong conservation
of SAM-Mtase signature motifs [reviewed in (39)]. The
SAM-binding loop GxGxG (circled) and conserved acidic
residue in the preceding b-strand (marked with a red dot)
are parts of Motif I, whereas the invariant glutamate at
the end of the next b-strand (marked with a red dot) is a
part of Motif II (39).

This previously published prediction had been difficult
to produce by PSI-BLAST, even for an expert user (24).
However, it was more recently confirmed by the solved
structure of a DUF185 member. This structure (PDB ID
1zkd, Northeast Structural Genomics Consortium) has
been neither functionally annotated nor classified by
SCOP or CATH, but possesses typical features of the
SAM-Mtase fold (Figure 1D). The core of the domain
contains a mixed b-sheet of seven b-strands surrounded by
two sheets of a-helices. The strand order is 3214576; with
strand 7 (colored red) anti-parallel to the rest and forming
a characteristic methyltransferase b-hairpin with strand
6 (colored orange). In this domain, the b-hairpin
contains an additional a-helical insert (orange helices).
The presence of a glycine-rich loop (circled) and
other signature motifs, including glutamates marked in
Figure 1C (side chains shown in red), suggest that this
domain is a functional methyltransferase.

The second prediction originates from searching with
RrnaAD methylase family as a query. This search reveals
a newly identified similarity to a PFAM family of mainly
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hypothetical bacterial proteins with unknown structure
and function, DUF519 (corresponding to COG2961 in the
COG database). Thus, we suggest that DUF519/
COG2961 proteins also possess the structural SAM-
Mtase fold. This hypothesis is supported by the results
of a search with the PFAM 19.0 DUF519 alignment as a
query against the database of SCOP profiles (PSI-BLAST
iteration 3). Homologs detected above the significance
threshold, as well as multiple hits below the threshold,
consistently belong to the SAM-Mtase fold.

Figure 2A shows the COMPASS alignment between
DUF519 and the detected homolog, a domain of the
SAM-Mtase fold (PDB ID 1qyrA). This domain (not
shown) possesses typical features of the fold and is similar
to the structure shown in Figure 1D. Figure 2A shows the
COMPASS alignment including the signature motifs of
SAM-Mtases. Figure 2B shows the MSA of representa-
tives from both families that covers SAM-Mtase Motifs I
and II (39). In DUF519, this region includes the invariant
glutamate aligned to a ligand-binding glutamate of SAM-
Mtases (E95 in the top sequence, marked with red dot),
the characteristic location of conserved small residues in
the SAM-binding loop (marked with a line) and a similar
hydrophobicity pattern. Secondary structure prediction

for this part of DUF519 is also consistent with the
secondary structure of the SAM-Mtase fold. This predic-
tion is additionally supported by other tools, e.g. by (i)
significant scores for the similarity with the SCOP SAM-
Mtase domains produced by FFAS03 server (14); and (ii)
the results of multiple iterations of PSI-BLAST search in a
sequence database with a family representative as a query.
After four iterations, PSI-BLAST detects the similarity
between a DUF519 sequence Q9PHA1_XYLFA
(gi|15836648, residues 32-291) and two proteins of
known structure possessing the SAM-Mtase fold (PDB
IDs 2ift and 2fpo).

ACKNOWLEDGEMENTS

The authors acknowledge the Texas Advanced Computing
Center (TACC) at The University of Texas at Austin for
providing high-performance computing resources. We
would like to thank Lisa Kinch and James Wrabl for
discussions and critical reading of the manuscript. Funding
to pay the Open Access publication charges for this article
was provided by Howard Hughes Medical Institute.

Conflict of interest statement. None declared.

REFERENCES

1. Altschul,S.F., Madden,T.L., Schaffer,A.A., Zhang,J., Zhang,Z.,
Miller,W. and Lipman,D.J. (1997) Gapped BLAST and PSI-
BLAST: a new generation of protein database search programs.
Nucleic Acids Res., 25, 3389–3402.

2. Schaffer,A.A., Aravind,L., Madden,T.L., Shavirin,S., Spouge,J.L.,
Wolf,Y.I., Koonin,E.V. and Altschul,S.F. (2001) Improving the
accuracy of PSI-BLAST protein database searches with
composition-based statistics and other refinements. Nucleic Acids
Res., 29, 2994–3005.

3. Eddy,S.R. (1998) Profile hidden Markov models. Bioinformatics, 14,
755–763.

4. Karplus,K., Barrett,C., Cline,M., Diekhans,M., Grate,L. and
Hughey,R. (1999) Predicting protein structure using only sequence
information. Proteins, 37, (Suppl. 3), 121–125.

5. Karplus,K., Karchin,R., Draper,J., Casper,J.,
Mandel-Gutfreund,Y., Diekhans,M. and Hughey,R. (2003)
Combining local-structure, fold-recognition, and new fold methods
for protein structure prediction. Proteins, 53(Suppl. 6), 491–496.

6. Pietrokovski,S. (1996) Searching databases of conserved sequence
regions by aligning protein multiple-alignments. Nucleic Acids Res.,
24, 3836–3845.

7. Rychlewski,L., Jaroszewski,L., Li,W. and Godzik,A. (2000)
Comparison of sequence profiles. Strategies for structural predic-
tions using sequence information. Protein Sci., 9, 232–241.

8. Yona,G. and Levitt,M. (2002) Within the twilight zone: a sensitive
profile-profile comparison tool based on information theory.
J. Mol. Biol., 315, 1257–1275.

9. Sadreyev,R.I. and Grishin,N.V. (2003) COMPASS: a tool for
comparison of multiple protein alignments with assessment of
statistical significance. J. Mol. Biol., 326, 317–336.

10. Ginalski,K., von Grotthuss,M., Grishin,N.V. and Rychlewski,L.
(2004) Detecting distant homology with Meta-BASIC.
Nucleic Acids Res., 32, W576–581.

11. Edgar,R.C. and Sjolander,K. (2004) COACH: profile-profile align-
ment of protein families using hidden Markov models.
Bioinformatics, 20, 1309–1318.

12. Soding,J. (2005) Protein homology detection by HMM-HMM
comparison. Bioinformatics, 21, 951–960.

13. Frenkel-Morgenstern,M., Singer,A., Bronfeld,H. and
Pietrokovski,S. (2005) One-Block CYRCA: an automated proce-
dure for identifying multiple-block alignments from single block
queries. Nucleic Acids Res., 33, W281–W283.

Figure 2. Search results for PFAM DUF519 suggest that this family
possesses the structural fold of SAM-Mtases. (A) DUF519 is used as a
query for the COMPASS search against the databases of PSI-BLAST
alignments (iteration 3) for SCOP representatives. The COMPASS
alignment between the query and the detected homolog (domain
1qyrA) includes characteristic motifs of the SAM-Mtase superfamily. In
this example, only consensus sequences are displayed. Positions
corresponding to the conserved acidic residues of Motifs I and II
(39) are marked with red dots. The region of the SAM-binding loop is
circled. (B) Multiple alignment including representatives from DUF519
(top) and 1qyrA homologs (bottom). Sequences are denoted by NCBI
GI numbers. Positions corresponding to conserved acidic residues of
SAM-Mtase are marked with red dots. The region of the ligand-
binding loop is marked with a line. Invariant residues are boxed in
black. Uncharged residues (all amino acids except D, E, K, R) in
mostly hydrophobic sites are highlighted in yellow; non-hydrophobic
residues (all amino acids except W, F, Y, M, L, I, V) at mostly
hydrophilic sites are highlighted in light gray. The secondary structure
of 1qyrA is shown below the alignment, with a-helices and b-strands
displayed as cylinders and arrows, respectively.

Nucleic Acids Research, 2007, Vol. 35,Web Server issue W657



14. Jaroszewski,L., Rychlewski,L., Li,Z., Li,W. and Godzik,A. (2005)
FFAS03: a server for profile–profile sequence alignments.
Nucleic Acids Res., 33, W284–W288.

15. Soding,J., Biegert,A. and Lupas,A.N. (2005) The HHpred inter-
active server for protein homology detection and structure predic-
tion. Nucleic Acids Res., 33, W244–W248.

16. Soding,J., Remmert,M., Biegert,A. and Lupas,A.N. (2006)
HHsenser: exhaustive transitive profile search using HMM-HMM
comparison. Nucleic Acids Res., 34, W374–W378.

17. Ohlson,T., Wallner,B. and Elofsson,A. (2004) Profile-profile meth-
ods provide improved fold-recognition: a study of different profile-
profile alignment methods. Proteins, 57, 188–197.

18. Wang,G. and Dunbrack,R.L.Jr. (2004) Scoring profile-to-profile
sequence alignments. Protein Sci., 13, 1612–1626.

19. Chivian,D., Kim,D.E., Malmstrom,L., Schonbrun,J., Rohl,C.A.
and Baker,D. (2005) Prediction of CASP6 structures using
automated Robetta protocols. Proteins, 61(Suppl. 7), 157–166.

20. Ginalski,K., Elofsson,A., Fischer,D. and Rychlewski,L. (2003)
3D-Jury: a simple approach to improve protein structure predic-
tions. Bioinformatics, 19, 1015–1018.

21. Kelley,L.A., MacCallum,R.M. and Sternberg,M.J. (2000) Enhanced
genome annotation using structural profiles in the program 3D-
PSSM. J. Mol. Biol., 299, 499–520.

22. Shi,J., Blundell,T.L. and Mizuguchi,K. (2001) FUGUE: sequence-
structure homology recognition using environment-specific substi-
tution tables and structure-dependent gap penalties. J. Mol. Biol.,
310, 243–257.

23. Zhou,H. and Zhou,Y. (2005) SPARKS 2 and SP3 servers in
CASP6. Proteins, 61(Suppl. 7), 152–156.

24. Sadreyev,R.I., Baker,D. and Grishin,N.V. (2003) Profile-profile
comparisons by COMPASS predict intricate homologies between
protein families. Protein Sci., 12, 2262–2272.

25. Birtle,Z. and Ponting,C.P. (2006) Meisetz and the birth of the
KRAB motif. Bioinformatics, 22, 2841–2845.

26. Kim,B.H., Sadreyev,R. and Grishin,N.V. (2005) COG4849 is a
novel family of nucleotidyltransferases. J. Mol. Recognit., 18,
422–425.

27. Theobald,D.L., Cervantes,R.B., Lundblad,V. and Wuttke,D.S.
(2003) Homology among telomeric end-protection proteins.
Structure, 11, 1049–1050.

28. Theobald,D.L. and Wuttke,D.S. (2004) Prediction of multiple
tandem OB-fold domains in telomere end-binding proteins Pot1 and
Cdc13. Structure, 12, 1877–1879.

29. Theobald,D.L. and Wuttke,D.S. (2005) Divergent evolution within
protein superfolds inferred from profile-based phylogenetics.
J. Mol. Biol., 354, 722–737.

30. Wels,M., Francke,C., Kerkhoven,R., Kleerebezem,M. and
Siezen,R.J. (2006) Predicting cis-acting elements of Lactobacillus
plantarum by comparative genomics with different taxonomic
subgroups. Nucleic Acids Res., 34, 1947–1958.

31. Winter,E.E. and Ponting,C.P. (2005) Mammalian BEX, WEX and
GASP genes: coding and non-coding chimaerism sustained by gene
conversion events. BMC Evol. Biol., 5, 54.

32. Finn,R.D., Mistry,J., Schuster-Bockler,B., Griffiths-Jones,S.,
Hollich,V., Lassmann,T., Moxon,S., Marshall,M., Khanna,A. et al.
(2006) Pfam: clans, web tools and services. Nucleic Acids Res., 34,
D247–D251.

33. Tatusov,R.L., Koonin,E.V. and Lipman,D.J. (1997) A genomic
perspective on protein families. Science, 278, 631–637.

34. Tatusov,R.L., Natale,D.A., Garkavtsev,I.V., Tatusova,T.A.,
Shankavaram,U.T., Rao,B.S., Kiryutin,B., Galperin,M.Y.,
Fedorova,N.D. et al. (2001) The COG database: new developments
in phylogenetic classification of proteins from complete genomes.
Nucleic Acids Res., 29, 22–28.

35. Berman,H.M., Westbrook,J., Feng,Z., Gilliland,G., Bhat,T.N.,
Weissig,H., Shindyalov,I.N. and Bourne,P.E. (2000) The Protein
Data Bank. Nucleic Acids Res., 28, 235–242.

36. Andreeva,A., Howorth,D., Brenner,S.E., Hubbard,T.J., Chothia,C.
and Murzin,A.G. (2004) SCOP database in 2004: refinements
integrate structure and sequence family data. Nucleic Acids Res., 32,
D226–D229.

37. Chandonia,J.M., Hon,G., Walker,N.S., Lo Conte,L., Koehl,P.,
Levitt,M. and Brenner,S.E. (2004) The ASTRAL Compendium in
2004. Nucleic Acids Res., 32, D189–D192.

38. Edgar,R.C. (2004) MUSCLE: a multiple sequence alignment
method with reduced time and space complexity.
BMC Bioinformatics, 5, 113.

39. Schubert,H.L., Blumenthal,R.M. and Cheng,X. (2003) Many paths
to methyltransfer: a chronicle of convergence. Trends Biochem. Sci.,
28, 329–335.

W658 Nucleic Acids Research, 2007, Vol. 35,Web Server issue


