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Abstract: Surfactant flooding is an enhanced oil recovery method that recovers residual and capillary
trapped oil by improving pore-scale displacement efficiency. Low retention of injected chemicals
is desired to ensure an economic and cost-effective recovery process. This paper examines the
adsorption behavior of a novel gemini cationic surfactant on carbonate cores. The rock cores were
characterized using an X-ray diffraction (XRD) spectroscope. In addition, the influence of critical
parameters on the dynamic adsorption of the cationic gemini surfactant was studied by injecting
the surfactant solution through carbonate cores in a core flooding apparatus until an equilibrium
state was achieved. The concentration of surfactant was observed using high performance liquid
chromatography. Experimental results showed that an increasing surfactant concentration causes
higher retention of the surfactant. Moreover, increasing the flow rate to 0.2 mL/min results in
lowering the surfactant retention percentage to 17%. At typical high salinity and high temperature
conditions, the cationic gemini surfactant demonstrated low retention (0.42 mg/g-rock) on an Indiana
limestone core. This study extends the frontier of knowledge in gemini surfactant applications for
enhanced oil recovery.

Keywords: adsorption; surfactant; carbonate; gemini; enhanced oil recovery

1. Introduction

Despite recent development in alternative sources of energy, crude oil is still a major
energy source [1]. About one third of the OOIP (original oil in place) can be obtained using
primary and secondary oil recovery techniques [2]. To meet the ever-increasing energy
demand, companies prefer to extract more oil from the existing oil wells than to invest
a high capital outlay on the exploration and production of new wells [3]. To extract the
remaining hydrocarbon, a tertiary recovery technique, i.e., enhanced oil recovery (EOR)
technique, is applied. Among various EOR methods (thermal, microbial, gas injection),
chemical EOR is attractive for specific reservoirs [4].

Surfactant flooding, a chemical EOR method, is used to recover oil from reservoirs
through minimizing the interfacial tension and altering the wettability of the porous
media [5]. However, the selection of surfactants for chemical EOR plays a crucial role in
its efficiency [6]. The adsorption of surfactants in porous media is one of the challenges in
surfactant flooding [7,8]. This phenomenon occurs when the surfactant molecules gather at
the liquid–solid interface due to rock–fluid interactions [9]. Oil reservoirs can be classified
as carbonate or sandstone. The carbonate reservoirs are mainly calcite (alternate layers
of Ca2+ and CO3

2–) and/or dolomite (alternate layers of Ca2+, Mg2+, and CO3
2–). The

carbonate rocks are considered as positively charged. Therefore, cationic surfactants are
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preferred to minimize the adsorption due to the charge repulsion [10]. On the contrary,
sandstone reservoirs are considered as negatively charged due to a large amount of quartz
(SiO2, silica). Anionic surfactants are preferred in sandstone reservoirs to reduce the
adsorption, once again, because of the static repulsion [11].

Several mechanisms are involved in surfactant adsorption, including electrostatic
attraction, van der Waals interaction, hydrogen/covalent bonding, polarization, etc. [12,13].
High adsorption of surfactant implies a loss of injected chemicals and lowers the con-
centration of the surfactant in chemical slugs. The fundamental job of the surfactant is
to lower the interfacial tension (IFT) up to 10–3 mN/m and/or to alter the wettability of
the rock towards water-wetting conditions [14]. However, in the case of adsorption, the
surfactants not only lose their ability to minimize IFT and change the wettability of the rock,
but also reduce the feasibility of the project economically. The use of several surfactants
has been evaluated for the field application of oil recovery [14,15]. This includes nonionic,
cationic, anionic, and zwitterionic surfactants. More recently, the use of natural, viscoelastic,
polymeric, and gemini surfactants has received prodigious attention [16–22].

Gemini surfactants have received a lot of attention lately due to their excellent prop-
erties, such as high salt tolerance, strong mono and divalent ions resistance, low sur-
face/interface values, and high heat stability [23]. Gemini surfactants with two lipophilic
tails and two lipophobic heads show lower adsorption densities compared to the conven-
tional surfactants containing one tail and one head group [24]. Páhi and co-workers [25]
prepared a range of gemini surfactants and compared the adsorption behavior with the con-
ventional monomeric counterpart on sandstone. It was observed that the gemini surfactant
exhibited the lowest equilibrium adsorption density value as compared to the conven-
tional surfactants. Chen et al. [26] studied the role of high salinity conditions on gemini
surfactants and found the lowest adsorption density values in the presence of salts. Zhao
et al. synthesized cationic gemini surfactants containing different hydrophobic tail lengths
and studied the role of the hydrophobic tail on adsorption capacities and adsorption mor-
phologies [27]. It was found that the gemini cationic surfactant can prevent the acid–rock
reaction by creating a monolayer on the rock surface. Besides, the adsorption morphology
can be controlled by varying the surfactant concentration. Yang and co-workers studied the
role of saturated and unsaturated hydrophobic tails and spacer groups of gemini cationic
surfactants in terms of adsorption and aggregation behavior [28]. They concluded that
the surfactant with an unsaturated hydrophobic tail exhibits better surface activity, and
that the adsorption phenomenon can be controlled through a mixed diffusion–kinetic
adsorption mechanism.

Cationic surfactants are found in many household and cleaning products which
end up in the aquatic environment. The insertion of a cleavable bond in the spacer of
gemini surfactants is important from a biodegradation point of view. Gemini cationic
surfactants having an amide group exhibit low toxicity, good biodegradability, and are
environmentally benign. The amide group in the chemical structure of surfactants is
considered a biodegradable connection suitable for the formation of eco-friendly gemini
cationic surfactants [29]. Similarly, a readily cleavable ester bond in the spacer group of
gemini surfactants is advantageous to form environmentally friendly surfactants [30].

Previous studies on the adsorption behavior of gemini surfactants were either evalu-
ated on sandstone rocks or by using a static adsorption process. Moreover, the influence
of critical parameters on the adsorption behavior of gemini surfactants in carbonates re-
mains obscure in the literature. Herein, the adsorption properties of a novel synthesized
gemini cationic surfactant on carbonate rock were studied. Firstly, the dynamic adsorption
properties of the surfactant on carbonate cores were examined using a high-pressure high-
temperature (HPHT) core flooding apparatus. The surfactant concentration before and
after the core flooding process was monitored using high pressure liquid chromatography
(HPLC) to determine the surfactant retention. Finally, the effect of critical parameters, such
as varying conditions of temperature and salinity, flow rate, and surfactant concentration,
on the adsorption property of the cationic gemini surfactant were determined.
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2. Materials and Methods
2.1. Surfactant

The following materials were purchased from Sigma Aldrich: aluminium oxide
(Al2O3), 1,12-dibromododecane (99%), NaF (99%), 3-dimethylamino-1-propylamine (99%),
glycolic acid ethoxylate lauryl ether (average mn ∼ 690). NaCl, CaCl2, Na2SO4, MgCl2, and
NaHCO3, were all used for formulating the brine compositions and obtained from Panreac.
Indiana limestone carbonate core samples were used.

2.2. Rock Samples

The study utilized Indiana limestone (depicted ILLZ) cores, which were cleaned with
methanol and toluene in a Soxhlet extractor and thereafter dried out using an oven at
60 ◦C. After drying, the porosity and permeability of the cores were determined using an
automated porosimeter and Permeameter 608 from Coretest Inc. The limestone core sample
was characterized using X-ray diffraction (XRD) spectroscope from Pananalytical, Malvern,
United Kingdom. Subsequently, the cores were saturated with either the formation water
or with deionized (DI) water based on the experiment.

2.3. Brine Preparation

There were two kinds of experiments performed in this study. Firstly, formation water
was used to saturate the core, and seawater was used for primary flooding. The salinity
of the formation water and seawater was 241,688 ppm and 67,779 ppm, respectively. In
addition, de-ionized water was used both for saturation and primary flooding.

2.4. Preparation of the Cationic Gemini Surfactant

Figure 1 depicts the procedure for the synthesis of the cationic Gemini surfactant
with ethylene oxide (EO) units. Using a 250 mL round bottom flask, 8.89 g of 86.96 mmol
3-dimethylamino-1-propylamine (4) were reacted with 30 g of 43.48 mmol glycolic acid
ethoxylate lauryl ether (5) in the presence of sodium fluoride. The resultant mixture was
stirred for up to six hours under argon at 160 ◦C. Subsequently, the aqueous phase in
the mixture was captured by Al2O3 (alumina). Thereafter, the mixture was reacted with
an additional 6.66 g of 65.22 mmol 3-dimethylamino-1-propylamine (4) and left for an
additional four hours. The unreacted mixture was left to evaporate, and the remaining
residue was purified using the filtration method to achieve the intermediate (3). Finally,
10.0 g of 12.97 mmol of the derived intermediate was reacted with 1.84 g of 5.62 mmol
1,12-dibromododecane (2) for 48 h in 5 mL of ethanol. The Gemini surfactant was ob-
tained by subjecting the reaction mixture to flash column chromatography followed by
vacuum drying.

2.5. Adsorption Study

The dynamic adsorption behavior of the surfactant in question was conducted in the
HPHT DAS-100 Data Acquisition System from CoreLab (see Figure 2). The utilized fluid
properties are given in Table 1. The equipment consists of an oven, three accumulators, a
core holder, injection pump, confining pressure system, transducers, injection pump, back
pressure regulator, fraction collector, and a digital data recording system. Various automatic
and manual valves were mounted in the system to control the flow of fluids. Saturated
cores were loaded into the core holder and confining pressure of 4500 psi was gradually
applied. The backpressure regulator was set up at 3200 psi and the saturating fluid was
injected at 1 mL/min until the pore pressure reached the back pressure, which usually took
a few pore volumes (PV) of injection. For experiments at high temperatures, the system
was heated and stabilized at 102 ◦C. Otherwise, the primary flood directly proceeded.
After primary flooding, surfactant injection was started at a pre-decided rate (0.05, 0.1, or
0.02 mL/min) and about 10–15 pore volumes were injected. The effluent from the core was
collected using an automatic fraction collector. The volume per vial was kept at 2 mL in the
initial experiments but was changed to 4 mL in later experiments. The primary idea was to
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reach an equilibrium value such that the surfactant concentration of the effluent becomes
equal to the concentration of the fresh surfactant solution. The differential pressure across
the core was recorded in this phase so that the permeability to the surfactant solution could
be determined. While maintaining the same flow rate as that of surfactant flood, either
seawater or de-ionized water (depending upon the type of the experiment) was re-injected
in the core to displace the surfactant solution. The effluent was collected and measured at
the fraction collector. About 10 pore volumes were injected to ensure that the surfactant
concentration of the effluent dropped to zero. After this, the flow rate was varied a few
times to obtain the final permeability of the core at three different rates, after which the
experiments were terminated. The pore pressure and confining pressures were released,
and the oven turned off. The core plugs were unloaded, and the lines were flushed with
formation water or de-ionized water.
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Table 1. Properties of the fluids used.

Fluids
Concentration Temperature, 25 ◦C Temperature, 100 ◦C

ppm Density
(g/mL)

Viscosity
(cP)

Density
(g/mL)

Viscosity
(cP)

Formation
Water - 1.1462 1.4500 1.1083 0.4760

Seawater - 1.0385 1.3800 1.0152 0.3270
DI Water - 0.9968 0.89 0.9565 0.308

Surfactant
500 0.9959 0.8729 0.8724 0.2199
1000 0.9961 0.8868 0.8949 0.2337
2000 0.9964 0.8979 0.9545 0.2625
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Figure 2. Schematic diagram of the Core flooding apparatus.

2.6. Determination of the Magnitude of Dynamic Adsorption and Desorption

The surfactant concentration in the effluent, Cs, was determined from the HPLC data
by the following procedure. Chromatographic separations were carried out on an Acclaim™
Surfactant Plus HPLC Column from Thermo Scientific™ (150 mm × 4.6 mm, 3.0 µm
porosity, Lot No. 01834010) with the applied volume of 1.0 µL, 1.0 mL/min rate of flow,
and column temperature of 30 ◦C. The mobile phase was composed of 0.1 M ammonium
formate (NH4HCO2) at pH 4.3 and acetonitrile. Samples were analyzed by employing
the following gradient program: 100% ammonium formate with a linear gradient to 100%
acetonitrile up to 10 min, before a linear gradient up to 100% ammonium formate over
1 min with 2.0 mL/min rate of flow. A high-performance liquid chromatography (HPLC)
system from Agilent (1290 Infinity II) connected to an evaporative light scattering detector
(ELSD, 1260 Infinity II) was employed. Data evaluation was performed using the OpenLAB
CDS ChemStation Edition (Version 2.17.29) software package. The ELSD peak areas were
plotted against known concentrations that produced the expected non-linear (ELSD is a
non-linear detector) calibration curve, which was used to obtain the effluent concentrations
from the adsorption experiments. The surfactant concentration obtained was then used to
calculate the adsorption and desorption values according to Equation (1).

q =
Ci − C f

1000m
× Vs (1)

where q is the surfactant retention on rock surface (mg/g-rock), Vs is the total volume of
original bulk solution (mL), Ci is the initial concentration of surfactant (mg/L), C f is the
final concentration of surfactant (mg/L), and m is the mass of the core (g).
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3. Results and Discussion
3.1. XRD Characterization of the Rock

Table 2 presents the XRD results of the Indiana limestone used in this study. The
limestone has a high degree of calcite, thus demonstrating its carbonate core properties.
Table 3 presents the reservoir rock properties of the cores. The cores have relatively low
permeabilities, which are characteristic of carbonate cores [31].

Table 2. XRD result of core sample.

Mineral %

Calcite 98.5
Quartz 0.2

Dolomite 0.3
Illite 0.3

Kaolinite 0.1
Alunite 0.5

Anorthite 0
Halite 0.1

Table 3. Rock properties.

Sample ID
(ft)

Dry Weight
(gm)

Average
Length (cm)

Average
Diameter (cm) Porosity (%) Permeability

(mD)

ILLZ-1 183.97 7.586 3.77 19.37 20.38

ILLZ-4 192.92 7.608 3.78 15.19 17.7

ILLZ-5 192.95 7.617 3.78 15.05 13.4

ILLZ-7 192.95 7.614 3.78 15.24 18.12

ILLZ-8 193.42 7.613 3.78 15.02 22.47

IL-19-1 190.67 7.692 3.78 17.04 35

3.2. Adsorption Equilibrium Studies

Indiana limestone core (ILLZ-7) saturated with deionized water was used. A surfactant
with a concentration of 2000 ppm was injected into the core at room temperature. The flow
rate used for this experiment was 0.1 mL/min. The HPLC analysis (Figure 3) showed a
maximum reading of about ~2034 ppm, which corresponds to all the surfactant flowing
out of the core at the end of surfactant injection. It was also inferred that after introducing
11 PV deionized water, the core retained 22% of the adsorbed surfactant on the walls of
the pores while the surfactant retention density was 0.63 mg/g-rock (see Figures 4 and 5).
The surfactant retention may be attributed to the polyoxyethylene chain present in the
surfactant. A strong electrostatic interaction presumably occurs between the oxygen in
polyethylene oxide of the surfactant and the Ca2+ ions of the core surface, which causes
packing of the surfactant at the rock–liquid interface, and thus its adsorption [32]. Moreover,
the larger surface area that the gemini surfactants occupy on the core surface due to the
long length of their hydrophobic chains may have contributed to the adsorption of the
surfactant at the solid–liquid interface [33].

3.2.1. Effect of Surfactant Concentration on Dynamic Adsorption

The impact of varying the concentration of the injected surfactant on the adsorption
properties of Gemini cationic surfactant was studied and the results are shown in Figure 6.
The surfactant concentration was changed from 2000 ppm on ILLZ-7 cores to 1000 ppm in
the experiment on core ILLZ-5. For 1000 ppm surfactant concentration, the retention density
of the surfactant is approximately 0.45 mg/g-rock. This implies that a lower concentration
of injected surfactant yields lower retention density. The high retention density recorded
at high surfactant concentration may have resulted from lateral interactions between the
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surfactant molecules, which cause the formation of aggregate at the surface of the reservoir
core [14,34,35].
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3.2.2. Effect of High Temperature and High Salinity on Surfactant Behavior

The surfactant behavior at typical high temperature and high salinity (HTHS) reservoir
conditions was investigated. To mimic the reservoir condition, the core was saturated with
formation water and the temperature was kept at 102 ◦C. The maximum concentration
detected on HPLC was ~2167 ppm, from which it is inferred that all the surfactant was
flowing out towards the end of the surfactant injection phase. Figures 7 and 8 depict
the retention density profile and retention percentage of the gemini cationic surfactant,
respectively. As compared to a similar experiment with deionized water as the saturating
fluid, it was found that the retention density, as well as the retention percentage of the
surfactant, decreased with increased temperature and salinity. This further confirms that
the surfactant was stable at HTHS conditions. Moreover, the lower retention density of the
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surfactant at HTHS conditions may be adduced to the encapsulation of the cations by the
long ether chain of the surfactant, hence inhibiting the retention at the rock surface [36].
Additionally, the increase in salinity causes the positive charge on the carbonate surface
to increase, which causes repulsion between the limestone and the positively charged
cationic gemini surfactant. The pressure drop profile of the surfactant retention behavior
on Indiana limestone at typical reservoir conditions is depicted in Figure 9. The differential
pressure during post-water injection was slightly higher than the differential pressure
during surfactant flooding. This confirms the retention of surfactants on the surface of the
rock pores. Moreover, the post-injection deionized water may have caused the mineral
dissolution of the carbonate core [37].
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3.2.3. Effect of Flow Rate

In another experiment on ILLZ-1, the rate of flow was enhanced from 0.1 mL/min to
0.2 mL/min while the other parameters remained the same as that of ILLZ-7. A maximum
of ~1929 ppm of surfactant was detected on HPLC while the retention was slightly reduced
to 17% owing to the high rate of flow. To further determine the impact of the rate of flow
on this phenomenon, the rate of flow was reduced to 0.05 mL/min in the experiment on
core ILLZ-4 while the concentration remained at 2000 ppm and the temperature at room
conditions. It was found that the retention percentage increased to 38.5%, as shown in
Figure 10. The low retention of the surfactant at a high flow rate can be attributed to the
lower contact time between the surfactant molecules and the Indiana limestone core surface.
At a low rate of flow, the time of contact between the hydrophobic moieties of the surfactant
and the interstices of the rock surface is high. Hence, the inter-particle repulsive force
between the cationic gemini surfactant and the limestone core surface is decreased, and
consequently, the retention is high [38–40].
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4. Conclusions

This study investigates the dynamic adsorption properties of novel synthesized
cationic gemini surfactants on Indiana limestone cores. Experimental results demonstrate
that increasing the surfactant concentration results in a higher retention of the surfactant on
limestone. Contrariwise, increasing the flow rate has an inverse effect on the retention of
the surfactant, which means that a higher percentage of the injected surfactant is retained
at lower flow rates. At typical reservoir conditions (formation water salinity = 241,688 ppm,
seawater salinity = 67,779 ppm, and temperature = 102 ◦C), the cationic gemini surfactant
exhibited moderate retention behavior (0.42 mg/g-rock) in limestone cores, which is con-
sidered a favorable property for EOR processes. The differential pressure profile confirms
the retention of surfactant as the differential pressure after surfactant flooding was higher
than the differential pressure during the surfactant flooding process. Overall, the retention
density of the surfactant is less than 1 mg/g-rock, and hence deemed suitable for EOR.
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analysis, A.G. and S.M.S.H.; investigation, S.K., X.Z. and K.N.; data curation, K.N., S.K., M.S.K.
and X.Z.; writing—original draft preparation, A.G. and S.K.; writing—review and editing, S.P. and
S.M.S.H.; supervision, S.P. and S.M.S.H.; project administration, M.S.K. All authors have read and
agreed to the published version of the manuscript.

Funding: The authors would like to acknowledge the support provided by the Deanship of Research
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funding this work through the project No. POC20102.
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