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Abstract: A major parameter controlling the extent and rate of oral drug absorption is permeability
through the lipid bilayer of intestinal epithelial cells. Here, a biomimetic artificial membrane
permeability assay (Franz–PAMPA Pampa) was validated using a Franz cells apparatus. Both high
and low permeability drugs (metoprolol and mannitol, respectively) were used as external standards.
Biomimetic properties of Franz–PAMPA were also characterized by electron paramagnetic resonance
spectroscopy (EPR). Moreover, the permeation profile for eight Biopharmaceutic Classification System
(BCS) model drugs cited in the FDA guidance and another six drugs (acyclovir, cimetidine, diclofenac,
ibuprofen, piroxicam, and trimethoprim) were measured across Franz–PAMPA. Apparent permeability
(Papp) Franz–PAMPA values were correlated with fraction of dose absorbed in humans (Fa%) from
the literature. Papp in Caco-2 cells and Corti artificial membrane were likewise compared to Fa% to
assess Franz–PAMPA performance. Mannitol and metoprolol Papp values across Franz–PAMPA were
lower (3.20 × 10−7 and 1.61 × 10−5 cm/s, respectively) than those obtained across non-impregnated
membrane (2.27 × 10−5 and 2.55 × 10−5 cm/s, respectively), confirming lipidic barrier resistivity.
Performance of the Franz cell permeation apparatus using an artificial membrane showed acceptable
log-linear correlation (R2 = 0.664) with Fa%, as seen for Papp in Caco-2 cells (R2 = 0.805). Data
support the validation of the Franz–PAMPA method for use during the drug discovery process.

Keywords: Franz–PAMPA; BCS drugs; biomimetic membrane; Franz cell; passive drug transport

1. Introduction

Favorable absorption, distribution, metabolism, and excretion (ADME) of orally administrated
drugs are essential for therapeutic activity in vivo. Poor oral bioavailability contributes to a very
high failure rate during pre-clinical drug development [1,2]. In this regard, the Biopharmaceutic
Classification System (BCS) proposed by Amidon and co-workers [3] have been widely used as an
important tool to support early drug development [4–6]. For orally administered drugs, gastrointestinal
physiology is a key factor impacting on the rate and extent of drug absorption [7]. Transcellular passive
diffusion across membranes is the major route and is governed by several molecular properties such as
partition and distribution coefficient, as well as molecular weight [8,9].

Currently, important tools based on physicochemical properties and in vitro assays are used to
predict in vivo gastrointestinal absorption [10]. In vitro methodologies include animal [11,12] or human
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tissues [13], cultured cells [14,15] and artificial membranes [16–18]. The Caco-2 cell monolayers in vitro
model is thoroughly studied and generally mimics major transport pathways in the gastrointestinal
tract [19]. However, this method is limited by long cell growth and differentiation cycles, risks of
microbial contamination, and high implementation costs [19–21].

Cell-free permeation systems using artificial membranes are gaining progressively more interest as an
alternative model to cell-based systems that can be simpler, less time consuming, and cost-effective [22,23].
Depending on the composition of the barrier, it can be classified as biomimetic barrier which is constructed
from (phospho)lipids or, alternatively, from non-biomimetic barrier containing dialysis membrane [24].

Particularly, there is a growing interest in PAMPA studies with direct comparisons to Caco-2
cells using a consistent number of drugs displaying equally well prediction of in vivo data between
them [25]. In this regard, major differences of key components amid cell-free membranes currently
used in permeability systems was highlighted by Berben et al. (2018) [23].

Here, a previously validated biomimetic artificial permeability membrane comprising of a
microfilter impregnated by a phospholipid solution [5] was mounted on horizontal Franz-cells
diffusion chambers (Microette™, Hanson Research) [20]. This new setup approach, herein called
Franz–PAMPA (Figure 1), was challenged to assess permeability of BCS model drugs simulating
gastrointestinal permeation. Therefore, the aim of this study was to validate this Franz–PAMPA system
by evaluating the correlation power between apparent permeability (Papp) for BCS model drugs to
their fraction of drug absorbed (Fa%) in humans for rapid and reliable information about passively
transported drugs [25,26].
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Figure 1. Franz cells apparatus (Microette™, Hanson Research) mounted with a previously validated
PAMPA membrane from Corti et al. [5,16] for simulating gastrointestinal permeation. (A) System control
for injection pistons of upper chambers; (B) upper and lower diffusion chambers with temperature and
stirring control; (C) automated module for sampling and collection.

2. Materials and Methods

2.1. Materials

Membrane supports were purchased from Millipore® (Mixed Cellulose Esters VCWP 047000;
0.1 µm × 47 mm, white plain, New York, NY, USA). All 19 compounds for permeation studies (acyclovir,
amoxicillin, atenolol, caffeine, cimetidine, diclofenac, furosemide, hydrochlorothiazide, ibuprofen,
mannitol, metoprolol, naproxen, piroxicam, propranolol, ranitidine hydrochloride, trimethoprim,
and verapamil hydrochloride) were of analytical grade and kindly supplied by ICF (Pharmaceutical
Sciences Institute, Goiânia, Brazil). All organic solvents were of HPLC grade and solid reagents were
of analytical grade.

The spin labels 5-doxyl stearic acid (5-DSA) and 16-doxyl stearic acid (16-DSA) used for
electron paramagnetic resonance (EPR) spectroscopy were purchased from Sigma-Aldrich Chem Co.
(St. Louis, MO, USA). The spin labels 1-palmitoyl-2-stearoyl-(5-doxyl)-sn-glycero-3-phosphocholine



Pharmaceutics 2020, 12, 988 3 of 14

(5-PC) and 1,2-dipalmitoleoyl-sn-glycero-3-phosphocholin (16-PC) were purchased from Avanti (Avanti
Polar Lipids, Inc., Alabaster, AL, USA).

2.2. Methods

2.2.1. Impregnation of Membrane Support

Membranes were impregnated by immersion for 60 min (22 ± 1 ◦C) with a lipid solution (mixture
of phospholipids), as previously reported [5]. Briefly, the lipid phase solution for impregnation
was a mixture of 1.7% phospholipids (Lipoid® E 80, Ludwigshafen, Germany), 2.1% cholesterol
(Sigma–Aldrich Chemical Co., Milan, Italy), and 96.2% n-octanol (Synth, Diadema, Brazil). Excess
lipid was absorbed with cellulose filter paper over 30 min. Next, all impregnated membranes (N = 20)
were weighed on a microanalytical scale (Mettler Toledo, mod. XPE56DR, Columbus, OH, USA) and
evaluated to check for its accuracy (211.2 mg ± 6.0%). Prior to use, impregnated membranes were
protected from moisture atmosphere and refrigerated (−8 ◦C, 24 h). It is worth mentioning that all
membranes were stabilized prior to use. Stabilization was confirmed by EPR spectra which did not
show any signals of physicochemical degradation: none of membranes showed any difference on
14N-hyperfine coupling constant value (14.8 G) demonstrating its stability [25]. EPR signals were
compared just after 24 h of refrigeration and post-run permeability studies as well as after a month of
refrigerated storage time (data not shown).

2.2.2. Electronic Paramagnetic Resonance (EPR)

The biomimetic membranes were impregnated, as described above. Spin labeling technique
was employed to examine the conformational structure of the membrane using 5-DSA or 16-DSA.
EPR was performed using a Bruker ESP 300 spectrometer (Bruker, Rheinstetten, Germany) equipped
with an ER 4102 ST resonator. The instrument settings were microwave power of 2 mW; modulation
frequency of 100 KHz; modulation amplitude of 1.0 G; magnetic field scan of 100 G; sweep time of
168 s; and a detector time constant of 41 ms. EPR spectral simulations were performed using the
nonlinear-least-squares (NLLS) program for an isotropic model. The biomimetic membrane was
introduced into flat, quartz EPR cell to perform the EPR measurements at room temperature (~25◦C).

2.2.3. Permeation Studies

Permeation studies were performed using a Franz vertical diffusion cell (MicroettePlus, Hanson
Research, CA, USA). Impregnated artificial membranes (Franz–PAMPA) were positioned between
upper and lower part of diffusion cells and, the donor (1 mL) and receptor (7 mL) compartments
holding phosphate-buffered solution (PBS) pH 7.4 (USP 32). In order to minimize the unstirred
water layer (UWL), receptor compartment media was stirred (500 rpm). The temperature was
kept constant (37.0 ± 0.5 ◦C). Each drug (n = 3) was added in the donor compartment at a fixed
concentration (=10 mg/mL). One milliliter of saturated drug solutions was transferred to the donor
compartments and capped to prevent evaporation. The experiments were performed under ‘infinite
dose’ conditions [26,27], except for caffein, metoprolol, propranolol, naproxen, ranitidine, and atenolol
(D0 ≤ 0.01). Individual drug solubility is further shown in results section. Metoprolol was used as
a low/high BCS permeability class boundary reference drug for the Franz–PAMPA assay [28].

Samples from permeation studies were collected during 12 h (0.25; 0.5; 1.0; 2.0; 3.0; 4.0; 5.0;
6.0; 10.0, and 12.0 h) and analyzed by HPLC (Shimadzu Class VP; Kyoto, Japan or Agilent 1220,
Santa Clara, CA, USA) according to official compendiums (USP 32 or Brazilian Pharmacopeia 4th
edition). The sampling volume was immediately replaced with the same volume of fresh PBS
prewarmed solution at 37◦ ± 0.5 ◦C. Calibration curves were performed at least at three concentration
levels for each drug tested, in a GLP-accredited laboratory (Institute of Pharmaceutical Sciences, Goiânia,
Goiás, Brazil). The validated chromatographic conditions used for the drug permeability assay are
given in Table 1.
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Table 1. Pharmacopeial methods applied on drug analysis and their respective limit of quantification (LOQs).

Drug Chromatographic Conditions (Stationary and Mobile Phase; λ; Flow Rate; Injection Volume) LOQ (µg/mL)

Acyclovir C-18 (5 µm; 250 × 4.2 mm), acetic acid: water (1:1000); 254 nm; 3.0 mL/min; 20 µL 46.3

Amoxicillin C18 (5 µm; 250 × 4.0 mm); acetonitrile e phosphate buffer pH 5.0 (4:96); 230 nm, 1.5 mL/min, 10 µL 1.00

Atenolol C-18 (5 µm; 300 × 3.9 mm); Dissolve 1.1 g of sodium heptane sulfonate and 0.71 g of sodium phosphate dibasic anhydrous in 700 mL of water. Add 2 mL
of dibutylamine. Adjust pH 3.0. Add methanol (300 mL); 226 nm; 0.6 mL/min; 10 µL 3.4

Caffeine C-18 (5 µm; 150 × 4.6 mm); Solution of 1.64 g anhydrous sodium acetate in 2000 mL of water. Take 1910 mL of this solution add acetonitrile (50 mL),
tetrahydrofuran (40 mL). Adjust pH 4.5 with glacial acetic acid; 275 nm; 1.0 mL/min; 10 µL 19.0

Carbamazepine CN ((250 mm × 4,.6 mm); Water, methanol, and tetrahydrofuran (85:12:3), 0.22 mL formic acid and 0.5 mL triethylamine; 230 nm, 1.5 mL/min, 20 µL 0.03

Cimetidine C-18 (5 µm; 300 × 3.9 mm); 20% methanol in 0.3% phosphoric acid solution; 220 nm; 2.0 mL/min; 50 µL 1.0

Diclofenac sodium C-8 (5 µm; 250 × 4.6 mm); phosphate buffer pH 2.5 and methanol (30:70); 254 nm; 1.0 mL/min; 10 µL 0.20

Furosemide C-18 (5 µm; 250 × 4.6 mm); Water, tetrahydrofuran, and glacial acetic acid (70:30:1); 254 nm; 1.0 mL/min; 20 µL 16.6

Hydrochlor-thiazide C-18 (5 µm; 150 × 4.6 mm); Solution A: acetonitrile and methanol (3:1). Solution B: 0.5% formic acid. Gradient: 0–3 min. Sol A: Sol B (3:97), 5–14 min. Sol
A: Sol. B (3 to 36:97 to 64), 14–18 min. The Sol. A: Sol B (36 to 3:64 to 97), 18–20 min. Sol A: Sol B (3:97); 275 nm; 1.0 mL/min; 10 µL 7.8

Ibuprofen C-18 (5 µm; 250 × 4.6 mm); 4% chloroacetic acid pH 3.0 and acetonitrile (40:60); 254 nm; 2.0 mL/min; 10 µL 13.9

Ketoprophen C18 (3 µm; 150 × 4.6 mm); water, acetonitrile, and phosphate buffer pH3.5 (55:43:22); 233 nm, 1.0 mL/min, 20 µL 1.56

Metoprolol C-18 (5 µm; 300 × 3.9 mm); 961 mg of pentane sulfonate, 82 mg of anhydrous sodium acetate, 550 mL of methanol, 470 mL of water and 0.57 mL of acetic
acid; 254 nm; 1.0 mL/min; 30 µL 13.8

Methyldopa C18 (5 µm; 300 × 3.9 mm); Monobasic phosphate buffer pH 3.5; 280 nm, 1.0 mL/min, 50 µL 0.12

Naproxen C-18 (5 µm; 150 × 4.6 mm); Acetonitrile, water, and glacial acetic acid (50:49:1); 254 nm; 1.2 mL/min; 20 µL 3.6

Piroxicam C-18 (5 µm; 250 × 4.6 mm); Buffer solution containing 7.72 g of anhydrous citric acid in 400 mL of water and 5.35 g dibasic sodium phosphate in 100 mL
of water, mix the two solutions and adjust volume to 1000 mL with water.Mix buffer and methanol (55:45); 254 nm; 1.2 mL/min; 20 µL 4.0

Propranolol C-8 (5 µm; 250 × 4.6 mm); Dissolve 0.5 g of sodium dodecyl sulfate in 18 mL of 0.15 M phosphoric acid. Add 90 mL of acetonitrile, 90 mL of methanol,
dilute with water to complete 250 mL; 290 nm; 1.5 mL/min; 20 µL 8.2

Ranitidine C-18 (3.5 µm; 10 × 4.6 mm); buffer phosphate pH 7.1: acetonitrile (80:20); 230 nm, 1.5 mL/min, 35◦C, 10 µL 7.4

Trimethoprim C-18 (5 µm; 250 × 4.2 mm); 1% glacial acetic acid: acetonitrile (21:4); 254 nm, 2 mL/min, 10 µL 0.15

Theophylline C-18 (5 µm; 300 × 4.0 mm); 7% acetonitrile in sodium acetate buffer; 280 nm, 1 mL/min, 10 µL 0.22

Verapamil C-18 (5 µm; 150 × 4.6 mm); 0.015 N sodium acetate in 3.3% glacial acetic acid. add acetonitrile and 2-amino-heptane (70:30:0.5); 278 nm; 0.9 mL/min; 10 µL 0.50
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2.2.4. Permeability Calculations

The diffusion area (A) was calculated from the radius of the Franz cell and was 1.77 cm2. Flux
through membrane to receptor compartment (J; µg/cm2/s) was calculated by dividing the amount of
drug accumulated in the receptor compartment by A. The Fick’s first law was derived to calculate flux
(J) at steady state (Equation (1)):

J = dQ/dt*A (1)

where dQ is the amount of drug across the membrane (in moles), dt the permeation time (in seconds),
and A the diffusion area (in cm2). Note that J was obtained from the slope of the curve at steady state
from typical mean cumulative concentration-time plots (minimum of triplicates), as further shown in
results section. Coefficient of variation (CV) of flux for each drug was also measured.

The apparent permeability (Papp) was calculated normalizing the flux (J) over the drug
concentration in the donor compartment C0, as described by the following Equation (2):

Papp= J/C0 (2)

This approximation was used in all cases, even when sink conditions do not hold and donor
concentrations change with time, as already described for some experiments [29]. In addition, the following
equation was used to account for the fact that in most cases sink conditions were not maintained [30].

Creceiver,t =
Qtotal

Vreceiver + Vdonor
+

(
(Creceiver,t−1· f ) −

Qtotal
Vreceiver + Vdonor

)
·e−Pe f f ·S·( 1

Vreceiver
+ 1

Vdonor
)·∆t

(3)

where Creceiver,t is the drug concentration in the receiver chamber at time t, Qtotal is the total amount
of drug in both chambers, Vreceiver and Vdonor are the volumes of each chamber, Creceiver,t−1 is the drug
concentration in receiver chamber at previous time, f is the sample replacement dilution factor, S is
the surface area of the membrane, ∆t is the time interval and Peff is the permeability coefficient. This
equation considers a continuous change of the donor and receiver concentrations, and it is valid
in either sink or non-sink conditions. The curve-fitting is performed by non-linear regression, by
minimization of the sum of squared residuals (SSR), where:

SSR =
∑

[Cr,i,obs − Cr,i(tend,i)]
2 (4)

Cr,i,obs is the observed receiver concentration at the end of interval i, and Cr,I(tend,i) is
the corresponding concentration at the same time calculated according to Equation (3) [29].

Classification as high permeability was established if the calculated permeability (under sink or
non-sink conditions was higher than 0.8* metoprolol permeability [31].

The in vitro permeability (Papp) of each drug studied was compared to in vivo absorption in
humans (Fa%), Papp in Corti artificial membrane [16], and Papp in Caco-2 cells.

3. Results

3.1. EPR Analysis and Membrane Stability

The Franz–PAMPA was characterized by EPR spectroscopy of lipid spin labels of doxyl class.
The spectra showed a movement consistent with lipid bilayer (Figure 1). Two analogs of stearic acid,
5-DSA and 16-DSA, and two analogs of phosphatidylcholine, 5-PC and 16-PC, having the nitroxide
radical positioned at the 5th and 16th carbon atom of the acyl chain, respectively, were used to examine
the molecular dynamic at two regions into the bilayer. The EPR spectra of these four spin labels are
shown in Figure 2.
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Figure 2. Experimental (solid line) and best-fit (empty circles) EPR spectra for several spin labels in
BAMPA. The isotropic 14N-hyperfine coupling constant, a0, showed equal spectra values of 14.8 G,
consistent with a spin label in phospholipidic bilayer of eukaryotic cells. The rotational correlation
time value, τC, is also showed. 5-DSA or 16-DSA: 5- or 16-doxylstearic acid); 5-PC or 16-PC:5-0r
16-phosphatidylcholine).

The EPR parameter—isotropic 14N-hyperfine coupling constant, a0—increased with increasing
dielectric constant (i.e., solvent polarity) in which the nitroxide radical is dissolved. The measured
value of 14.8 G is consistent with a spin label in a membrane [32]. The spin labels 5-DSA and 5-PC with
the nitroxide moiety in the region near the polar head group of the bilayer showed more restricted
rotational motion relative to their positional isomers 16-DSA and 16-PC, in which the nitroxide radical
is more deeply inserted in the hydrophobic core. These results indicate the existence of a gradient
of flexibility along the acyl chain, with more restricted motion in the polar region. This pattern is
consistent with the properties of lipid bilayers from eukaryotic cells. The rotational motion at the polar
interface of the membrane was more restricted for the spin label analog of phosphatidylcholine (5-PC)
with τC of 14.2 × 10−10 s than for the stearic acid one (5-DSA) whose τC was of 8.4 × 10−10 s (Figure 2).

Membrane barriers from similar models such as PAMPA and PVPA have been proven to be stable
in a pH range from 2 to 8 [33]. Here, EPR spectra were also recorded before and after permeation
studies to check for the integrity of biomimetic membranes. No leaching of barrier-constituents
such as phosphatidylcholine and lipids into the donor compartment could be evidenced as none of
membranes showed any difference on 14N-hyperfine coupling constant value (14.8 G) demonstrating its
stability [34]. Likewise, using the same chemical composition as Corti (2006) [5], acidic and basic drugs
also showed pH-dependent permeability according to the pH partition theory [25,35]. Accordingly,
close Person’s correlation coefficient was seen (r = 0.7355) to our data from Franz–PAMPA versus
PAMPA pH 7.4 data from literature.

In this regard, pHs of drug solutions were all measured to assure buffer capacity and drug stability.
Some authors correlated membrane flux with the fraction absorbed in human, showing that the flux
through the egg lecithin/dodecane membrane correlated better than octanol/water logD values with the
fraction absorbed in humans [17]. Later, an in-depth investigation of pH impact on drug Franz–PAMPA
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permeability will be necessary to increase the biomimetic and absorption predictive power of this
method, although the study of this factor was beyond the scope of this work.

3.2. Membrane Validation and Performance

Studies here deals with a modified PAMPA method over Franz cell apparatus. The biomimetic
membrane (Franz–PAMPA) has been previously described by Corti and coworkers [5] as a modified
version from Kansy et al. (1998) [36]. Mannitol and metoprolol were used as a marker for the cutoff

point between low and high permeability drugs.
The apparent permeability coefficient (Papp) values found for mannitol and metoprolol, over

the lipid impregnated membrane (2.27 × 10−5 and 2.55 × 10−5 cm/s, respectively) were higher when
compared to the non-impregnated one across Franz–PAMPA (3.20 × 10−7 and 1.61 × 10−5 cm/s,
respectively), indicating the resistivity of the lipid membrane itself.

Membrane performance was assessed using 14 representative model drugs (Table 2) cited in
the FDA BCS guidance [37]. Class I model compounds were caffeine, metoprolol, propranolol and
verapamil. Class II model compounds were diclofenac, ibuprofen, naproxen and, piroxicam. Class III
model compounds were atenolol, cimetidine, ranitidine, and trimethoprim. Class IV model compounds
were acyclovir, furosemide and hydrochlorothiazide. This classification was based in the permeability
class indicated in the FDA guidance [37] and, on solubility from literature [28,38].

Cumulative drug transport through Franz–PAMPA was plotted over 12 h and the Papp
was calculated from the slopes obtained from linear regressions (Figure 3, Table 2). Of the 21
compounds studied by Corti and coworkers and of the 14 compounds studied here, there were 11
common compounds tested in both studies: acyclovir, atenolol, caffeine, cimetidine, furosemide,
hydrochlorothiazide, metoprolol tartrate, naproxen, propranolol, ranitidine, and trimethoprim. For
these drugs Caco-2 Papp values were also surveyed from literature and compared here (Table 2).

For high permeability drugs (BCS I and II, Table 2), the Papp values showed to be in the range of
4.6–75.2 × 10−6 cm/s in Franz–PAMPA. For Caco-2 assay, values were narrower (15.8–52.5 × 10−6 cm/s)
and, for Corti membranes they were most narrow (39.7–48.8 × 10−6 cm/s).
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Table 2. Papp calculated values in Franz-PAMPA and using Non-Sink Artursson equation. BCS classification of studied drugs and literature data to all other parameters.

Drug 5 BCS 1 Fa(%)

Papp × 10−6 cm/s
5 LogP 5 Log D pH 7.4 5 pKa

4,5 Intrinsic
Solubility
(mg/mL)

Franz–
PAMPA

Non-Sink
Arthurson

1 Caco-2 2 Corti
3 PAMPA

pH 7,4
3 Permeapad™

Metoprolol

I

95 15.8 (HP) 59.0 23.7 (HP) 48.1 (HP) 3.5 1.0 1.9 −0.2 9.6 1000.0
Caffeine 100 36.2 (HP) 53.3 30.8 (HP) 41.1 10.8 20.4 −0.1 0.02 0.6 21.17

Propranolol 93 33.1 (HP) 88.4 41.9 (HP) 39.7 23.5 nC 2.65 1.3 9.5 33.0
Theophylline 97 22.1 (HP) — 25.0 (HP) 40.5 – 7.2 −0.25 −0.05 0.6 & 8.55 8.33

Carbamazepine

II

100 5.97 — - - 11.3 nC 2.5 1.8 1.0 & 13.9 0.12
Diclofenac 100 68.1 (HP) 104.9 - - 12.5 nC 4.4 1.2 3.99 0.001
Ibuprofen 93 57.5 (HP) 36.0 52.5 (HP) - 6.8 16.6 3.1 0.7 4.9 0.01

Ketoprofen (AT) 100 12.1 — 20.1 42.7 16.7 nC 3.3 −1.51 4.5 0.051
Naproxen 98 2.89 (HP) 1.7 39.5 (HP) 48.8 (HP) 10.6 nC 3.2 0.2 4.2 33.0
Piroxicam 100 11.0 9.6 35.6 (HP) - 8.2 nC 2.0 −0.07 2.33 & 5.1 0.11

Verapamil (AT) 98 5.39 5.0 15.8 41.6 7.4 9.3 3.8 2.7 8.9 0.44

Atenolol

III

52 25.8 (HP) 22.0 0.2 20.9 0.0 4.3 0.2 9.6 26.5
Cimetidine 93 35.6 (HP) 31.0 0.7 - 0.0 nC 0.4 0.4 6.8 6.0
Methyldopa 41 — — 0.2 3.2 – nC 0.4 1.7 & 9.9 10.0

Ranitidine (AT) 55 6.81 5.3 0.5 21.5 0.5 nC 0.3 −0.3 2.1 & 8.1 100.0

Acyclovir

IV

21 0.40 0.4 0.3 9.1 0.0 7.9 −1.7 −1.7 2.3 & 9.3 10.0
Amoxicillin 93 0.85 0.07 0.8 - 1.5 nC 0.9 — 3.2 & 11.7 4.0
Furosemide 60 4.57 4.5 0.1 27.5 0.6 nC 2.3 −0.7 3.5 & 10.6 0.01

Hydrochlorothiazide 70 2.74 2.7 0.5 31.0 0.1 nC −0.1 −0.1 7.9 1.0
Trimethoprim (AT) 97 6.61 7.7 83.0 (HP) 45.5 5.0 nC 0.9 0.7 7.1 0.4

nC = non classified 1 Yamashita et al., 2000 [20] and Zhu et al., 2002 [39]; 2 Corti and co-workers, 2006 [5]; 3 Di Cagno et al. [22]; 4 Lindenberg et al. 2004 [38], 5 Kasim et al., 2004 [28] (AT)
actively transported drugs. (HP) high permeability drug [38]—Data not available for non-sink calculations.
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Typically, PAMPA methods are affected by high variability, and therefore, data can be somehow
noisy for poorly permeable drugs. Variability is also an issue that impacts permeability for Caco-2 [5]
and other in situ [19] and in vivo [24] models. For low permeability drugs (Fa < 80%), Avdeef and
coworkers (2003) [6] measured variability for more than 200 different drugs accounting for more than
600 measurements. Papp values close to 10 × 10−6 cm/s showed variability of around 10%. Such error
can increase slightly for higher Papp values but is larger for Papp < 0.1 × 10−6 (60%), with 0.01 × 10−6

values exhibiting variability of 100% or more. Although, currently BBB (blood brain barrier) [40] or
Skin-PAMPA [41] methods can achieve higher precision and reproducibility with some other controlled
protocols. Specific adjustments include setting incubation time as low as possible, increasing sensitivity
of analytical methods, controlling membrane homogeneity either on the filter or among filters, besides
the rationale for compounds dataset amongst others.

Likewise, permeability of small hydrophilic compounds is frequently underestimated in PAMPA
since the membrane has hydrophobic nature besides being a cell-free system [42]. For the FDA-listed
drugs, PAMPA Papp displayed values ranged from 0.00 to 2.35 × 10−5 cms−1, indicating it was not
sensitive enough to discriminate and rank poorly permeable compounds. In contrast, Franz–PAMPA
showed values in a wider Papp range of 0.4–68.1× 10−6 cm/s. This could be tentatively explained due to
the hydrophilic nature of membrane support and pH-dependent characteristics of the drugs [22,24,31].
Moreover, Franz cell stirring clearly reduces the unstirred water layer resistance in the system.

Additionally, variability of Papp values was also addressed by the calculation methods. A more
sophisticated analysis is done using Artursson’s equation [15] for sink and non-sink conditions as well
as checking the impact of extracting a permeability coefficient from data that are not at true steady
state and, thus, possibly impacted by dose depletion. Note that for both the sink and the non-sink
equation, Papp values showed a particularly good correlation between them (0.8984). Similarly, Papp
values obtained by us showed to be very alike to values calculated according to Artursson’s non-sink
equation (Table 2, Figure 5). The reason is that we used the same systematic procedure, i.e., the best fit
method through the linear portion, to calculate all the slopes characterizing an accurate permeability
flow, so that the impact from dose depletion is considered not above average. As a result, all drugs got
the same BCS classification in both methods.
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Figure 5. Papp calculations using equations by (a) per Artursson non-sink versus sink conditions and,
(b) per Artursson non-sink compared to sink conditions best fit method of the linear portion.

In this context, Franz–PAMPA profile is mimicking biological permeation in a graphical pattern
related to permeation through Caco-2 cells (R2 = 0.826). Obtained Papp values versus fraction of dose
absorbed in humans (Fa%) showed log linear correlation (Figure 6), as also described by Zhu et al. [38]
when analyzing permeability performance of 93 commercial drugs as for artificial membranes. As
expected, Franz–PAMPA also showed a significantly improved log linear correlation (R2 = 0.6982) when
actively transported compounds ranitidine, trimethoprim, and verapamil were not incorporated in the
regression analysis. In contrast, the Fa% versus. Corti membrane correlation was linear (R2 = 0.904).
Such discrepancy from Franz–PAMPA and Caco-2 reveals that passive permeability of tested drugs
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through Corti membrane was greater and better suitable, especially for low and moderate permeability
drugs, as discussed elsewhere [39]. PAMPA and Caco-2 technique would be best suited for compounds
with medium and high permeabilities. For low permeability compounds, small differences in measured
Papp are expected to yield large differences in Fa% values resulting in imprecise measurements.Pharmaceutics 2020, 12, x FOR PEER REVIEW 13 of 16 
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(R2 = 0.890) was essentially unchanged.

Currently, a promising biomimetic barrier also adapted to Franz diffusion cells Permeapad™— [22]
was reported for six drugs concurrent to our model (acyclovir, atenolol, caffeine, ibuprofen, and
metoprolol). Even if a satisfactorily comparative analysis was not straightforward, BCS classification
of most drugs (4 out of 5) showed to be identical with similar Papp rank order (Table 2).

4. Conclusions

The Franz–PAMPA method provided a permeability pattern similar to those from Caco-2.
Methodologically, the advantages of Franz–PAMPA over Caco-2 are the lower costs and simplicity of
membrane preparation (e.g., reagents and artificial membrane are commercially available). Furthermore,
the method is very versatile and could be transformed in a high-throughput in vitro method to detect
and classify compounds absorbed by passive diffusion.

Using metoprolol as a high permeability marker (Papp = 1.61 × 10−5 cm/s; Figure 2), seven
drugs were classified as highly permeable (best fit method): atenolol, caffeine, cimetidine, diclofenac,
ibuprofen, naproxen, and propranolol (Table 2). Only atenolol and cimetidine were misclassified as
highly permeable drugs, relative to their prior literature classification as BCS 3 drugs.

Additionally, 10 out of 17 drugs were classified as low permeability drugs in Franz–PAMPA.
Nevertheless, only naproxen, piroxicam, and verapamil (3 out of 10) had their permeability
underestimated according to BCS, as they performed as low permeability drugs instead of BCS2 drugs.

Summing up, a potential limitation of our study is that the Papp values were calculated with an
equation in which the underlying assumptions are constant donor concentration and sink conditions.
In order to account for that, we also did the calculations to estimate permeability values under non-sink
conditions. The obtained values are about the same compared with the true values (i.e., assuming
donor concentration change and non-sink conditions). Although the relative estimation error does
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change across high versus low permeability compounds [29], the practical implications for predicting
oral fraction absorbed would only be a “shift” to the left on the abscissa. In the case of a direct
correlation with Caco-2 values, it would be reflected in a different slope, but it would not change the
significance of the regression line. In the case of the use of the apparent permeabilities for classification
of compounds, the reference value of metoprolol is also underestimated, so the classification outcome
would not be changed [29].

As a final comment, the ability of Franz–PAMPA to classify drugs was good and can be potentially
challenged at different pH conditions to predict intestinal permeability of drugs showing passive
transport. Eventually, the Franz–PAMPA cell diffusion can be modulated in lipid composition and
may be a suitable alternative for studying other biological barriers such as blood–brain barrier, skin,
and mucosal barriers as buccal or nasal. The current dataset adds valuable information for future
analysis of drug-molecular interactions at the lipid layer and in silico model development. Additionally,
all apparatus and supplies experimentally used on Franz–PAMPA are commercially available and
affordable to facilitate drug discovery method application.
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