
Citation: Yang, J.; Rao, L.; Wang, Y.;

Zhao, Y.; Liu, D.; Wang, Z.; Fu, L.;

Wang, Y.; Yang, X.; Li, Y.; et al. Recent

Advances in Smart Hydrogels

Prepared by Ionizing Radiation

Technology for Biomedical

Applications. Polymers 2022, 14, 4377.

https://doi.org/10.3390/

polym14204377

Academic Editors: Chao Xu and

Murat Guvendiren

Received: 20 August 2022

Accepted: 12 October 2022

Published: 17 October 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

polymers

Review

Recent Advances in Smart Hydrogels Prepared by Ionizing
Radiation Technology for Biomedical Applications
Jinyu Yang 1,2,†, Lu Rao 2,†, Yayang Wang 1,2, Yuan Zhao 1,2 , Dongliang Liu 2, Zhijun Wang 2, Lili Fu 2,
Yifan Wang 2, Xiaojie Yang 2, Yuesheng Li 2,3,* and Yi Liu 2,4,*

1 Key Laboratory of Coal Conversion and New Carbon Materials of Hubei Province, School of Chemistry and
Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, China

2 Non-Power Nuclear Technology Collaborative Innovation Center & Hubei Key Laboratory of Radiation
Chemistry and Functional Materials, Hubei University of Science and Technology, Xianning 437100, China

3 Hubei Industrial Technology Research Institute of Intelligent Health, Hubei University of Science and
Technology, Xianning 437100, China

4 College of Chemistry and Chemical Engineering, Tiangong University, Tianjin 300387, China
* Correspondence: frank78929@163.com (Y.L.); yiliuchem@whu.edu.cn (Y.L.)
† These authors contributed equally to this work.

Abstract: Materials with excellent biocompatibility and targeting can be widely used in the biomed-
ical field. Hydrogels are an excellent biomedical material, which are similar to living tissue and
cannot affect the metabolic process of living organisms. Moreover, the three-dimensional network
structure of hydrogel is conducive to the storage and slow release of drugs. Compared to the tra-
ditional hydrogel preparation technologies, ionizing radiation technology has high efficiency, is
green, and has environmental protection. This technology can easily adjust mechanical properties,
swelling, and so on. This review provides a classification of hydrogels and different preparation
methods and highlights the advantages of ionizing radiation technology in smart hydrogels used for
biomedical applications.

Keywords: ionizing radiation technology; smart hydrogels; biomedical; cross-linking; biological materials

1. Introduction

In the 1970s, bioactive glasses with effective tissue binding properties were discovered [1].
With the passage of time, biomedical materials have been gradually updated. Nowadays,
high-end materials, such as tissue scaffolds, tissue regeneration, and corneal contact lenses,
appear in the biomedical field [2–5].

Biomedical materials used for human contact need to have the following characteris-
tics: (1) they are biocompatible and (2) they have favorable physical and chemical properties,
such as mechanical properties, aging resistance, plasticity, and interfacial stability [6–8].
Common biomedical materials are mainly metals, ceramics, and hydrogels. Metals, with
high mechanical strength and fatigue resistance, are mainly used to repair hard tissues, such
as teeth and bones [9]. However, they are susceptible to corrosion and oxidation. Ceramics
can avoid the above disadvantages. In addition, they have favorable high-temperature
resistance and osteoconductivity [10]. However, their high brittleness and low toughness
severely limit the range of applications. Hydrogels can overcome the shortcomings of the
above materials and have been widely studied in the biomedical field.

Hydrogels are 3D networks of polymers formed by physical or chemical cross-linking [11].
Due to their advantages of porosity, stimulus responsiveness, and biodegradability, they can
be widely used in agriculture [12], food packaging [13], and optoelectronic materials [14],
and especially so in the field of biomedicine [15–17]. They are similar to extracellular matri-
ces and provide a favorable environment for tissue regeneration and wound healing [18,19].
There are many methods employed to prepare hydrogels, which can be divided into physi-
cal, chemical, and ionizing radiation cross-linking. The hydrogels prepared by physical
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cross-linking have poor mechanical properties [20]. Chemical cross-linking requires the
addition of initiators and cross-linking agents. Moreover, its polymerization efficiency is
low and pollutants are easily produced. Radiation cross-linking has the advantages of
simple operation, room temperature reaction, and high efficiency [21].

Many researchers have reviewed and prospected the applications of hydrogels in the
biomedical field. For example, Chen et al. summarized the application of hydrogels in
cell culture, medical surgery, tissue engineering, and biosensing [22]. Liu et al. reviewed
the progress of 3D printing hydrogel technology [23]. Taaca et al. studied the preparation
methods of hydrogels and emphasized the advantages of a plasma-based preparation of
hydrogels [24]. This paper introduces the classification of hydrogels and other preparation
methods. The benefits of ionizing radiation technology in the preparation of hydrogels
are emphasized. Furthermore, we summarize the recent advances in the fabrication of
smart hydrogels for biomedical applications. After searching, no research reporting these
contents were found.

2. Classification of Smart Hydrogels

Smart hydrogels can exchange energy with the external environment to achieve accu-
rate drug release [25]. They have different degrees of response to external stimuli, so they
have been widely studied in the biomedical field. Figure 1 shows the classification of smart
hydrogels according to stimulus sources.
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2.1. Temperature-Sensitive Hydrogels

The swelling degree of thermosensitive hydrogels change with temperature. They con-
tract or expand suddenly around a specific temperature. This temperature point is called
volume phase transition temperature (VPTT) [26]. Temperature-sensitive hydrogels are
macromolecular chains composed of hydrophobic groups (alkyl groups) and hydrophilic
groups (carboxyl, hydroxyl, and amide groups). The ratio of hydrophobic to hydrophilic
groups can change the volume phase transition temperature to approach the body temper-
ature. The number of hydrophobic and hydrogen bonds affects the structure of hydrogels,
causing them to expand and contract when the temperature changes [27]. Therefore, they
can be divided into heat-expandable hydrogels and heat-shrinkable hydrogels.

Around the VPTT, the swelling rate of thermo-swelling hydrogels increases abruptly [28].
Hydrogels formed by polyethylene glycol, methacrylic acid, or acrylic acid all have thermal-
swelling properties [29–31]. However, thermal-shrinking hydrogels can shrink rapidly at
high temperatures, causing the liquid to leave the network structure [32]. N-isopropyl
acrylamide (NIPAAm) is a representative monomer for thermal-contracted hydrogels.
López-Barriguete et al. prepared hydrogels with different temperature responses using γ
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radiation at 50 kGy [33]. They selected five feasible systems and presented their low critical
solution temperature (LCST), as shown here in Table 1. The LCST value of this hydro-
gel formed by N-isopropyl acrylamide and dimethyl acrylamide (NIPAAm-co-DMAAm)
was 39.8 ◦C. The LCST of the hydrogels was closest to human body temperature, which
laid a suitable foundation for the use of synthesis of temperature-sensitive biosensors in
the future.

Table 1. Experimental codes, LCST results, water absorption, and properties of copolymers obtained
at 50 kGy radiation [33].

Sample
Poly (A-co-B)

Experimental
Codes

A:B Ratio
(vol%) LCST (◦C) Water

Absorption (%) Physical Properties

Poly (NIPAAm-co-AAc) NAA

50:50 52.2 596 Solid white film
70:30 43.9 625 Fragile white film
80:20 48.9 620 Fragile white film
90:10 45.5 615 Fragile white film

Poly (NIPAAm-co-DMAAm) ND

50:50 57.0 896 Solid clear film
70:30 50.5 885 Solid clear film
80:20 39.8 875 Solid clear film
90:10 – 885 Solid clear film

Poly (NIPAAm-co-MAAc) NMA

50:50 56.0 690 Solid white film
70:30 48.2 695 Solid white film
80:20 42.7 680 Fragile white film
90:10 50.9 675 Fragile white film

Poly (NIPAAm-co-HEMA) NHE

50:50 57.4 542 Solid white film
70:30 48.0 548 Solid white film
80:20 49.9 530 Solid white film
90:10 54.6 528 Fragile white film

Poly (NVCL-co-DMAAm) VD

50:50 49.6 1002 Solid yellow film
70:30 47.8 1008 Solid yellow film
80:20 52.2 995 Flex yellow film
90:10 – – Liquid

Li et al. prepared temperature-sensitive color-changing hydrogels by electron beam pre-
radiation and radiation cross-linking [34]. By changing the radiation dose and prepolymer com-
position ratio, the LCST was altered. The LCSTs of NIPAAm/HHPC, NIPAAm/HHPC/Fe2O3,
and NIPAAm/HHPC/GO were 39.5 ◦C, 37.8 ◦C, and 41.8 ◦C, respectively. Color changes
could occur in all three hydrogels, both around the LCST (Figure 2). They were expected to
replace thermometers.

2.2. pH-Responsive Hydrogels

Dissociation of amino, carboxyl, and sulfonic acid groups by adjusting pH can affect
the swelling properties of pH-responsive hydrogels [35]. These hydrogels can be classified
as the polyacid type and polybasic type. Polyacid hydrogels are formed from cross-linked
carboxyl monomers (acrylic acid, methacrylic acid, etc.). When the pH of the dispersion
medium is higher than the ionization constant (pK), the carboxyl group loses protons and
dissociates to achieve swelling. When the pH of the dispersion medium is lower than
the pK of the polybasic hydrogel, the primary group on the side chain of its molecular
chain accepts protons. Then, the osmotic pressure inside the hydrogel rises, resulting in
swelling [36].

Bustamante-Torres et al. synthesized acrylic and gelatin copolymer hydrogels (AgAR-
co-AAC) by gamma irradiation [37]. By measurement, the critical pH points of these
hydrogels are about 5.4. The pH was close to that of the forehead and cheek, showing
effective biocompatibility [38,39]. When the radiation dose was 20 kGy, AAc was 20%,
and the pH value exceeded 5.4. Electrostatic repulsion of polyacrylic acid (PAA) occurred,
resulting in rapid swelling of the hydrogel with a water absorption rate of 6000 times
(Figure 3a). By simulating physiological conditions, the drug release performance was
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studied (Figure 3b). Hydrogels with low radiation doses had a weaker cross-linking
degree and were easier to promote drug release. In the solution with low ionic force, the
small expansion of polymer was not conducive to the release of drugs. The antibacterial
experiments on Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus) demonstrated
that the hydrogel-adsorbed ciprofloxacin or silver nanoparticles had a better bacteriostatic
effect than blank samples. AgAR-co-AAc hydrogels had a favorable effect against bacteria
due to the adsorption of drugs and silver nanoparticles on the hydrogel, which was
expected to be a medical dressing for wound healing and skin burns.
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2.3. Chemical-Responsive Hydrogels

Chemical-responsive hydrogels modulate swelling by interacting with chemicals
(glucose, enzymes, antigens, etc.) [40–42]. Glucose-responsive hydrogels are particularly
effective in treating diabetes. People with diabetes must rely on insulin injections to retain
normal blood sugar levels. If too much or too little of a drug is used, the treatment does not
work optimally. Glucose-sensitive hydrogels make safe, effective, and lasting drug delivery
possible by releasing specific amounts of drugs based on blood glucose levels [43].

Peng et al. prepared cellulose/4-vinylphenyl boric acid (VPBA) hydrogel films by
electron beam irradiation [44]. The addition of phenylboronic acid made the hydrogel film
dually responsive. Experimental investigation showed that the increase in the number
of phenyl borate anions would cause the release of insulin. The films had favorable
biocompatibility and could be widely used in sugar-sensitive separation systems.

2.4. Light-Responsive Hydrogels

Light-responsive hydrogels are prepared by cross-linking monomers containing pho-
tosensitive groups. When they are illuminated by light (visible or ultraviolet), the dipole
moment and geometry of the photoactive groups change. This situation results in changes
in the 3D network structure, enabling the storage and release of drugs [45].

Cao et al. prepared UV-responsive supramolecular hydrogels by γ-irradiation, which
could be used as a drug delivery system for naproxen [46]. The principle of the drug
release is that hydrogel undergoes gel-sol transformation under light irradiation. From
the quantitative experiments, it was apparent from observing Figure 4 that the color of
the hydrogel darkened with the increase in exposure time. It was confirmed by liquid
chromatography-mass spectrometry that the ester hydrolysis of o-nitrophenyl was the
main driving force for its light response.
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2.5. Magnetic Field-Responsive Hydrogels

Magnetic field-responsive hydrogels are constituted by doping hydrogels with mag-
netic materials. Magnetic materials mainly include oxides of iron, cobalt, and nickel.
Among them, iron oxide is the principal one. Magnetic particles absorb electromagnetic
waves and generate magnetic heat [47]. Magnetic heat promotes circulation, relieves pain
and swelling, and can be prescribed for chronic diseases (periodontitis, cervical myelopathy,
lumbar spondylosis, scapulohumeral periarthritis, etc.). Without damaging normal cells,
it can also inhibit or destroy tumor cells and improve the therapeutic effect [48–50]. In
addition, nano-magnetic materials can increase the toughness and stability of hydrogels,
which makes them commonly used in biomedical fields [51].
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Deuflhard et al. embedded iron oxide nanoparticles in gelatin 3D networks by electron
beam radiation [52]. The magnetic field-responsive hydrogels were linked to radiation
dose, gel concentration, and so on. These causes might affect the degree of equilibrium
magnetism. Placing the hydrogel in a magnetic field produces a degree of bending, as
showed in Figure 5. The hydrogel shown in Figure 5a was not twisted in a non-magnetic
area but bent strongly to the right in the magnetic field (Figure 5b). Therefore, it could
be a novel non-contact soft actuation material in the living body by adjusting different
influencing causes.
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2.6. Electric Field-Responsive Hydrogels

Electric fields can be better regulated and applied than other stimulation sources.
Electric field-responsive hydrogels are mainly composed of polyelectrolyte materials (poly-
thiophene, polypyrrole, and polyaniline), which can convert electrical and mechanical
energy under electric field stimulation [53–55]. The macroporous structure of the hydrogel
is more likely to cause volume collapse than the microporous structure in the electric
field [56]. Furthermore, electroactive efficiency of 3D polymer networks becomes larger
with increasing charge density, which can accelerate drug delivery [57].

Chang et al. prepared transparent polyvinyl alcohol (PVA)/polyethylene glycol
diacrylate (PEGDA)/agar/sulfuric hydrogels with high conductivity and self-healing by
irradiation [58]. The ionic conductive hydrogel was more flexible than traditional electronic
devices. The hydrogel displayed a unique electrical current when undergoing mechanical
motion, which could serve as sensors in vitro.

3. Preparation Method of Smart Hydrogels

Smart hydrogels are mainly composed of monomers or nanoparticles with unique
properties. The preparation methods can be divided into physical cross-linking, chemical
cross-linking, and radiation cross-linking (Table 2).

Table 2. Classification of preparation methods.

Classification Hydrogel
Materials

Preparation
Methods Application References

Physical cross-linking FOE Self-assembly method Drug release [59]
PVA/BG/PEG Ion cross-linking method Treatment of bone defects [60]

Chemical cross-linking
GO/CMC-g-PAA Initiator cross-linking method Drug release [61]

AA/N,
N’-methylenebisacrylamide Photo-initiated cross-linking method Contact lenses [62]

CN-IPNs “Clickchemistry” cross-linking method Artificial muscle [63]

Radiation cross-linking

NIPAAm Radiation cross-linking Drug release [64]
AA/BC Radiation polymerization Drug release [65]

DMAEMA/Ti3C2Tx Radiation polymerization Electronic skin [66]
PNG/BIS Radiation grafting Drug release [67]
CrA/PVP Radiation grafting Drug release [68]
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3.1. Physical Cross-Linking

Hydrogels prepared by physical cross-linking are formed through non-covalent in-
teractions, such as hydrogen bonding and intermolecular and hydrophobic forces [69–71].
Due to reversibility and fluidity, they become excellent injectable materials.

Injectable hydrogels are extensively used in drug delivery and tissue engineering due
to their degradability and biocompatibility. Li et al. prepared injectable hydrogels using
pH-responsive octapeptide (FOE) as loading material [59]. The new types of hydrogels had
the advantages of favorable physical and chemical properties, which could concentrate the
drug on the tumor site and reduce the side effects in the body. The mechanical properties
of hydrogels prepared by extracellular derivatives, such as collagen, fibrin, and hyaluronic
acid, were poor, which affected their application in tissue engineering. Zhao et al. used
calcium ion cross-linked PVA to form a robust framework [60]. Then, a double-network
hydrogel was obtained by adding bioactive glass microspheres and poly(ethylene glycol).
After mineralization for 14 days, the compressive strength, modulus, and fracture energy
of the hydrogel can reach 57 MPa, 2 MPa, and 65 kJm−2, respectively. In addition, the effect
of the injected hydrogel in the treatment of bone defects was better than that of implanting
a large volume of hydrogel.

3.2. Chemical Cross-Linking

Compared to physical cross-linking, hydrogels prepared by chemical cross-linking has
high stability and can flexibly change pore size. Chemical cross-linking is a process in which
monomers generate free radicals for cross-linking polymerization [72]. According to differ-
ent methods of generating primary free radicals, chemical cross-linking can be divided into
initiator cross-linking, photo-initiated cross-linking, and “click chemistry” cross-linking.

3.2.1. Initiator Cross-Linking Method

Initiator cross-linking mainly produces free radicals that initiate, grow, terminate,
and transfer chains to form hydrogels [73]. The initiators that promote the production
of free radicals mainly include azo, organic peroxides, inorganic peroxides, and redox
initiator systems. Among them, persulfate in inorganic peroxides is the most common.
Kurdtabar et al. used graphene oxide (GO) and sodium carboxymethyl cellulose (CMC) as
raw materials [61]. At high temperatures, sulfate anion radicals triggered the formation of
a GO/CMC-g-PAA copolymer from AA monomers. The magnetic iron oxide nanoparticles
(MIONs) were made by adding Fe2+/Fe3+ to the GO/CMC-g-PAA solution. MIONs
chelated multiple polymer chains to form multi-responsive hydrogels for the precise release
of anticancer drugs (Figure 6).
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3.2.2. Photo-Initiated Cross-Linking Method

Photo-initiated cross-linking mainly promotes monomer cross-linking by generating
free radicals from photo-initiators [74,75]. Under intense light irradiation, the monomers
can rapidly polymerize [76]. Conventional photo-initiators have specific toxicity, which
affects their application in biomedical fields. Graphene quantum dots (GQDs), which are
non-toxic and have a broad spectral absorption range, are ideal photo-initiators. Kim et al.
proposed the preparation of polyamide hydrogels using GQDs as a photo-initiator [62].
Their elastic modulus was 50 times higher and the swelling ratio was similar to that of
conventional photo-initiated hydrogels. Most importantly, they had a light transmittance
of more than 90% and were expected to be the primary materials for contact lenses.

3.2.3. “Click Chemistry” Cross-Linking Method

Compared to the above methods, “click chemistry” cross-linking can protect unique
functional groups [77]. As the amino group of chitosan reacts quickly, the pH-responsive
function of chitosan hydrogel is lost. Therefore, Ding et al. endowed chitosan hydrogel
with a UV cross-linking ability and pH responsiveness through “thiol-ene” click chemistry
technology [78]. It gelatinized within 30 s under UV light of 4 mW/cm2. Subsequently,
Wiwatsamphan et al. prepared dual-network pH-/heat-responsive chitosan/poly (N-
isopropylacrylamide) hydrogels (CN-IPNs) by thiol-ene clicking [63]. CN-IPNs had suitable
mechanical properties and durability, which could be used in artificial muscles.

3.3. Radiation Cross-Linking Method

Ionizing radiation technology is now very active and widely used in agriculture,
medicine, and the environment [79–81]. The irradiation process is carried out at a normal
temperature and the operation is simple and easy to control. There is no need to add any
initiator and the product is highly pure. At the same time, irradiation has a bactericidal
function, making it more suitable for research in the biomedical field [82,83]. Irradiation
cross-linking can be utilized to form polymers from free radicals initiated by electron beams,
γ-rays, and X-rays [84]. Electron beam radiation uses the ionization and excitation effects
of electrons and matter to prepare polymers [85]. Electron accelerators have the advantages
of high radiation utilization, high dose rate, and no radiation after power failure. They are
an excellent production device and are favored by researchers. Compared to the electron
beam, γ-rays have a high penetration into matter and can be irradiated for a long time.
Radiation preparation methods of hydrogels can be divided into radiation cross-linking,
radiation polymerization, and radiation graft copolymerization.

3.3.1. Radiation Cross-Linking

The radiation cross-linking method is used to induce the cross-linking reaction be-
tween polymer chains. The hydrogels prepared by the radiation cross-linking method have
favorable swelling, which is important in the biomedical field. Lugo-Medina et al. synthe-
sized two NIPAAm hydrogels by chemical cross-linking and electron beam irradiation [64].
The swelling and shrinkage tests of two types of samples in water and different solutions
observed in the swelling and shrinkage of gels prepared by the irradiation method were
much higher than those prepared by the chemical cross-linking method. Furthermore,
chemically cross-linked hydrogels behaved as polyelectrolytes. However, the hydrogels
irradiated by electron beam showed amphiphilicity in different salt solutions. At the same
time, they were sensitive to temperature changes. The preparation of hydrogels by electron
beam radiation is a suitable method for drug delivery.

3.3.2. Radiation Polymerization

Radiation polymerization is a cross-linking method that generates free radicals from
monomers [86]. Amin et al. prepared temperature and pH-responsive hydrogels by electron
beam irradiation using bacterial cellulose (BC) and acrylic acid (AA) as monomers [65].
The electron beam induced water molecules to produce free radicals. Hydrogen atoms and
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hydroxyl radicals initiated AA to form a PAA copolymer. Hydrogen atoms promoted BC
to generate active sites and cross-link with PAAc to form a network structure.

Hu et al. prepared MXene-based nanocomposite hydrogels using 2-(dimethylamino)
ethyl methacrylate (DMAEMA) and ultra-low content Ti3C2Tx MXene nanosheets as the
main materials [66]. DMAEMA was cross-linked into polymers by gamma radiation. At
the same time, Ti3C2Tx interacted with polymer chains through hydrogen bonds and
covalent bonds. The electrical conductivity of the composite hydrogels was considered to
be 1.6 mScm−1. At the same time, they had specific self-healing abilities and were expected
to be used as excellent materials for electronic skin.

3.3.3. Radiation Grafting

Radiation grafting is one way to make the polymer produce radicals for graft copoly-
merization [87]. Hydrogel preparation and membrane alteration are the two main applica-
tions of this technique. Pitarresi et al. used γ radiation to combine aqueous PNG with N,
N-methylene bisacrylamide (BIS) to form a hydrogel network [67]. Gel particles containing
the drugs were released in a solution of pH = 1 or 7.4, which could be used in topical
treatments. Bardajee et al. synthesized smart hydrogels by graft copolymerizing acrylic
acid (AA) with the herbaceous skeleton [88]. A suitable water absorption rate could be
obtained by changing the variables. In addition, the hydrogels were responsive to medium
pH, salt solution, and mixed solvent. Crotonic acid (CrA) could hardly react with polymers.
Therefore, Ajji et al. grafted and polymerized polyvinylpyrrolidone (PVP) and crotonate by
γ-radiation grafting [68]. The drug release experiment showed that ketoprofen could be
released in the neutral medium for a long time. The hydrogels might be applicable to the
targeted release of drugs in the intestine.

4. Application of Smart Hydrogels

Hydrogels are a class of hydrophilic 3D network structures with effective biocom-
patibility and non-toxicity and have become candidate materials in the biomedical field
(Figure 7). For example, smart hydrogels have been widely studied in dressings, drug
carriers, regeneration medicine, and medical devices (Table 3).
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Table 3. Application of smart hydrogels.

Application Hydrogels Radiation Resource References

Hydrogel dressings

PVP/ager Electron beam [89]
AgSD/PVA Electron beam [90]

PVA/CMCS/TiO2 Electron beam [91]
CMC/honey Gamma rays [92]

MD/PVA Gamma rays [93]
Gelatin/γ-PGA Gamma rays [94]

Drug carriers
PVP/PAAc Gamma rays [95]

Pectin/DMAA Gamma rays [96]
CHG-GA Gamma rays [97]

Regenerative medicine CMCS Electron beam [98]
Glucan derivatives Electron beam [99]

Medical devices

(PP-g-DMAAm)-g-NIPAAm Gamma rays [100]
PNIPAAM/GO Gamma rays [101]

PVA/PANI Electron beam [102]
Ag/CMCS/PVA Electron beam [103]

4.1. Hydrogel Dressings

Bacterial infections have caused severe harm to human life and health. Overuse of
antibiotics has resulted in the emergence of drug-resistant strains. The development of green
antibacterial materials has grown. Researchers have developed a series of new, efficient,
and non-toxic antibacterial dressings, which play an irreplaceable role in antibacterial and
anti-infection effects. Mozalewska et al. prepared a wound dressing based on PVP and
agar by irradiation [89]. Microbiological experiments showed that dressing could inhibit
the increase in gram-positive bacteria. Gao et al. made a series of PVA hydrogels loaded
with silver sulfadiazine (AgSD) by electron beam irradiation [90]. The AgSD/PVA hydrogels
showed excellent antibacterial activity against E. coli and S. aureus. They might be an ideal
dressing for antibacterial wounds. Li et al. prepared PVA/CMCS/TiO2 ternary nanocomposite
hydrogels by freeze-thaw cycles and electron beam radiation [91]. The composite hydrogels
showed excellent antibacterial activity against E. coli and S. aureus and no cytotoxicity. The
photosensitive antibacterial hydrogels made by our group had great application potential in
medical dressings (Figure 8). Collagen/PVP/PAA/polyethylene oxide (PEO) hydrogels were
obtained by electron beam irradiation in an inert atmosphere. They had high water absorption,
elasticity, and stability, and were used in soft tissue engineering. Rheological experiments
confirmed that the collagen/PVP/PAA/PEO hydrogels had rheological behaviors similar to
most soft tissues. The hydrogels maintained adequate stability and physical morphology in
the pH environment of intact skin and broken wounds [104].

As early as ancient Greece and Rome, honey was reported to be used as an antiseptic
to treat wounds. It mainly achieved therapeutic effects by exploiting its high osmotic
activity [105]. Nho et al. prepared honey hydrogels with carboxymethylcellulose (CMC)
and honey as raw materials [92]. They showed excellent antibacterial activity against
S. aureus and E. coli. The animal experiments showed that the hydrogel containing honey
could accelerate wound healing. Jeong et al. designed a PAA hydrogel loaded with differ-
ent metronidazole (MD) contents [93]. When the absorbed dose was 25 kGy, the MD/PAA
hydrogel exhibited certain features. For instance, sufficient gel content and strength could
be used as a dressing. About 80% metronidazole in PAA hydrogels could be released
within 120 min. MD/PAA hydrogels were non-cytotoxic and had excellent antibacterial
activity against S. aureus and E. coli. Singh et al. prepared hydrogels for skin burn dressings
using gamma radiation [106]. Nanosilver hydrogels were effective in controlling microbial
infection and promoting the healing of burn wounds. In addition, γ-irradiation can be
synergistic with other techniques to prepare multifunctional hydrogels. Liu et al. syner-
gistically prepared gelatin and γ-polyglutamic acid (γ-PGA) hydrogels using hot pressing
and γ-irradiation methods [94]. They exhibited effective biocompatibility, biodegradability,
and mechanical strength. In addition to electron accelerators, 60Co radioactive sources
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are also a suitable means of radiation. Lim et al. prepared hydrogels for the treatment of
dermatitis [107]. It had been proved by animal experiments that the hydrogel dressing
was effective for dermatitis. Alcântara et al. prepared a PVP/PVA hydrogel by gamma
irradiation with a 60Co source [108]. These hydrogel dressings had potential application
in wounds infected with gram-positive and gram-negative bacteria. Overall, hydrogel
dressings are more readily available than other materials. However, most researchers have
only studied the antibacterial effects of S. aureus and E. coli. They have not learned the
whole antibacterial spectrum, which is an area that needs to be strengthened in the future.
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4.2. Drug Carriers

Drug carriers deliver the drug to the designated area at a certain time and speed, which
can reduce the adverse effects of the drug on the body. Drug delivery systems have been
gradually developed, mainly using polymeric materials, such as hydrogels, as drug carriers.
El-Rehim et al. prepared low-viscosity PVP/PAAc nanogels by gamma irradiation [95]. They
did not cause blurred vision or blindness, or other side effects. In vitro release studies showed
that PVP/PAAc nanogels had a longer sustained release time for maurocasone. Therefore, they
could improve the availability of drugs. Ishak et al. prepared pH-sensitive nanocrystalline
fiber/gelatin hydrogels [109]. Using riboflavin as a drug model, the release results showed
that more than 70% of the riboflavin in the gelatin/4CNC hydrogel was released within 12 h.
It was non-cytotoxic and had potential application potential in drug delivery systems.

Drug carriers can target different parts of the body. Among them, drug release from
the gastrointestinal tract is the most frequent. Bhuyan et al. synthesized pectin/N, dimethyl
acrylamide (DMAA) hydrogels by γ-radiation [96]. 5-fluorouracil was used as the simulated
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drug. Under the pH value of gastric juice and intestinal juice, the drug release after four hours
could reach more than 90%. Raafat et al. prepared pH-sensitive hydrogels based on gelatin and
acrylic acid (AAc), which were polymerized and cross-linked using gamma radiation [110].
Ketoprofen was used as a model drug to study the release of hydrogel in vitro. The swelling
kinetic studies showed that the hydrogels had Fick diffusion in the stomach (pH = 1), and non-
Fick distribution in the intestine (pH = 7). The hydrogels were recommended as site-specific
drug carriers. In addition, poly(ethylene oxide) (PEO) network grafted AAc hydrogels were
prepared by a two-step method. These pH-sensitive hydrogels were investigated as drug
carriers to protect insulin from the acidic environment of the stomach [111].

Chemotherapy is the primary means of cancer treatment. While killing cancer cells,
normal cells also suffer significant damage. If chemotherapy drugs could be targeted to
specific cancer cells, they would greatly contribute to human health. Nisar et al. prepared
glutamate-grafted chitosan (CHG-GA) hydrogel microspheres used to carry the anticancer
drug doxorubicin by γ-radiation grafting method [97]. The pH response value of the
hydrogel was 5.8, which was close to the physiological pH value of tumor tissue. The drug
release rate was the highest (81.33%). The CHG-GA hydrogel microspheres had favorable
biocompatibility and the cell viability was approximately 95%. The CHG-GA hydrogel
microspheres loaded with doxorubicin had an anticancer effect on MCF-7 cells. They
had a broad application prospect in the controlled delivery of anticancer drugs for local
cancer treatment. Glass et al. used electron beams to synthesize transparent hydrogels for
drug-loading applications [112]. These hydrogels had higher mechanical properties, optical
transmittance, and cross-linking density than conventional hydrogels prepared by UV light.
Using methylene blue as a drug model, the content of methylene blue in electron-beam-
polymerized hydrogels was twice that of UV-polymerized hydrogels. Park et al. developed
β-glucan hydrogels that could be used to treat periodontal disease [113]. According to the
cytotoxicity and antibacterial activity test, the hydrogels had no cytotoxicity and effective
antibacterial activity. They could be used in continuous drug release and the drug release
rate could reach 80% in about 90 min. Hydrogel carriers provide a new method for clinical
treatment. However, the controlled release data for hydrogels are not accurate. Some drugs
are released too early to take effect.

4.3. Regenerative Medicine

The use of engineering methods to repair damaged organs and tissues has opened new
avenues for regenerative medicine. Wach et al. prepared CMCS hydrogels by radiation
graft cross-linking, which could be used as potential intracavity-filling nerve-regeneration
channels [98]. Cytotoxicity tests and in vivo tests proved that the hydrogel had effective
biocompatibility and antibacterial activity. In addition, carboxymethyl chitosan could be
combined with biologically active substances, such as therapeutic drugs or growth factors
for peripheral nerve repair. Szafulera et al. prepared a series of glucan derivatives by the
ionizing radiation method [99]. The methacrylic acid substitution degree (DS) of dextran
methacrylate (Dex-MA) could reach 1.13. Irradiation of methacrylic acid dextran in an
aqueous solution was an efficient method to prepare biocompatible hydrogels. These
dextran-based hydrogels had broad application prospects in the field of biomedicine,
especially in the field of soft tissue regenerative medicine. As one of the issues being
explored in regenerative medicine, the implantation of artificial tissues or organs is full of
opportunities and challenges.

4.4. Medical Devices

Medical devices are one of the core components of medical engineering. In addition to
drugs, medical devices are also essential. Medical devices can detect diseases and help the
doctor better treat patients.

Contreras-Garcı’a et al. successively grafted dimethyl acrylamide (DMAAm) and
NIPAAm onto polypropylene (PP) membranes [100]. (PP-g-DMAAm)-g-NIPAAm graft
could improve the hemocompatibility and elution performance of antimicrobial drugs
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for medical devices. These functionalized PP films had potential as medical devices and
drug delivery. Zhu et al. prepared poly(N-isopropyl acrylamide) (PNIPAM)/graphene
oxide (GO) hydrogels by γ-ray polymerization [101]. The PNIPAM/GO hydrogels ex-
hibited excellent photo-thermal properties, and their phase transition could be remotely
controlled by near-infrared (NIR) laser irradiation. They had broad application prospects
in biomedicine, especially in microfluidic devices. Dispenza et al. prepared PVA/PANI
hydrogel nanocomposites by electron beam irradiation, which was non-cytotoxic and
had potential value for sensing and smart drug delivery applications [102]. Hiroki et al.
prepared HPC-based hydrogels with suitable mechanical properties and transparency by
electron beam irradiation [114]. They could be degraded by cellulases and used to manu-
facture contact lenses. With the development of the medical industry, medical equipment
needs to keep pace with the times. Yang et al. prepared silver-loaded chitosan and PVA
fingerprinting gel films (Ag/CMCS/PVA) by electron beam irradiation [103]. It was found
that the fingerprints on the hydrogel prepared by electron beam irradiation were more
clearly visible through experimental investigations (Figure 9). Since such hydrogels were
non-toxic, they were expected to be used for fingerprint extraction and preservation.
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methods: (H) frozen without irradiation, (I) refrigeration and irradiated, (J) short-term frozen and
irradiation; at different coating modes: (K) spray, (L) smear, (M) soak; At different concentration of
Ag ion: (N–R), 0.12 mg/mL, 0.6 mg/mL, 1.2 mg/mL, 1.8 mg/mL, 2.4 mg/mL, respectively; different
developing reagents: (S) ninhydrin, (T) Ag ion [103].
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5. Conclusions

In summary, the adhesion, degradability, and biocompatibility have promoted smart
hydrogels in profound biomedical field research. This article summarized the classification
of smart hydrogels and their preparation methods, especially for applying wound dressings,
as drug carriers, for regenerative medicine, and for medical devices.

These smart hydrogels act on the human body and their biocompatibility and thera-
peutic effects have always been the focus of researchers. Compared with other methods, the
radiation method is more suitable for the biomedical field due to its favorable sterilization
effect. At the same time, ionizing radiation technology is convenient for mass production,
which lays a foundation for the industrialization of biomedical hydrogels in the future.

At present, in vivo research of biomedical hydrogels is scarce, which limits its de-
velopment in the biomedical field. If the above shortcomings can be quickly overcome,
bio-intelligent hydrogels will be widely used and contribute to the progress of medicine.
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