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Abstract: Aquaporins are membrane channels in the broad family of major intrinsic proteins (MIPs),
with 13 classes showing tissue-specific distributions in humans. As key physiological modulators
of water and solute homeostasis, mutations, and dysfunctions involving aquaporins have been
associated with pathologies in all major organs. Increases in aquaporin expression are associated
with greater severity of many cancers, particularly in augmenting motility and invasiveness for
example in colon cancers and glioblastoma. However, potential roles of altered aquaporin (AQP)
function in reproductive cancers have been understudied to date. Published work reviewed here
shows distinct classes aquaporin have differential roles in mediating cancer metastasis, angiogenesis,
and resistance to apoptosis. Known mechanisms of action of AQPs in other tissues are proving
relevant to understanding reproductive cancers. Emerging patterns show AQPs 1, 3, and 5 in
particular are highly expressed in breast, endometrial, and ovarian cancers, consistent with their
gene regulation by estrogen response elements, and AQPs 3 and 9 in particular are linked with
prostate cancer. Continuing work is defining avenues for pharmacological targeting of aquaporins as
potential therapies to reduce female and male reproductive cancer cell growth and invasiveness.
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1. Introduction

Aquaporins (AQPs) in the major intrinsic protein (MIP) family, found in all forms
of life from bacteria to mammals, have attracted interest as therapeutic targets [1–3]. As
summarized in Table 1, the first AQP channel was isolated from red blood cells as a
28 kDa protein called CHIP28, which mediated osmotic water transport [4,5], and was
named Aquaporin-1. At least 17 mammalian aquaporins have been identified to date,
with AQP0-12 found in higher orders including human, and AQP13-16 described in older
lineages [6,7]. The aquaporin family traditionally has been classified into three general
groups on the basis of amino acid sequence homologies and permeability characteristics,
usually measured in heterologous expression systems such as Xenopus oocytes, a method
pioneered by Preston and colleagues [5]. Oocytes injected with copy RNA encoding an
AQP acquire high permeabilities not seen in native oocytes to water, glycerol, urea, ions,
and/or other solutes, depending on the AQP subtype expressed and the presence of
appropriate signaling environments [8,9]. In higher mammals, classical aquaporins known
for permeability to water include AQP0, AQP1, AQP2, AQP4, AQP5, AQP6, and AQP8.
Aqua-glyceroporins also permeable to small uncharged solutes such as glycerol include
AQP3, AQP7, AQP9, and AQP10. A third group called subcellular aquaporins consists of
AQP11 and AQP12, which show low sequence homology with other aquaporins and have
been difficult to evaluate due to predominant localization in intracellular organelles [10].
AQP11, when successfully expressed in human adipocytes, was found be permeable to
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water and glycerol [11]; reconstituted purified AQP12 shows water flux [12] but channel
activity in cells remains to be characterized.

Table 1. Classes of aquaporins in higher mammals, prior alternative names, and references.

Aquaporin Class Reference

AQP0 (lens MIP) Gorin et al., 1984 [13]

AQP1 (CHIP28) Preston et al., 1992. [5]

AQP2 (WCH-CD) Fushimi et al., 1993. [14]

AQP3 (GIL) Echevarria et al., 1994. [15]
Ishibashi et al., 1994. [16]

AQP4 (MIWC) Hasegawa et al., 1994. [17]

AQP5 Raina et al., 1995. [18]

AQP6 (hKID) Ma et al., 1996. [19]

AQP7 Ishibashi et al., 1997. [20]

AQP8 Ishibashi et al., 1997. [21]

AQP9 Tsukaguchi et al., 1998. [22]
Ishibashi et al., 1998. [23]

AQP10 Hatakeyama et al., 2001. [24]
Ishibashi et al, 2002. [25]

AQP11 (AQPX1) Yakata et al., 2007. [26]

AQP12A, AQP12B (AQPX2) Itoh et al., 2005. [27]

The classes of aquaporins in the human body show patterns of tissue expression that
correspond with organ functions, accomplished at the cellular level by aquaporin-mediated
fluxes of fluids and solutes [28] including for example kidney filtration and water reab-
sorption [29,30], glycerol transport and fat metabolism in liver and adipose tissues [31,32],
cell migration [33,34], cerebral spinal fluid production [35–37], vision [38,39], and skin hy-
dration and wound healing [40]. Changes in aquaporin gene expression have been linked
to human diseases such as congenital bilateral cataracts [41], obesity [31], nephrogenic
diabetes insipidus [42,43], Sjögren’s syndrome [44,45], cerebral edema [46,47], pulmonary
edema [48], and cancer [9,49,50], to mention a few. Traditional distinctions based on solute
selectivity are becoming blurred as more substrates are being added steadily to the grow-
ing repertoires of AQP classes [51]. The full spectra of solutes permeable through AQP
channels remain to be defined. In addition to water, AQP1 allows transport of CO2 [52],
H2O2 [53,54], NO [55], and NH3 [56]. Several classes of mammalian AQPs function as
ion channels. AQP0, a major component of lens fiber, has ion channel activity [57,58].
AQP1 conducts monovalent cations after activation by intracellular cyclic GMP [59]. AQP6
is permeable to anions such as nitrate and chloride at low pH [60,61]. Human AQP8 is
permeable to ammonium analogues [62]. More ion-conducting aquaporins are likely to be
discovered. Reconsideration of the current classification system may be merited.

2. Structure and Function of Aquaporins

Aquaporins exist as tetramers; each monomer has six transmembrane helices con-
nected by loops A to E, with intracellular carboxy and amino terminal domains (Figure 1A).
Hydrophobic segments of loops B and E contain the signature NPA motifs (N = asparagine,
P = proline, and A = alanine) that fold together within each monomer to form a narrow
constriction with a diameter less than 3 A◦ in AQP1, which with adjacent aromatic and
arginine residues creates a selectivity filter allowing single file movement of water [63,64].
In AQP1, the tetrameric central pore (Figure 1B) is thought to be responsible for gated ion
currents [65,66].
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Figure 1. Transmembrane topology and structural organization of an aquaporin. (A) Each mono-
mer consists of six transmembrane helices connected by loops A to E. Loops B and E typically 
carry signature NPA (Asn-Pro-Ala) motifs that fold together within each subunit to form a water 
pore. Four monomers form a tetramer (the functional channel). A subset of aquaporins (AQPs) use 
the central pore as a gated ion channel. (B) Molecular dynamic simulation view of the permeation 
properties of AQP1 depicted with space-filling models of pathways for water flow (yellow) 
through the intrasubunit pores, and monovalent cation (e.g., Na+) current (violet) through the cen-
tral tetrameric pore, reproduced with permission from Elsevier, license #4967400727825 [66]. 
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3.1. AQPs in Cancer Metastasis 

Cancer metastasis, the spread of cancer cells from tumor sites of origin to distant sites, 
is responsible for 90% of cancer-related deaths [67]. Different classes of aquaporins have 
been implicated in processes of cancer metastasis, depending on cancer type [8], and are 
thought to contribute to the cell motility in part by facilitating cell volume changes in re-
sponse to osmotic gradients [68]. Depolymerization of actin filaments at leading edge of 
tumor cells has been proposed to increase local intracellular osmotic pressure, causing an 
influx of water and solutes through aquaporin channels polarized at the leading edges of 
tumor cells that drives protrusions and lamellipodial formation, and thus migration 
[68,69]. Genetic knockdown of AQP1 in melanoma and colon cancer cell lines was associ-
ated with reorganization of actin cytoskeleton, and decreased cell migration [69,70]. Phar-
macological inhibition of aquaporins slowed cancer cell migration; both ion conduction 
through the central pore of AQP1 and water flux through intrasubunit pores were neces-
sary for maximal cell migration in an in vitro model of colon cancer [71,72]. 

Current cancer treatments are focused on inhibiting cell proliferation and arresting 
cell cycle, controlling angiogenesis, and modifying stromal microenvironments, but tools 
for controlling metastasis remain elusive. Multiple steps in metastasis involve dissociation 
of cells from the primary tumor, invasion through extracellular matrix, and intravasation 
into blood and lymphatic vessels to spread to a new location [67]. In addition to motility, 
multiple steps appear to be influenced by AQP expression patterns. Increased levels of 
AQP1 expression in lung carcinoma were associated with downregulation of epithelial 
(E-) cadherin [73]. E-cadherin is a glycoprotein that mediates tight junctions between cells 
and links to cytoskeletal elements within cells; reduced levels are a hallmark of tumor 
metastasis [74]. Conversely, genetic knockdown of AQP4 in breast cancer cell lines T47D 

Figure 1. Transmembrane topology and structural organization of an aquaporin. (A) Each monomer consists of six
transmembrane helices connected by loops A to E. Loops B and E typically carry signature NPA (Asn-Pro-Ala) motifs that
fold together within each subunit to form a water pore. Four monomers form a tetramer (the functional channel). A subset
of aquaporins (AQPs) use the central pore as a gated ion channel. (B) Molecular dynamic simulation view of the permeation
properties of AQP1 depicted with space-filling models of pathways for water flow (yellow) through the intrasubunit pores,
and monovalent cation (e.g., Na+) current (violet) through the central tetrameric pore, reproduced with permission from
Elsevier, license #4967400727825 [66].

3. Roles of Aquaporins in Cancer Metastasis, Angiogenesis, and Apoptosis
3.1. AQPs in Cancer Metastasis

Cancer metastasis, the spread of cancer cells from tumor sites of origin to distant
sites, is responsible for 90% of cancer-related deaths [67]. Different classes of aquaporins
have been implicated in processes of cancer metastasis, depending on cancer type [8], and
are thought to contribute to the cell motility in part by facilitating cell volume changes in
response to osmotic gradients [68]. Depolymerization of actin filaments at leading edge of
tumor cells has been proposed to increase local intracellular osmotic pressure, causing an
influx of water and solutes through aquaporin channels polarized at the leading edges of
tumor cells that drives protrusions and lamellipodial formation, and thus migration [68,69].
Genetic knockdown of AQP1 in melanoma and colon cancer cell lines was associated with
reorganization of actin cytoskeleton, and decreased cell migration [69,70]. Pharmacological
inhibition of aquaporins slowed cancer cell migration; both ion conduction through the
central pore of AQP1 and water flux through intrasubunit pores were necessary for maximal
cell migration in an in vitro model of colon cancer [71,72].

Current cancer treatments are focused on inhibiting cell proliferation and arresting
cell cycle, controlling angiogenesis, and modifying stromal microenvironments, but tools
for controlling metastasis remain elusive. Multiple steps in metastasis involve dissociation
of cells from the primary tumor, invasion through extracellular matrix, and intravasation
into blood and lymphatic vessels to spread to a new location [67]. In addition to motility,
multiple steps appear to be influenced by AQP expression patterns. Increased levels of
AQP1 expression in lung carcinoma were associated with downregulation of epithelial
(E-) cadherin [73]. E-cadherin is a glycoprotein that mediates tight junctions between
cells and links to cytoskeletal elements within cells; reduced levels are a hallmark of
tumor metastasis [74]. Conversely, genetic knockdown of AQP4 in breast cancer cell lines
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T47D and MCF7 correlated with increased E-cadherin levels, with reduced migration and
invasiveness [75]. The strikingly different roles of different classes of AQPs suggests that
precise targeting of subtypes could allow customized interventions tailored to cancer type.

AQPs in Angiogenesis

Rapidly dividing cancer cells have a high metabolic demand and require reliable access
to oxygen and nutrients for survival; tumors cannot grow beyond few millimeters without a
continuous supply of nutrients [76]. Inadequate blood flow and poor clearance of metabolic
waste from tumor masses result in hypoxia, triggering transcription of growth factors such
as vascular endothelial growth factor (VEGF), transforming growth factor-β, and platelet-
derived growth factor hypoxia induced factor-1 (HIF-1) that in turn induce angiogenesis,
the formation of new blood vessels [77]. Aquaporins appear to be necessary for the
induction and establishment of angiogenesis. Levels of AQP1 expressed in endothelial
cells of peripheral blood vessels correlated with release of VEGF, resulting in angiogenesis
and increased tumor growth in endometrial carcinoma [78]. Hypoxia increased expression
of AQP1 and AQP4 in rat model of tissue ischemia [79,80]. Reduced levels of AQP1
in vitro by small interfering RNA [70] and in vivo by genetic knockdown led to decreased
angiogenesis and corresponding reductions in tumor growth and invasiveness [81,82].
AQP1-null mice showed a reduced vascularity and substantial necrosis of introduced
tumors as compared to tumors hosted in wild type mice [82]. Pharmacological inhibition
of AQP1 water channel activity in a colon cancer cell line impaired endothelial tube
formation [50]. Pharmacological targeting of AQP1 to inhibit angiogenesis could provide a
useful adjunct therapy.

3.2. AQPs in Apoptosis

Apoptosis is a pattern of programmed cell death [83] essential for normal tissue devel-
opment, repair, and homeostatic control throughout life. Certain aquaporins (AQP4, -8,
and -9), in parallel with ion channels and pumps, have been proposed to facilitate the early
stage of cell shrinkage initiating apoptosis [84]. Adaptive responses resulting in resistance
to apoptosis can involve downregulation of these AQPs [85]. Genetic knockdown of AQP1
in rat granulosa and Chinese hamster ovary cells was associated with protection from cell
shrinkage and apoptosis [86]. AQP3, located in plasma membranes of human prostate
tissue and benign tumors, was found to be internalized in prostate cancer cells, again
consistent with a reduction in AQP functionality promoting resistance to apoptosis [87]. In
contrast, other cases involving AQP1 and AQP5 have yielded opposite outcomes, in that
the presence of the functional channel was protective, and loss of function promoted cell
death. For example, apoptosis was induced by pharmacological inhibition of AQP1 in colon
cancer cells [50], and by siRNA knockdown of AQP1 in esophageal cancer cells [88]. AQP5
overexpression in esophageal cancer cells was associated with resistance to apoptosis [89].
More research is needed to clarify the pro- versus anti-apoptotic roles of different classes of
aquaporins by cancer type and conditions. Therapeutic strategies for reproductive cancers
ultimately could harness agents that increase or decrease levels of activity of endogenously
expressed classes of aquaporins in females (Figure 2A) and males (Figure 2B).

3.3. Aquaporin Expression in Male and Female Reproductive Tissues and Cancers

Aquaporins in the reproductive systems of males are involved in formation of seminif-
erous fluid, sperm production, and motility [90]. In females, AQPs are vital for ovulation,
vaginal lubrication, maturation of follicles, and maintenance of fluid homeostasis in the
lumen of uterus [91]. AQPs 1, -2, -3, and -5 in the vagina are suggested to serve roles in
tissue surface hydration [92], and in the uterus are proposed to maintain fluid homeostasis
during peri-implantation and pregnancy [93,94]. Levels of AQP expression are dependent
in part on hormonal signaling [93,95], controlled via steroid responsive promoters [96–99].
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Figure 2. Illustrations of classes of aquaporins known to be expressed in breast and reproductive cancers, and general
anatomical patterns of localization in human (A) female and (B) male bodies.

The classes of AQP channels that are associated with cancer severity and progression
differ depending on the cancer type [8]. Differential aquaporin expression is evident in
comparisons of prostate, breast, endometrial, ovarian, and cervical cancers [78,100–103].
For example, AQP1 is overexpressed in breast cancer [104] and colorectal cancer [105],
whereas AQP3 is upregulated in prostate and breast cancers [102,106].

4. Estrogen-Dependent Tumors

Estrogen hormone is produced during reproductive years predominantly by ovaries
in females and adrenal glands in males [107] to regulate physiological cell growth, and in fe-
males the development of sexual characteristics such as breasts, ovaries, and endometrium
by activating estrogen receptors [108]. While the ovary is the main organ for production
of estrogen, other tissues such as bone, brain, adipose tissue, and blood vessels use local
production of estrogen by an aromatase enzyme to control bone mineral density, cholesterol
metabolism, and cardio-protection [109,110].
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Estrogen receptor (ER) protein types alpha and beta interact with DNA sequences
known as estrogen-responsive elements (EREs). The receptors have a high affinity for
estradiol, which is effective at nanomolar concentrations [111]. Gene expression controlled
by EREs is essential for normal development but can be co-opted for pathological processes,
as in estrogen-dependent tumors (Figure 3). ERα and ERβ receptor activities are involved in
the progression of cancers in breast, endometrium, ovaries, and prostate gland [108]. Of the
aquaporins present in breast, endometrial, and ovarian cancers, the most highly expressed
subtypes are AQPs-1, -2, -3, and -5, all of which are sensitive to ERE signaling [96,99,112].
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Figure 3. The intracellular signaling network activated by estrogen regulates gene expression by
binding to DNA estrogen-responsive elements (EREs) for proteins including aquaporins, and activates
downstream signaling pathways (P13/AKT and MEK-Erk1/2 (MAPK) pathway), promoting cell
proliferation and invasiveness.

In females, the status of estrogen-dependent tumors is influenced by hormonal
changes during the menstrual cycle [113–115]. In the follicular or proliferative phase
of the menstrual cycle, estrogen is produced in high amounts, peaking around the time of
ovulation, after which it declines [116]. Progesterone dominates in the post-ovulatory or
luteal phase. Disturbance of the balance between estrogen and progesterone by secondary
factors such as obesity, oral contraceptives, or polycystic ovarian disease can result in
high levels of estrogen during the luteal phase, leading to uncontrolled proliferation of en-
dometrium, breast and ovaries, resulting in hyperplasia, cytologic atypia, and cancer [117].
Anti-estrogen strategies have been a mainstay of breast cancer treatment for more than a
century, since the majority of breast cancers are ER-positive [109]. Upregulation of AQP5
expression in uterus in response to estrogen [118] activates P13/AKT pathway, leading to
cellular proliferation and increased invasiveness [119].

In males, estrogen is produced in testes, adrenal glands, and adipose tissue for main-
taining reproductive function and libido [120]. Factors such as mutations in the gene



Cells 2021, 10, 215 7 of 18

encoding the P450 enzyme used for local estrogen synthesis, the use of certain drugs, and a
positive family history influence the risk of development of estrogen-dependent tumors in
males. Estrogen-dependent activation of the MEK-Erk1/2 (MAPK) pathway acts via ERα to
promote cell proliferation [121]. Upregulation of AQP3 in prostate cancer cells contributes
to tumor invasiveness by stimulating MEK-Erk1/2 (MAPK) pathway, and knockdown of
AQP3 reduced tumor growth by blocking the same pathway [122], suggesting inhibition of
AQP3 is a target of interest for developing potential treatments of prostate cancer.

Four types of estrogen-dependent tumors are summarized below: (i) breast, (ii) en-
dometrial, (iii) ovarian, and (iv) prostate cancers.

4.1. Breast Cancer

Breast cancer is the most common cancer among females and the second most common
cause of death worldwide [123]. Breast cancers are divided into three main groups on
the basis of cellular markers: (1) estrogen receptor (ER)- or progesterone receptor (PR)-
positive; (2) human epidermal growth factor receptor 2 (HER2)-positive with or without
ER and PR positivity; and (3) triple-negative breast cancer (TNBC) defined by the absence
of ER, PR, and HER2 expression [124]. Estrogen and progesterone receptor-positive tumors
account for 70% of invasive breast cancers while TNBC constitutes 10% of invasive breast
cancers [124]. Treatment options depend on metastatic spread and hormone receptor
status. Metastatic breast cancer cells undergo an epithelial–mesenchymal transition that
increases invasion of extracellular matrix and surrounding blood and lymph vessels,
augmenting cell migration [125]. Breast cancers have a propensity to metastasize to bone
(50–65%), lung (17%), brain (16%), and liver (6%), while metastases to other organs such as
spleen, kidney, or uterus are relatively rare [126]. The incidence of breast cancer is high
in reproductive years (18–50) and decreases after menopause; estradiol blood level shows
a positive correlation with risk of breast cancer in females [127]. Early menarche, late
menopause, nulliparity, use of combined oral contraceptives, and obesity constitute major
risk factors for breast cancer [128].

Breast cancer tissues showed upregulation of AQP1, -3, and -5 at transcript and protein
levels as compared to normal breast tissue, at levels dependent on cancer subtype and
stage [100,104,129]. AQP1 levels in clinical cases positively correlated with histological
grade, tumor size, lymph node metastasis, and distant metastasis; high AQP1 expression
was associated with poor prognosis, increased recurrence, and a higher death rate within
5 years as compared to patients with low AQP1 expression in breast cancers [104]. After
implantation in target organs, breast cancer metastatic tumors induce formation of new
blood vessels [125] in response to both hypoxia-induced-factor-1 (HIF 1) and estrogen-
activated AQP1 expression [99]. Tumor growth, VEGF signaling levels, vessel density, and
lung metastases were reduced in AQP1 null mice compared to wild type [130]. Targeting
AQP1 is emerging as a strategy of interest to reduce angiogenesis and tumor growth across
a wide range of cancer types.

Both increased and decreased levels of AQP3 expression have been suggested to have
beneficial effects in breast cancer. Knockdown of AQP3 reduced motility in breast cancer
cell lines in response to fibroblast growth factor [106,131], suggesting inhibition of AQP3
might control cancer cell migration. In contrast, an analysis of biopsy samples from HER2-
positive early breast cancer patients showed that high levels of AQP3 protein correlated
with longer periods of disease-free survival [100], pointing to a protective influence in vivo.
Increased expression of AQP3 enhanced the effectiveness of the chemotherapeutic agent 5-
fluorouracil, whereas downregulation of AQP3 reversed the cell cycle arrest [132], lowering
chemotherapy effectiveness. Data for AQP5 thus far suggest a negative contribution.
Combined levels of AQP3 and AQP5 protein in biopsy samples from TNBC patients
were positively associated with tumor size, lymph node metastasis, and likelihood of
relapse [133], indicating increased aquaporin expression was linked to poorer survival.
Knockdown of AQP5 by short hairpin RNA reduced proliferation and migration [134,135].
Opposing conclusions on the role of AQPs in breast cancer likely reflect the complexity of
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the system, highlighted by the diversity of breast cancer subtypes, and differences in the
experimental models used.

4.2. Endometrial Cancer

Endometrial cancer (EC) is the most common estrogen-dependent gynecological ma-
lignancy and the fifth or sixth most common cancer overall among females. In 2012, more
than 300,000 women worldwide were diagnosed with EC [136]. Abnormal vaginal bleeding
is an important diagnostic indicator, and treatment for EC in the non-invasive stage (stage
I) is typically surgical, involving hysterectomy and bilateral salpingo-oophorectomy, with
or without lymphadenectomy depending on the involvement of pelvic lymph nodes [137].
In biopsies from patients with different stage EC cancers, AQP3 protein expression was
correlated with histological grade [138]. Regulated by an ERE promoter, increased ex-
pression of the AQP2 gene after estrogen treatment increased motility in EC cells [96].
Knockdown of AQP2 or AQP5 in EC reduced growth and invasiveness [112]. AQP1 in
vascular endothelial cells also showed a positive correlation with tumor growth, histologic
grade, and extra-uterine metastases [78], suggesting a parallel role for angiogenesis in
aiding tumor growth and spread. Effective treatments are likely to require combined
targeting of the AQPs involved in complementary processes, in the cancer cells directly
and in the surrounding tissue environment.

4.3. Ovarian Cancer

Ovarian cancer is the sixth most common cancer overall and the fourth most common
gynecological cancer worldwide [139]. The risk of occurrence in women of ovarian cancer
is lowered by prolonged states of anovulation such as parity, reduced with first pregnancy
and progressively lowered with subsequent full term births [140]. However, no association
had been found between ovarian cancer and reproductive factors such as age of menar-
che, age of menopause, or breastfeeding [140]. Women usually present with nonspecific
symptoms such as abdominal pain and distention, which makes diagnosis of the cancer
difficult; retrospective analyses showed most cases were misdiagnosed as a gastrointestinal
pathology such as irritable bowel syndrome [141]. Because diagnoses are often delayed
until advanced stages, poor outcomes persist despite aggressive management [141].

AQPs 1, 2, 3, and 4 are expressed in granulosa and theca cells of non-cancerous ovarian
tissues [142]. Increased expression of AQPs 1, 3, 5, and 7 has been found in borderline and
malignant ovarian tumors [143]. AQP1 upregulation at transcript and protein levels in
ovarian cancer cells was associated with increased cancer growth, while deletion of AQP1
reduced growth, migration, and invasion [144]. Malignant ascites [145], the most common
complication of ovarian cancer, could involve AQP1 in the pathological accumulation of
fluids out of blood vessels into the peritoneal cavity, secondary to increased permeability
of capillaries and upregulation of VEGF [146].

Increased AQP3 protein in ovarian cancer cells was associated with EGF-stimulated
growth and migration, blocked by the natural product curcumin [147]. AQP5 levels in
ovarian cancer similarly have been correlated with tumor growth, as well as lymph node
metastasis and volume of malignant ascites [148], suggesting AQP5 could be a prognostic
factor [149]. AQP5 knockdown impaired growth and migration of epithelial ovarian cancer
cells [150] and sensitivity to chemotherapy [151]. In contrast, the downregulation of AQP6
and 9, and stable levels of AQP8 in ovarian cancer [152], highlight the idea that the complex
control systems for AQPs will require knowledge of subcellular localization, regulation by
signaling, and all permeant solutes to fully explain mechanisms of action.

4.4. Prostate Cancer

Prostate cancer (PC) is the second most common cancer among men worldwide [153].
The risk factors include positive family history and prolonged exposure to testosterone
and estrogen agonists [154]. Molecular screening has shown that a striking array of AQPs
(1, 3, 5, 6, 7, 8, 9, 10, and 11) are expressed at protein and transcript levels in PC cell lines,
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in human benign prostatic hypertrophy, and in normal prostate tissues [102]. Low levels
of expression of AQP3 and AQP9 were associated with more malignant PC tumors as
compared to well differentiated PC and normal prostate tissues [102]. The potential benefit
of high AQP3 levels in vivo contrasted with results from PC cell lines in which siRNA
knockdown of AQP3 reduced migration and invasion [122]. Decreased expression of AQP3
in PC cells increased tumor sensitivity to cryotherapy, a method used to selectively destroy
PC tumors while preserving vital structures such as bladder and bowel [155]. AQP9 gene
silencing induced cell apoptosis and reduced migration and invasiveness of PC cells [156].
The aquaglyceroporin classes AQPs 3 and 9 appear to be interesting targets for intervention
in prostate cancer progression, but mechanisms of action remain to be fully defined.

5. Non-Estrogen Dependent Tumors:

Tumors traditionally classified as non-estrogen-dependent (testicular and cervical) are
characterized by a lack of ERs, yet, counterintuitively, effects of estrogen in the progression
of these cancers have been noted. Actions of estrogen in initiation and progression of
tumors previously designated as non-estrogen-dependent [157–160] suggests the hormone
affects other cells or the tumor cell environment in testicular and cervical tissues to stimulate
cancer progression, despite the absence of ERs on the cancer cells themselves. Properties of
tumors classically described as estrogen-independent are summarized below for testicular
and cervical cancers.

5.1. Testicular Cancer

Testicular cancer is the most common reproductive cancer among young men (15–44 years)
in developed countries, accounting for 1% of male cancers worldwide. The risk of testicular
cancer has been linked to exposure to environmental toxins in the maternal uterus [161], as
well as other factors including cryptorchidism (undescended testes), male infertility, AIDS, low
birth weight, and pre-mature birth [162]. A patient may present with painful testicular mass;
scrotal swelling; or, more rarely, with metastatic features such as headache, low backache, or
retroperitoneal lymphadenopathy [163]. Sites of metastasis are most commonly the local and
distant lymph nodes, rete testis, and scrotum, and more rarely to the lungs and brain in late
stages. An online database search for published work on AQPs associated with testicular cancer
yielded no hits (PubMed, 12 Dec 2020), identifying a gap in knowledge in the field.

5.2. Cervical Cancer

Cervical cancer is the third most common cancer worldwide and the most frequent
gynecological cancer among females [164]. The incidence of cervical cancer in developed
countries has declined in recent years as a result of regular screening and early detection
programs in accord with World Health Organization guidelines. Primary risk factors
for cervical cancer are human papilloma virus (HPV) infection superimposed with HIV,
and additional factors include an early age of starting sexual intercourse, multiple sexual
partners, and unprotected sex [165]. Sites of metastasis typically involve the vagina,
kidneys, and pelvic lymph nodes, and rarely more distant organs, treated by surgical
resection in non-advanced cases and radiotherapy and/or chemotherapy in advances cases
involving metastasis [165]. AQPs 1, 3, 5, and 8 are upregulated at both the transcript
and protein levels in cervical intraepithelial neoplasia and cervical cancers as compared
with normal tissue [166–169]. Increased AQP1 expression has been suggested to facilitate
the progression from cervical intraepithelial neoplasia to cancer [101]. Increased AQP5
expression appears to be associated with lymph node involvement and poor prognosis
in cervical cancer [167]. Expression, localization, interactions, and roles of aquaporins in
cervical cancer remain an interesting area for further study.

6. Pharmacological Modulators of Aquaporins

An expanding array of pharmacological modulators of aquaporins include methylurea
compounds [170], organic metal compounds [171–173], bumetanide derivatives and other



Cells 2021, 10, 215 10 of 18

arylsulfonamides [71,174–176], tetraethylammonium [177–179], and alternative medicinal
constituents [180,181]. The diuretic acetazolamide, an antagonist of carbonic anhydrase
approved for treatment of an array of diseases including heart failure [182], has been
proposed to reduce AQP1 activity [183]. Acetazolamide reduced angiogenesis, tumor
growth, and tumor invasion in the Lewis lung carcinoma mouse model [184], effects
consistent with possible AQP1 downregulation [183,185], although other contributing
mechanisms of action need to be considered [186].

A synthetic series of bumetanide (AqB) and furosemide (AqF) derivatives includes
AQP1 inhibitors and activators [72,175]. AqB013, which blocks monomeric water pores,
and AqB011, which blocks the AQP1 central pore, individually reduced invasion and
migration in colon cancer cell lines, and together showed a synergist increase in anti-
migration efficacy [71,176,187], suggesting AQP1 enhancement of cell motility depends
on both water and ion channel functions. AqB013 induced apoptosis and inhibited tube
formation in murine endothelial and human umbilical vascular endothelial cell lines,
suggesting applications in reducing cancer-related angiogenesis [50,187].

Natural medicinal extracts are promising sources of AQP modulatory agents. Baco-
pasides I and II extracted from the Indian medicinal herb water hyssop (Bacopa monnieri)
differentially inhibited AQP1-mediated water and ion fluxes and reduced motility, inva-
siveness, and lamellipodial formation of HT29 colon cells [72,180]. Inhibition of AQP1
intrasubunit pores by Bacopaside II impaired stress-induced H2O2 influx, protecting against
hypertrophic heart disease in mouse and human cardiac models [54]. A Chinese herbal
medicinal extract, compound Kushing injection, reduced growth and invasiveness of colon
cancer, breast cancer, and glioblastoma cell lines and altered the expression of genes in-
cluding AQPs [188]; however, specific actions on AQP functions remain to be defined.
Ginsenoside was found to inhibit migration of prostate cancer cells in vitro by inhibiting
AQP1-dependent pathways [189], while curcumin was found to inhibit AQP3-mediated
cancer cell migration in human ovarian cancer cells [147]. The Chinese herbal medicine
Fuling has been shown in a meta-analysis of clinical trials to decrease endometriosis re-
currence, improve pregnancy outcomes, and relieve symptoms compared to standard
therapy alone [190]. Evaluation of possible anti-AQP activities of components isolated
from medicinal herb extracts merits further research. It is likely that many AQP modulatory
agents await discovery. Ultimately, a comprehensive database would allow matching of
AQP dependent pathways in cancer growth and metastasis with relevant pharmacological
inhibitors for customized anti-cancer combinations.

Aquaporins as Therapeutic Targets to Improve Cancer Outcomes

Cancer treatment options involve surgery, chemotherapy, and radiotherapy, which
can be used in combination and augmented with anti-angiogenic and check point inhibitor
agents. Despite progressive optimization of these tools to achieve the best clinical outcomes
possible, each treatment modality is limited by adverse outcomes that impose mental and
physical stress; psychological trauma; organ and tissue damage; and side effects such as
intractable vomiting, diarrhea, bone marrow suppression, and sepsis. New options and ad-
junct therapies to augment cancer treatment are keenly needed. One avenue being explored
for advancing cancer treatment strategies is targeting aquaporins. AQP knockout and
overexpression models, genomic and proteomic analyses, and pharmacological inhibitors
have provided lines of evidence suggesting potential value for pharmacological targeting
of AQPs in controlling tumor growth and invasion (Figure 4). Diverse subtypes, patterns
of expression, and functional roles in cancers offer an intriguing future for potentially high
resolution control of specific aspects of pathology and cancer progress.



Cells 2021, 10, 215 11 of 18

Cells 2021, 10, x FOR PEER REVIEW 11 of 19 
 

 

Aquaporins as Therapeutic Targets to Improve Cancer Outcomes 
Cancer treatment options involve surgery, chemotherapy, and radiotherapy, which 

can be used in combination and augmented with anti-angiogenic and check point inhibi-
tor agents. Despite progressive optimization of these tools to achieve the best clinical out-
comes possible, each treatment modality is limited by adverse outcomes that impose men-
tal and physical stress; psychological trauma; organ and tissue damage; and side effects 
such as intractable vomiting, diarrhea, bone marrow suppression, and sepsis. New op-
tions and adjunct therapies to augment cancer treatment are keenly needed. One avenue 
being explored for advancing cancer treatment strategies is targeting aquaporins. AQP 
knockout and overexpression models, genomic and proteomic analyses, and pharmaco-
logical inhibitors have provided lines of evidence suggesting potential value for pharma-
cological targeting of AQPs in controlling tumor growth and invasion (Figure 4). Diverse 
subtypes, patterns of expression, and functional roles in cancers offer an intriguing future 
for potentially high resolution control of specific aspects of pathology and cancer pro-
gress. 

 
Figure 4. Diagram of the diverse areas of involvement of aquaporins in cancer growth and inva-
sion. Facilitated transport of solutes and signaling molecules across cell membranes via aquaporin 
channels is linked to clinically important processes of cancer metastasis, angiogenesis, prolifera-
tion, and resistance to apoptosis. 

7. Conclusions 
In normal physiology, AQPs serve as essential modulators of fluid transport and ho-

meostasis in multiple organs and tissues. In pathological cancer conditions, aquaporins 
are implicated in the growth, migration, invasion, and angiogenesis, contributing to can-
cer progression and the life-threatening process of metastasis. Basic research and pre-clin-
ical and clinical studies have demonstrated that the expression of certain aquaporins, no-
tably AQP1 and AQP5, are increased in cancerous tissues compared to normal tissues, 
and correspond to level of malignancy. Others including the aquaglyceroporins can show 
an inverse association, with decreased levels of expression appearing to link to poor out-
comes. Ongoing research will continue to elucidate properties and mechanisms of regu-
lation of signaling pathways mediated by AQPs in tumorigenesis. Pharmacological block-
ers of aquaporin channels are being viewed as promising tools for improving cancer treat-
ment, particularly in combinations that could synergistically slow the parallel processes 
of proliferation, angiogenesis, and invasiveness that subserve cancer progression (Figure 
4) and render cancer therapy such a difficult healthcare challenge. Expanding research on 
pharmacological modulators of aquaporins is anticipated to hold breakthrough opportu-
nities to improve outcomes for reproductive cancers, other cancer types, and more 
broadly for AQP-related diseases. 

Figure 4. Diagram of the diverse areas of involvement of aquaporins in cancer growth and invasion.
Facilitated transport of solutes and signaling molecules across cell membranes via aquaporin channels
is linked to clinically important processes of cancer metastasis, angiogenesis, proliferation, and
resistance to apoptosis.

7. Conclusions

In normal physiology, AQPs serve as essential modulators of fluid transport and
homeostasis in multiple organs and tissues. In pathological cancer conditions, aquaporins
are implicated in the growth, migration, invasion, and angiogenesis, contributing to cancer
progression and the life-threatening process of metastasis. Basic research and pre-clinical
and clinical studies have demonstrated that the expression of certain aquaporins, notably
AQP1 and AQP5, are increased in cancerous tissues compared to normal tissues, and
correspond to level of malignancy. Others including the aquaglyceroporins can show an
inverse association, with decreased levels of expression appearing to link to poor outcomes.
Ongoing research will continue to elucidate properties and mechanisms of regulation of
signaling pathways mediated by AQPs in tumorigenesis. Pharmacological blockers of
aquaporin channels are being viewed as promising tools for improving cancer treatment,
particularly in combinations that could synergistically slow the parallel processes of prolif-
eration, angiogenesis, and invasiveness that subserve cancer progression (Figure 4) and
render cancer therapy such a difficult healthcare challenge. Expanding research on phar-
macological modulators of aquaporins is anticipated to hold breakthrough opportunities
to improve outcomes for reproductive cancers, other cancer types, and more broadly for
AQP-related diseases.
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