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Abstract: As we know, with continuous medical progress, the treatment of many diseases can be
conducted via surgery, which often relies on general anaesthesia for its satisfactory performance. With
the widespread use of general anaesthetics, people are beginning to question the safety of general
anaesthesia and there is a growing interest in central nervous system (CNS) complications associated
with anaesthetics. Recently, abundant evidence has suggested that both blood–brain barrier (BBB)
dysfunction and neuroinflammation play roles in the development of CNS complications after
anaesthesia. Whether there is a crosstalk between BBB dysfunction and neuroinflammation after
general anaesthesia, and whether this possible crosstalk could be a therapeutic target for CNS
complications after general anaesthesia needs to be clarified by further studies.
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1. Introduction

The continuous enhancement and refinement of surgery throughout the past decades
could not have been achieved without the evolution of anaesthesia techniques and drugs.
Advances in anaesthesia have made it possible to perform complex and long-term sur-
gical procedures with safety and stability, making us believe that the development of
anaesthesia can be considered one of the greatest achievements of medicine. Anaesthetics
induce a controlled, reversible loss of consciousness by binding to specific receptors in
the central nervous system (CNS), ensuring optimum conditions for patients undergoing
surgery [1]. Clinical use of anaesthetics has generally been considered safe and effective
before a growing number of studies in recent years have begun to question their safety.
Several clinical and animal findings have proposed that anaesthetic drugs may induce long-
term morphological and functional changes in the CNS with adverse effects [2–5]. Concerns
about the potential neurotoxicity of anaesthetic drugs are growing [6]. Over recent years,
an increasing number of studies have begun to focus on the close relationship between
general-anaesthesia-induced neurocognitive dysfunction and neuroinflammation [7–9].

Normally, inflammation acts as a defensive response when exposed to destructive
stimuli, but it becomes negatively impacted when it is abnormally amplified or becomes
uncontrolled. As the target organ of general anaesthesia, the systemic inflammatory
response could have a profound effect on the brain. Neuroinflammation as an inherent
immune defence mechanism of the body plays an important role in maintaining the
normal structure and function of the brain, but it is also an important factor contributing
to neurodegenerative lesions and causing neuronal death [10]. It has been noted that
the inflammatory response of the central nervous system is characteristic of almost all
neurological disorders [11,12]. Under physiological conditions, a low expression level of
inflammatory factors in the CNS is observed, and the expression levels of inflammatory
cytokines such as IL-1β and tumour necrosis factor-α(TNF-α) are increased by varying
degrees when there exists infection, surgical stimulation, or a stressful state in the CNS [13].
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To maintain homeostasis of brain tissue, a selective physical barrier is formed by
a continuous layer of endothelial cells (ECs) connected by tight junctions (TJs), together
with pericytes, astrocytes, microglia, and the surrounding basement membrane, which
separates blood flow from brain parenchyma and regulates the movement of substances
between the CNS and the periphery; this barrier is called the blood–brain barrier (BBB)
(Figure 1). Research has indicated that dysfunction of the BBB is strongly associated
with CNS diseases such as Alzheimer’s disease, Parkinson’s disease, amyotrophic lateral
sclerosis, multiple sclerosis, and stroke [14].
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Figure 1. Schematic diagram of the blood–brain barrier (BBB). BBB consists of continuous endothelial
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and the surrounding basement membrane form a barrier.

The role of neuroinflammation in CNS complications associated with anaesthesia
has received much attention and attracted the focus of researchers in recent years. It is
hoped that the targeted therapy of neuroinflammation will improve brain dysfunction after
anaesthesia, but further exploration of how anaesthesia triggers neuroinflammation is still
underway. At this point, many studies have also observed that clinically used anaesthetics
may disrupt the integrity of the BBB [15–18]. Thus, both neuroinflammation and BBB
dysfunction have been observed following the use of narcotic drugs, yet the relationships
between them, if any, have not yet been established.

In this review, we first briefly describe the function and structure of the BBB and
then explore the effects of inflammation that affect the major components of the BBB.
Next, we discuss microglia and astrocytes, which have been closely associated with the
development of neuroinflammation, as well as the interactions between them. Particularly,
we summarize recent advances in neuroinflammation and BBB destruction triggered by
commonly used clinical anaesthetics, and propose potential future research directions as
well as the possibility of improving anaesthetic-drug-related CNS complications through
targeted control of neuroinflammation associated with BBB disorders.
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2. The Blood–Brain-Barrier (BBB)
2.1. The Generation of BBB

The formation of CNS vasculature begins in early embryonic stages, and the inter-
actions between neuroectodermal endodermal precursor cells as well as their correlated
signal mechanisms play a key role in the development and maintenance of the CNS [19].
Endothelial tight junctions (TJs), nutrient transporters, numerous transcellular vesicles, and
high expression of leukocyte adhesion molecules are present in blood vessels formed at
the embryonic stage; however, TJs become more robust and complex, efflux transporters
increase, and leukocyte adhesion factors are downregulated only when close contact is
established with astrocytes and pericytes, achieving structural and functional maturation of
the BBB [20,21], and astrocyte-derived sonic hedgehog (Shh) can impart different properties
to BBB ECs from other tissue ECs [22]. Simultaneously, binding of pericytes to ECs triggers
TGF-β production that maintains BBB permeability and produces extracellular matrix as
well as extracellular matrix-expressing N-calcineurin [13,23], being a dynamic component
of the BBB, the extracellular matrix regulates the structure and function of the BBB by
affecting cell–cell and cell–matrix interactions [24], enhancing endothelial–pericyte interac-
tions and further increasing pericyte binding on ECs, which are essential for maintaining
BBB homeostasis [25]. All of the ECs, pericytes, astrocytes, and the basement membrane
between them contribute to the BBB which is essential to maintain the function and integrity
of the BBB [26].

2.2. Endothelial Cells (ECs)

The ECs are modified squamous epithelial cells of mesodermal origin participating in
the formation of the vessel wall, anchored to the basement membrane with the help of cell
adhesion molecules [27]. The structure and function of ECs on the BBB differ from those of
other tissues (Figure 2), the existence of polarity in BBB ECs controls the directional move-
ment of ions, molecules, and immune cells from the circulation to the CNS [28]. Moreover,
BBB ECs have more mitochondria than those from peripheral tissues [29]. The presence of
TJs between ECs constitutes a unique barrier characteristic of BBB which reduces paracel-
lular transport, while transcellular transport is also hampered by the loss of fenestrations
and reduced transcytosis [30,31]. Beyond this, BBB ECs have specific inward (e.g., glucose
transporter protein 1) and outward transporters (e.g., P-gp (P-glycoprotein)) [14]. Concur-
rently, a marked downregulation of leukocyte adhesion molecule expression in BBB ECs
restricted the entry of immune cells into the CNS [32], while several important adhesion
molecules such as PECAM-1, activated leukocyte cell adhesion molecule, ICAM-1, ICAM-2,
CD99, and CD99-L2 were expressed to participate in the migration of leukocytes on BBB
ECs [33]. These specificities of BBB ECs facilitate the selective movement of substances
between peripheral tissues and the CNS, and provide an effective barrier to the brain, with
participation in maintaining a stable microenvironment for neurons.

In addition, vascular endothelial calcium adhesin resides between ECs (Figure 2); it
regulates the shape, polarity, and lumen formation of ECs and is involved in the mainte-
nance of vascular integrity and permeability through intracellular signal pathways and
transcription factors as well as regulating ECs transcription and protecting ECs from
apoptosis [34,35], which plays a key role in maintaining the integrity of BBB ECs [27].
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Figure 2. Structure and function of the main components of BBB. BBB ECs have a characteristic
expression that differs from other ECs: a large number of mitochondria in the cytoplasm, characteristic
inward transporters such as GLUT1 (glucose transporter protein 1), and outward transporters such
as P-gp, as well as expression of adhesion molecules such as PECAM-1, ALCAM (activated leukocyte
cell adhesion molecule), ICAM-1, ICAM-2, CD99, and CD99-L2, together with a specific VE-cadherin
(vascular endothelial calcium adhesin) expression between ECs. Pericytes secrete TGF-β and N-
calcineurin involved in maintaining BBB structure. TJs are mainly composed of claudins, occludins,
and junctional adhesion molecules (JAMs), where claudins and occludins proteins are connected to
the cytoskeleton by ZO proteins. Astrocytes are involved in maintaining BBB homeostasis through
the secretion of Shh, Sox-18, Netrin-1, Ang-1, and ApoE.
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2.3. Tight Junctions (TJs)

TJs between ECs constitute a unique barrier property of the BBB [36]. The presence
of TJs causes an asymmetric distribution of ECs apical and basolateral cell membranes
contributing to control of the permeability of the paracellular pathway across the BBB [37].
TJs consist of several different transmembrane proteins such as claudins, occludins, and
junctional adhesion molecules (JAMs) (Figure 2) [38]. There are 25 known members of
the claudin family with tissue-specific expression, claudin-1, -3, -5, -11, and -12 are mainly
expressed in the CNS, furthermore, claudin-3, -5, and -12 are expressed in brain ECs where
they participate in the maintenance of BBB function [39]. Occludins were the first TJ
protein identified, and they form tight TJs through extracellular loop interactions, while
the intracellular loop interacts with the band of ZO protein [26].JAMs belong to the CD2
subgroup of the Ig superfamily, and the main ones expressed on TJs in human BBB are
JAM-A and JAM-C [40,41]. BBB JAMs can interact with integrin molecules expressed on
the surface of various leukocytes, including T lymphocytes [42], which suggests that they
may be involved in the migration of leukocytes in the BBB. TJ proteins are connected
to the cytoskeleton via a multi-structured domain scaffold ZO protein [43]. ZO proteins
contain three PSD-95/discharge/Zonula occludens-1 (PDZ) domains at their N termini,
src-homology-3domain, and a region homologous to guanylate kinase [44]. ZO-1 interacts
with the C-terminus of claudins through the PDZ-1 domain, and PDZ-2 and PDZ-3 mediate
the interaction with occludin and JAMs [45,46].

2.4. Pericytes

The Pericytes are mesodermal-derived cells covering the CNS capillaries to regulate
vascular stability, diameter, cerebral blood flow, and extracellular membrane protein se-
cretion [13,47]. The BBB ECs and their associated pericytes both produce TGF-β, which is
involved in regulating the maintenance of BBB properties and possess functional TGF-β
receptors [48,49]. TGF-β signal in pericytes triggers the production of extracellular matrix
molecules such as laminin, however, among BBB ECs, the TGF-β signal induces calbindin-2
(also known as N-calbindin) to promote pericyte adhesion (Figure 2) [50]. A defective
TGF-β signal can lead to a detachment of pericytes from the CNS vasculature and lead
to an increased BBB permeability and haemorrhage [51]. The above studies implied that
the close association between BBB ECs and pericytes contributes to the regulation of trans-
endothelial migration of leukocytes in homeostatic conditions as well as being involved in
the maintenance of BBB homeostasis.

2.5. Astrocytes

One of the major cell types in the CNS, astrocytes are derived from radial glial cells [52],
modulating the permeability of the BBB by forming firm contacts with the surface of CNS
vessels through transmembrane anchoring proteins such as β-myotonic dystrophy protein
and aquaporin 4 [53]. Astrocytes are known to play an important role in the acquisition
and maintenance of BBB barrier properties and immune function via autocrine signals
(Figure 2) [54]: a. The secreted glycoprotein Shh binds to the Patched-1 receptor at the
surface of BBB ECs and engages in CNS-related morphogenesis through smooth molecule-
induced signals [22,55]. b. Secretion of Sox-18 regulates the expression of claudin-5 in
BBB [56]. c. The netrin-1 signal is secreted to regulate the expression of TJ molecules and
inhibit the expression of CAMs [57]. d. The secreted Ang-1 binds to the receptor tyrosine
kinase Tie-2 located on the surface of ECs, promotes angiogenesis, upregulates TJ molecules,
and maintains BBB stability [58]. e. Secreting ApoE-containing lipoprotein particles takes
part in maintaining the integrity of the BBB [59,60].

3. BBB and Inflammation

BBB strictly monitors the peripheral environment and regulates the entry of inflam-
matory factors, cells, and other substances into the CNS. The cellular and non-cellular
components that exist in the BBB play their respective functions while working in concert
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with each other to maintain BBB homeostasis. Any of these components, directly or in-
directly affected by inflammation, can lead to disruption of the BBB. It has been proven
that activation of pro-inflammatory cytokines or enhanced pro-inflammatory responses
can also directly impair the structure of BBB by increasing the permeability of ECs and
disrupting the ZO-1 cell–cell border [61]. Recent studies have reported that inflammatory
factors from the periphery entering the CNS after BBB fracture can further contribute to
the development of neuroinflammation [62,63]. The disruption of BBB stability is closely
associated with the development of neuroinflammation; next we delve into the role played
by the various components of the BBB in the development of neuroinflammation and the
changes they may undergo in the inflamed state.

3.1. Damage to ECs Is a Key Component of Neuroinflammation

Pro-inflammatory cytokines are accessible to the CNS directly through specific re-
ceptors and transporters on the surface of ECs crossing the BBB or the periventricular
zone of the BBB [64]. Lipopolysaccharide (LPS) is an immunogenic component of Gram-
negative bacteria and is widely used to model systemic inflammation. It was found that
LPS could exert direct toxic effects on BBB ECs through repressing the activity of the out-
ward transporter P-gp and inducing the secretion of matrix metalloproteinases, leading
to cell membrane damage, endoplasmic reticulum stress and mitochondrial damage in
BBB ECs, and ultimately triggering apoptosis (Figure 3) [65,66]. Meanwhile, inflammatory
factor IL-1β may disrupt the integrity of the BBB by disrupting intercellular junctions and
intercellular matrix adhesion of ECs [67]. In this section, we found that inflammation can
have particularly severe effects on ECs via diverse mechanisms and that activation and
dysfunction of BBB ECs in response to inflammatory stimuli are currently considered initial
events in the development of neuroinflammation [68]. Therefore, disruption of ECs may be
a key link in neuroinflammation associated with BBB dysfunction.

3.2. Inflammation Disrupts the Components of TJs

It has been revealed that inflammatory factors IL-1β, IL-6, IL-9, IL-17, IFN-γ, TNF-α,
and CCL2 contribute to the destruction of TJs (Figure 3) [67,69–71]. As claudin-5 is the
most important TJ protein associated with BBB selective permeability, it has been found
that inflammation can lead to degeneration, downregulation of claudin-5 expression, and
discontinuous distribution on the plasma membrane of ECs with further BBB disrup-
tion [67,72,73]. Apart from claudin-5, degradation of the occludin has been observed in
LPS-induced systemic inflammation [74], and a more recent study has also shown that
peripheral inflammatory cytokines reduce ZO-1 expression [75]. These studies tell us that
the inflammatory state directly affects various aspects of the BBB TJs in a very critical way
and further leads to BBB dysfunction through the disruption of the TJs.

3.3. Pericytes Expand the Inflammatory Response

One study observed that pericytes are a key source of neuroinflammation in cocaine-
mediated neuroinflammation [76]. Pericyte-derived inflammatory mediators can also
exert an enhanced inflammatory response and regulate the transport of immune cells to
the CNS, playing a role in the maintenance of local inflammation [77]. Growing studies
have also shown that the role of pericytes in promoting inflammatory responses can
further lead to BBB destruction (Figure 3) [78,79]. Thereby, we know that when pericytes
detect inflammatory stimuli, they can further amplify neuroinflammation and cause the
destruction of the BBB.

In summary, inflammation may not only act directly on the various components of
the BBB resulting in its destruction but may also trigger further neuroinflammation by
acting on the BBB components. Of these, ECs are the primary targets for inflammation,
which disrupts EC homeostasis and eventually triggers apoptosis, then, interrupts the
connections between ECs by disrupting the extracellular matrix and degrading TJ proteins
that lead to increased permeability of BBB, while pericytes mainly play a role in amplifying
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inflammation. Astrocytes, a key component of the BBB, are not discussed here, as we
will explain later in the section “Glial Cells and Neuroinflammation”. Next, we turn our
attention to astrocytes and microglia.
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Figure 3. Schematic representation of BBB destruction due to inflammatory factors. Inflammatory fac-
tors can cause membrane damage, endoplasmic reticulum stress, and mitochondrial damage in ECs,
disrupting TJs between ECs, leading to astrocyte proliferation activation, structural changes, secretion
of VEGF-A, activation of eNOS signaling, degradation of TJ proteins, and ultimately neuroinflamma-
tion, at which point pericytes can amplify the inflammatory response. When inflammatory factors act
on microglia, they can contribute to the activation of MI microglia which can lead to the secretion of
pro-inflammatory factors, destruction of TJ proteins, promotion of leukocyte migration, induction of
oxidative stress, and triggering of neuroinflammation. During this process, there is also a crosstalk
between microglia and astrocytes.

4. Glia Cells and Neuroinflammation

In the CNS, the occurrence of inflammation is mainly mediated by the activation of
glial cells, especially astrocytes and microglia, which have been shown to cause prolonged
activation leading to synaptic depression and cognitive dysfunction [63,80], neuroinflam-
mation [63,81], and ultimately neurodegeneration [82,83].

4.1. Astrocytes as Mediators between Peripheral Inflammation and Neuroinflammation

Astrocytes are the dominant glial cells in the CNS numerically and play a key role in
the maintenance of CNS homeostasis and related processes such as immune regulation
through autocrine and paracrine signals [84]. Astrocytes have been shown to influence
BBB permeability and infiltration of peripheral immune cells during the immune trigger
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or inflammatory phase [85]. Endotoxin-induced peripheral inflammation can also cause
astrocytes proliferation, activation, altered end-foot structure, and other related gene
expression alterations which collectively or indirectly lead to BBB destruction [86,87].
Inflammatory factors can increase BBB permeability by facilitating VEGF-A secretion from
astrocytes, activating eNOS signal in ECs, and decreasing TJ protein occludin and claudin-5
expression, leading to inflammatory factors entering the CNS triggering neuroinflammation
(Figure 3) [69,88]. Additionally, it has been found that the astrocytic protein S100 calcium-
binding protein β (S100β), which is widespread in the brain, acts mainly as a neurotrophic
or supportive factor when it is lowly expressed [89]; however, when expressed at elevated
levels it may directly cause neuronal damage [90] and may also further activate microglia
and astrocytes [91] and eventually induce reactive oxygen species (ROS) in microglia [92,93].

In addition to directly damaging the BBB, the above study suggests that inflamma-
tory factors produced by peripheral tissues may also cause adverse effects on ECs and
TJs through astrocytes, further promoting the development of neuroinflammation. Astro-
cytes may play a role in amplifying inflammation and act as a focal point for peripheral
and neuroinflammation, and the astrocyte protein S100β is probably a biomarker for the
development of neuroinflammation.

4.2. M1-Type Microglia Can Facilitate the Development of Neuroinflammation and Can also
Disrupt the BBB

Microglia, as the major phagocytes in the brain, maintain brain homeostasis by en-
gulfing cellular debris, absorbing harmful substances, and removing pathogens or necrotic
cells. However, inflammation can prompt morphological changes in microglia and the
upregulation of their specific expression of inflammatory signal receptors such as Toll-like
receptor 4 (TLR-4) [94,95], which in turn activate microglia and further induce the devel-
opment of CNS neuroinflammation, especially in hippocampal tissue [96,97]. Activated
microglia have distinct functional phenotypes, including classically activated M1 microglia
and alternatively-activated M2 microglia, which exert cytotoxic or neuroprotective effects,
respectively [98].

M1 microglia can produce a variety of pro-inflammatory molecules, including but not
limited to inflammatory cytokines, inducible nitric oxide synthase, nitric oxide, TNF-α,
reactive oxygen species, and IL-6. Some studies have shown that inflammation-activated
microglia can cause BBB destruction [99,100]. The massive release of inflammatory cy-
tokines enhances the damage and destruction of the BBB through interactions with the BBB,
including disruption of TJs activity, increase in paracellular permeability, promotion of
leukocyte migration, and induction of adsorptive endocytosis, directly contributing to the
inflammatory onset and damage of the BBB (Figure 3) [64,101]. IL-6 decreases the levels of
claudin-5 and occludin in cerebral microvasculature [102]. Nitric oxide synthase decreases
ZO-1 expression and increases BBB leakage through nitric oxide production [103] and the
formation of peroxynitrite [104]. Alternatively, ROS irreversibly destroy cellular lipids,
proteins, and DNA, which ultimately leads to cell death [105] and provides a common
trigger mechanism for many downstream pathways that directly target and damage the
BBB, such as oxidative damage, tight junction modifications, and matrix metalloproteinase
activation [106], which in turn disrupt BBB homeostasis.

M2 microglia, on the other hand, phagocytose cellular debris and inhibit the de-
velopment of inflammatory responses, facilitating the recovery and reduction of BBB
injury [107,108]. M2 microglia have been shown to produce several anti-inflammatory
cytokines such as IL-10, IL-4, and IL-13, thereby attenuating inflammatory damage to
the BBB. IL-10 downregulates deleterious ROS-producing enzymes and/or upregulates
antioxidant pathways to hinder the occurrence of ROS in ECs [109]. IL-4 and IL-13 directly
promote phenotypic polarization of M2 microglia [110] and also inhibit the secretion of
various pro-inflammatory mediators such as IL-6, IL-1β, TNF-α, and ROS [111,112].

Therefore, we know that activation of microglia with M1-type microglia predominance
promotes the development of neuroinflammation and is closely related to the disruption of
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BBB homeostasis, while M2-type microglia predominance exerts a protective effect against
the CNS.

4.3. Crosstalk between Microglia and Astrocytes

Interestingly, astrocytes and microglia do not independently act in the development
of neuroinflammation, the crosstalk between astrocytes and microglia is very significant
(Figure 3). Astrocytes indirectly activate microglia by inducing microglia CCR2 overex-
pression through the CCL2-CCR2 signal pathway, and blockade of CCR2 expression can
attenuate inflammatory responses in microglia and improve cognitive function changes
induced by neuroinflammation [113]. However, at the same time, astrocyte activation
depends on microglia to a large extent. Activated microglia can also be induced to generate
neurotoxic astrocytes via the complement cascade (C5, C3, and C1q) [114,115]. Recent stud-
ies have shown that microglia can also activate astrocytes [116,117]. Elimination of early
microglia activation in hippocampal tissue diminishes long-term hippocampal astrocyte ac-
tivation induced by etomidate [118]. It has also been demonstrated that microglia activated
by endothelial cells and microglia activated by astrocytes have different phenotypes [119].

This information hints to us that there may be an interaction between microglia and
astrocytes, and that there may be a “switch” involved in the balance between neuroinflam-
mation and functional homeostasis in the brain.

5. Anaesthetics

General anaesthesia has been considered completely reversible in the past, and it was
thought that although anaesthetic could cause significant changes in consciousness, it did
not leave residual effects. However, there is growing evidence that general anaesthesia
is not simply an “immediate reversible condition” but can affect neuronal function and
disrupt CNS homeostasis, with acute and even long-term effects on the CNS [120–122].
To better treat anaesthesia-related CNS complications, we must master the mechanisms
of their occurrence before targeting treatment. Multiple studies have demonstrated that
anaesthetics modulate microglia activation in a time- and dose-dependent manner, trigger-
ing neuroinflammation and leading to undesirable CNS effects [123–126]. However, the
specific mechanism of neuroinflammation due to general anaesthesia is not clear yet, and
this issue awaits further studies addressing the neurotoxicity of anaesthetics. Subsequently,
we will list some commonly used clinical anaesthetics for their role in the development of
neuroinflammation and BBB dysfunction.

5.1. Propofol

Propofol is an ultrashort-acting intravenous anaesthetic drug [127] that causes in-
creased Cl inward flow and hyperpolarization of neurons through binding to GABA-A
receptors, ultimately leading to patient unresponsiveness to external stimuli [128,129].
Propofol was observed to cause apoptosis in CNS astrocytes in a cell-based assay, while
a single dose of propofol was observed to inhibit microglia function and cause paradoxical
behavioural manifestations in depressed mice, these studies revealed that propofol acts
on glial cells interfering with brain homeostasis and neuroinflammation as well as being
associated with decreased neurocognitive function [130,131]. It is also recently noted that
propofol evokes severe neurotoxicity and is closely associated with the destruction of the
BBB due to inflammation and injury of ECs [132]. The outcomes of the proteomic analysis
suggest that propofol can negatively affect blood–brain barrier function by interfering
with oxygen metabolism, DNA damage recognition, and response to stress [133]. ECs
exposed to propofol also exhibit lower resistance and increased permeability, suggesting
increased BBB permeability [15]. Additionally, it has been suggested that the disruption
of BBB permeability in the developing brain by propofol also has long-term effects in
adulthood [134].

These studies have allowed us to understand that propofol application has a long-term
and profound effect on neuroinflammation and BBB disruption, but the exact mechanisms
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and connections are still unclear to us, and we expect that more studies will follow to focus
on and investigate this issue to promote perioperative brain function homeostasis.

5.2. Inhalation Anaesthesia

Some early studies suggested that inhaled anaesthetic drugs could exert a cerebral
protective effect by inhibiting BBB destruction [135–137]. However, studies in recent years
have drawn different conclusions. ECs of rats exposed to the inhaled anaesthetic sevoflu-
rane had significantly flattened luminal surfaces, showed ageing-related BBB damage, and
weakened or disrupted BBB-associated tight junctions, thus disrupting brain homeostasis
and perturbing neuronal function [18]. Hu et al. also noted that sevoflurane exposure
exacerbated surgical stimulation-induced decrease in occludin expression and increase
in matrix metalloproteinase protein expression, thereby exacerbating the damage to the
BBB [138]. At the same time, clinically concentrated isoflurane leads to an immediate and
significant increase in membrane fluidity in various membrane systems [139] and reversibly
causes concentration- and time-dependent morphological damage to BBB ultrastructure
and a significant decrease in tight junction protein occlusion protein expression ultimately
leads to an increase in BBB permeability [140]. Research in the recent two years has also
observed a correlation between sevoflurane inhalation anaesthesia and neuroinflammation.
It was found that sevoflurane induced neuroinflammation by inhibiting PI3K/Akt/mTOR
pathway signal [16,141] and the infusion of NAD-dependent deacetylase protein Sirtuin
3 into the hippocampus via a viral vector suppressed neuroinflammation and improved
anaesthesia- and surgery-induced cognitive dysfunction [142]. These findings suggest
that sevoflurane inhalation can cause cognitive impairment and is closely associated with
hippocampal neuroinflammation.

To sum up, we noted a significant association between both inhaled anaesthetics
and BBB destruction as well as neuroinflammation, however, there are no specific studies
suggesting a link between the occurrence of BBB destruction and neuroinflammation
mediated by inhaled anaesthetics. Is there a causal relationship or a reciprocal causal
cascade amplification effect between these two? We believe this to be a question worth
exploring and the underlying mechanisms require further exploration.

5.3. Opioids

Opioids mainly act on the central nervous system and are widely used in clinical
anaesthesia for their analgesic effects. Opioid receptors are available in microglia, one
study showed that morphine induced a dose-dependent decrease in the viability of BV-2
microglia and mouse primary microglia in an opioid-receptor-dependent manner, which
triggered neuronal apoptosis [143]. It was also found in vitro that morphine application
enhanced the LPS-induced release of inflammatory cytokines from microglia [144]. In
addition to this, opioids can also affect microglia activity by binding to the innate immune
receptor TLR4-related myeloid differentiation factor-2 (MD2) [145]. A significant increase
in microglia Toll-like receptor 4 (TLR4) mRNA and protein expression was observed in
morphine-exposed adolescent rats and was significantly associated with neuroinflam-
mation. Interestingly, in rats, morphine-mediated microglia TLR4 activation was also
gender-specific, with females showing a greater specificity for morphine [126,146]. In vitro,
morphine triggers the activation of NOD-like receptor protein 3 (NLRP3), inflammatory
vesicles, and inflammation in BV-2 microglia. Similarly, Peter et al. applied pharmacologi-
cal and genetic approaches which observed that morphine induces NLRP3 inflammatory
vesicles and subsequent IL-1β release in the spinal cord, that result in the subsequent
development of long-term chronic pain. Furthermore, morphine also maintains the activa-
tion of NLRP3 inflammatory vesicles through the sustained release of damage-associated
molecular patterns in a positive feedback manner [147–149]. Besides, it has been shown
that opioids inhibit astrocyte synthesis and cause cellular hypertrophy as well as increase
ROS concentrations [150,151]. Opioids such as morphine have also been shown to alter
tight junction protein expression, leading to the disruption of BBB [152].
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It is clear that opioid use in clinical anaesthesia is strongly associated with neuroin-
flammation. Moreover, this effect is achieved by activation of microglia, yet further stud-
ies are needed to confirm whether opioid-derived neuroinflammation is associated with
BBB destruction.

5.4. Different α2-Agonists

α2-agonists are a commonly used sedative drug in clinical anaesthesia, acting on
widely expressed α2-adrenergic receptors in the CNS to exert sedation, analgesia, brady-
cardia, hypotension, and hypothermic effects [153]. Unlike other anaesthetics, α2-agonists
exert an anti-inflammatory and neuroprotective effect in the CNS. In cultured microglia
activated by LPS, the commonly used α2-agonist dexmedetomidine (DEX) inhibited the pro-
duction and release of inflammatory mediators and cytokines including iNOS or NO, IL-1β,
and TNF-α in a dose-dependent manner [154,155], while impeding microglia activation and
enhancing microglia phagocytosis [156,157]. Apart from this, various assays have shown
the anti-inflammatory and neuroprotective effects of DEX mediated by miRNAs. The
enhanced miRNA-381 and inhibition of the Egr1/p53 pathway induced by DEX in mice un-
dergoing sevoflurane anaesthesia were associated with apoptosis of hippocampal neurons,
DNA [158] injury, neuroinflammation, and lower cognitive impairment [159], with antago-
nistic effects in different pathological models of neuroinflammation, ischemia-reperfusion
injury, and anaesthesia-induced neurotoxicity [154,160–162]. MiR-155 is a critical miRNA
in BBB-associated neuroinflammation and has a negative regulatory effect on BBB [163].
Paeschke et al. observed miRNA-155 upregulation in the hippocampus, cortex, and plasma
expression in a time-dependent manner during LPS-induced neuroinflammation, while
DEX treatment significantly attenuated this effect [164].

By reviewing the studies related to α2-agonists, it is clear that it exerts neuroprotective
effects through different mechanisms, and we note that there may be a correlation between
the inhibition of neuroinflammation and the function of the BBB for this effect. However,
there are no relevant studies to confirm this association. Future studies are needed to
explore such possibilities and contribute to perioperative brain homeostasis.

6. Conclusions and Future Directions

In the “Anaesthesia” section, we summarized some commonly used perioperative
anaesthetic drugs such as propofol, inhaled anaesthetics, opioids, and α2-agonists for their
roles in neuroinflammation and BBB function. We noticed a tight association between
several anaesthetics and the development of neuroinflammation and BBB dysfunction,
except for α2 agonists, which exerted a positive effect. In clinical practice, multiple types of
anaesthetics are often used in a certain order, however, we discussed only a few of the most
commonly used anaesthetics and limit ourselves to the effects of a single drug here. Besides
those, we mainly referred to some animal and cellular studies, where the combination of
multiple drugs may lead to different outcomes. Extra studies are needed to investigate the
effects of the combination of multiple anaesthetics on neuroinflammation and BBB function
in clinical situations.

Altogether, a single administration of the commonly used anaesthetics of propofol,
inhalation anaesthetics, and opioids can induce neuroinflammation as well as BBB dysfunc-
tion among animal and cellular studies. As discussed earlier, we outlined the crosstalk
between neuroinflammation and BBB dysfunction. However, there are still no relevant stud-
ies to prove whether there is a crossover between BBB dysfunction and neuroinflammation
caused by anaesthetic drugs. The crossover of neuroinflammation and BBB dysfunction
provides new insights into the central role of anaesthetics as well as opens up new and
exciting breakthroughs and possibilities for studying CNS complications associated with
general anaesthesia, which is the innovation of this paper.
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