
different disease states, including atherosclerosis, obesity, diabetes,
and sepsis (5). These results provide important insights for potential
epigenetic therapeutics for IPF treatment.�
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Using Automated Radiographic Signatures to Prognosticate Chronic
Lung Allograft Dysfunction
What Does the Future Hold?

Lung transplantation is a life-saving procedure that is associated with
a significant improvement in health-related quality of life and
physical function (1, 2). However, at 6.2 years, the median survival of
lung transplant recipients worldwide lags behind other solid organ
transplant recipients (3). The main contributor to decreased survival
is chronic lung allograft dysfunction (CLAD), with about half of
transplant recipients developing CLAD within the first 5 years (4, 5).

Unfortunately, once CLAD develops, the prognosis is poor, with
ongoing loss of function in most patients (5). Thus, early
identification of graft injury at the time of potential CLAD,
represented by an initial drop of 10–20% from baseline FEV1, may
allow for treatment strategies that may help mitigate graft loss and,
potentially, reduce morbidity (5, 6). Presently, there is no effective
treatment for CLAD other than retransplantation (5, 7).

The recent International Society of Heart and Lung Transplant
consensus statement recommends a high-resolution computed
tomography (HRCT) evaluation at the time of potential CLAD (5).
Although HRCT is most helpful for excluding non-CLAD causes of
lung function decline, the systematic use of HRCT at baseline and at
CLAD onset can facilitate the identification of imaging biomarkers
for earlier discovery of graft dysfunction, CLAD phenotyping, and
prognosis. A promising quantitative approach described by Belloli
and colleagues (pp. 967–976) in this issue of the Journal is parametric
response mapping (PRM) (8). PRM is a voxel-wise analysis of paired
HRCT inspiratory and expiratory images to identify both air trapping
and parenchymal lung diseases, some of which may not be detectable

This article is open access and distributed under the terms of the
Creative Commons Attribution Non-Commercial No Derivatives
License 4.0. For commercial usage and reprints, please e-mail Diane
Gern.

Supported by the University of Toronto/University Health Network
Sandra Faire and Ivan Fecan Professorship in Rehabilitation Medicine
(D.R.).

Originally Published in Press as DOI: 10.1164/rccm.202107-1726ED
on August 12, 2021

Editorials 883

EDITORIALS

http://www.atsjournals.org/doi/suppl/10.1164/rccm.202107-1760ED/suppl_file/disclosures.pdf
http://www.atsjournals.org
http://orcid.org/0000-0003-1653-8318
https://dx.doi.org/10.1164/rccm.202012-4528OC
http://crossmark.crossref.org/dialog/?doi=10.1164/rccm.202107-1726ED&domain=pdf&date_stamp=2021-10-07
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:dgern@thoracic.org
mailto:dgern@thoracic.org
http://dx.doi.org/10.1164/rccm.202107-1726ED


with the human eye. The PRM technique has been applied in patients
with chronic obstructive pulmonary disease (9), bone marrow
transplant recipients (10), and lung transplant recipients with definite
CLAD (11) but has not been previously evaluated in those with
potential CLAD.

In this issue of the Journal, Belloli and colleagues evaluate the
prognostic utility of PRMwith HRCT scans in predicting CLAD-free
survival and all-cause mortality (8). Building on their previous work
using an algorithm developed at their center in lung transplant
recipients with definite CLAD (11), the authors applied a cut-off
value of PRM> 30% to define an abnormal pattern in a retrospective
cohort of 61 lung transplant recipients from their center with
potential CLAD (FEV1, 80–90% of baseline). The investigators
identified three radiographic signatures: 1) functional small airway
disease (PRMfSAD, 11.5%), 2) parenchymal disease (PRMPD, 41%),
and 3) normal pattern (PRMnormal, 47.5%). CLAD-free survival of the
PRMfSAD and PRMPD groups was significantly shorter
(approximately 0.5 years for both) than that of the PRMnormal group
(2 years). This association was independent of transplant type, age,
body mass index, and HRCT timing after transplant. Of the patients
who underwent bronchoscopy (69%) or transbronchial biopsies
(48%), there were no differences observed among PRM groups with
respect to infection or acute rejection, which underscores the fact that
clinical risk factors of CLADwere not associated with PRM
signatures. The investigators also demonstrated the challenges of
radiological interpretation, with slight to fair agreement among
radiologists and a high prevalence of gas trapping observed in two-
thirds of lung transplant recipients. Gas trapping was similar among
PRM groups and was not prognostic of CLAD-free survival.

PRM signatures provide novel prognostic information not
available from clinical or standard radiological assessments in the
evaluation of graft function. Indeed, the PRM analysis was superior to
routine radiological assessment, which proved to have limited
sensitivity: 41% had PRM changes that were undetectable during
visual interpretation by radiologists. Furthermore, radiological
assessments only yielded ground glass opacities as the marker
associated with CLAD-free survival. The present study highlights the
importance of reproducible, quantitative image analysis to improve
the characterization of structural changes associated with CLAD
phenotypes (12).

There are several limitations that need to be highlighted in the
work by Bolleli and colleagues. First, this was a single-center cohort
study with a modest cohort size from 2004 to 2016. Second, the PRM
application presently lacks external validation; future investigation
will be needed to explore the prognostic utility of this radiological
application in larger, multicentered cohorts. Third, the investigators
compared PRMwith other radiological assessments (i.e., gas
trapping, nodules, ground glass) but did not have other physiological
assessments such as oscillometry, which is known to be a sensitive
marker of early small airway changes and acute cellular rejection in
lung transplant recipients (13). Furthermore, donor-specific
antibodies were not available in the current cohort, which will be an
important consideration for future work given their association with
CLAD (14). The investigators observed a trend toward differences in
body mass index among PRM groups at the time of potential CLAD,
which was an important covariate of posttransplant survival. The
contribution of body composition to these PRM signatures and graft
function requires further study.

The work by Belloli and colleagues provides a novel application
of an existing diagnostic tool that could improve clinical care in lung
transplantation. It highlights the benefits of using PRM onHRCT to
characterize the lung parenchyma for earlier detection of graft injury
and prognostication. The ability to apply different assessment
techniques to clinical HRCT scans in this population may allow other
morphometric parameters, such as body composition (i.e., skeletal
muscle mass or adiposity) (15), to be evaluated, which may help
delineate the role of body composition in posttransplant survival.
Thus, the use of HRCT beyond the traditional radiological
assessments is a significant advancement in offsetting the morbidity
andmortality associated with CLAD, and PRMmay provide an
important radiological marker in clinical trials.�
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Epinephrine Administration Intervals: Seeing the Forest for the Trees

The current pediatric and adult life support recommendations
suggest an epinephrine administration interval (EAI) of 3–5 minutes
during cardiopulmonary resuscitation (CPR) (1, 2). These
recommendations are expert opinion based on the half-life of
epinephrine in animal studies, but there are few clinical data about
EAI during CPR. Adult observational data are inconsistent, reporting
better outcomes with shorter EAI (3), longer EAI (4, 5), or neither (6).
A practical approach uses a fixed 4-minute EAI that allows providers
to synchronize with the 2-minute chest compressor change, rhythm
check, and defibrillation. Thus, pediatric intensivists have a range of
choices for a fixed or variable EAI and little evidence to guide their
practice.

A 2017 retrospective review of 1,630 pediatric in-hospital
cardiac arrests in a large national database related EAI to the
rates of return of spontaneous circulation (ROSC) and survival
to hospital discharge (7). They calculated EAI as the duration
of CPR after the first epinephrine dose divided by the total
number of epinephrine doses. ROSC and survival were better
with EAIs from 5 to 8 minutes and best with EAIs from 8 to 10

minutes compared with the 1-to-5-minute EAI group. The duration
of CPR was longer in the 5-to-8-minute group and longest in the 8-
to-10-minute group. The time to first epinephrine administration
was 2.4 minutes in all three groups. Worse outcomes were
associated with total epinephrine dosage administered. The authors
concluded that the administration of less epinephrine with less
frequency was associated with better outcomes.

In this issue of the Journal, Kienzle and colleagues (pp. 977–985)
provide contradictory findings on the association of EAI with
outcomes in pediatric cardiac arrest (8). This 2021 retrospective
review of an institutional database of 125 pediatric in-hospital
cardiac arrests examined the effects of the EAI during CPR on the
rates of ROSC, survival to hospital discharge, and return to
neurologic baseline (8). Their method for determining the EAI
was to round epinephrine administration times to the closest
minute and average the intervals from the first epinephrine dose
to the end of resuscitation. They compared the frequent
administration of epinephrine (EAIs<2 min) with standard EAIs
(>3 min) and found that frequent epinephrine administration
was associated with better rates of ROSC, survival, and return to
neurologic baseline. They found that CPR duration was shorter in
the frequent epinephrine group and was associated with better
outcomes. The time to first epinephrine dose—1 minute in the
frequent group and 2 minutes in the standard group—was not
statistically different. The authors concluded that more frequent
epinephrine dosing (<2-min intervals) was associated with better
outcomes.
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