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A B S T R A C T   

Discriminant analysis of similar food samples is an important aspect of achieving food quality control. The 
effective combination of Raman spectroscopy and machine learning algorithms has become an extremely 
attractive approach to develop intelligent discrimination techniques. Feature spectral analysis can help re-
searchers gain a deeper understanding of the data patterns in food quality discrimination. Herein, this work takes 
the discrimination of three brands of dairy products as an example to investigate the Raman spectral feature 
based on the support vector machines (SVM), extreme learning machines (ELM) and convolutional neural 
network (CNN) algorithms. The results show that there are certain differences in the optimal spectral feature 
interval corresponding to different machine learning algorithms. Selecting the appropriate spectral feature in-
terval can maintain high recognition accuracy and improve the computational efficiency of the algorithm. For 
example, the SVM algorithm has a recognition accuracy of 100% in the 890-980 cm− 1, 1410-1500 cm− 1 fusion 
spectral range, which takes about 200 s. The ELM algorithm also has a recognition accuracy of 100% in the 890- 
980 cm− 1, 1410-1500 cm− 1 fusion spectral range, which takes less than 0.3 s. The CNN algorithm has a 
recognition accuracy of 100% in the 890-980 cm− 1, 1050-1180 cm− 1, 1410-1500 cm− 1 fusion spectral range, 
which takes about 80 s. In addition, by analyzing the distribution of spectral feature intervals based on Euclidean 
distance, the distribution of experimental samples based on feature spectra is visually displayed. Through the 
spectral feature analysis process of similar samples, a set of analysis strategies is provided to deeply reveal the 
data foundation of classification algorithms, which can provide reference for the analysis of relevant discrimi-
native research patterns.   

1. Introduction 

As an important component of food, dairy products can be classified 
into two types of quality and safety risks. One is harmful substances, 
including illegal additives, heavy metals, harmful toxins, pesticides, 
veterinary drugs, and antibiotic residues, etc. (Ranveer et al., 2023; Shan 
et al., 2023) The other is counterfeit products, and all of their testing 
indicators may meet the requirements of national standards. However, 
violators can profit from the price differences between various brands or 
origins (Pan et al., 2024, Zheng-Yong et al., 2017). There are now 
various detection and control strategies available for these two different 
forms of risk. For molecules with clear characteristics, such as melamine 
and sodium thiocyanate, component analysis methods such as 

chromatography-mass spectrometry and surface enhanced Raman 
spectroscopy can be employed to identify the target molecule and 
perform quantitative analysis (Andrey et al., 2023, Zheng-Yong et al., 
2015). This strategy mainly aims to identify target molecules in the 
classification and identification of dairy products. For example, Wang 
et al. studied the differences in oligosaccharide profiles between caprine 
and bovine dairy products, detected 27 types of oligosaccharides, and 
used principal component analysis for sample classification to identify 
Lacto-N-triose as a potential biomarker for distinguishing caprine milk 
from bovine milk(Wang et al., 2024). Huang et al. conducted a study on 
the identification of exogenous protein adulteration in milk powder 
using laser induced breakdown spectroscopy combined with linear 
discriminant analysis (LDA), k-nearest neighbor (KNN), random forest 
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(RF), support vector machine (SVM), and convolutional neural network 
(CNN). The CNN model showed good performance, with an average 
accuracy of 97.8% (Huang et al., 2022). Yang et al. developed a surface 
enhanced Raman spectroscopy based on magnetic substrates combined 
with machine learning algorithms (KNN, SVM, decision tree(DT)) to 
achieve ultra-trace detection of quinolone antibiotics in dairy products 
(Yang et al., 2023). For similar samples, without target molecules, and 
belonging to dairy product samples with diverse and complex compo-
nents, holistic discriminant analysis techniques can be used (Gouvêa 
et al., 2021). For example, Zheng-Yong et al. established a brand iden-
tification method for fresh dairy products based on multidimensional 
Raman spectroscopy (Zheng-Yong et al., 2021). Singh et al. systemati-
cally summarized the comprehensive evaluation application of machine 
learning models in the pasteurization process of dairy products, pointing 
out that machine learning methods can effectively monitor the 
pasteurization process in real time, predict potential equipment failures, 
improve process efficiency, and evaluate the quality of pasteurization 
products (Singh et al., 2024). The combination of machine learning al-
gorithms and spectral representation has become one of the most sig-
nificant research and development directions in this field. 

Machine learning algorithms can efficiently utilize the character-
ization data of dairy products and quickly obtain discrimination results. 
For example, Yiwei et al. conducted a research on the identification of 
milk fat cream and non-dairy cream using rapid evolutionary ionization 
mass spectroscopy combined with machine learning algorithms (DA, 
DT, SVM, and neural network classifiers). Through hyperparameter 
optimization and feature engineering, the recognition accuracy reached 
98.4–99.6% (Yiwei et al., 2023). Zikang et al. used Raman spectroscopy 
combined with light gradient boosting machine (LightGBM), SVM, RF, 
and extreme gradient boosting (XGBoost). The study showed that under 
single algorithm conditions, the accuracy of brand classification for 
dairy products exceeded 90%, and when these algorithms were com-
bined and coordinated, the accuracy could reach 99% (Zikang et al., 
2024). However, there are also some issues that urgently need 
improvement, such as spectral feature analysis (Ji et al., 2023; Xue et al., 
2023). For machine learning discriminative algorithms, they often act as 
a black box with limited interpretability. Therefore, it is still necessary to 
conduct in-depth research on whether the feature intervals representing 
data have an impact on related algorithms, and how to further improve 
efficiency to enhance people’s understanding of such problems (Giulia 
et al., 2022). Pu et al. have summarized the commonly used feature 
construction methods for hyperspectral imaging, and also pointed out 
that more spectral information analytical methods still need to be 
continuously explored (Pu et al., 2023). Raman spectroscopy, as a 
cutting-edge technology for characterizing molecular vibration infor-
mation, has received widespread attention in the field of dairy product 
analysis and has shown strong application potential (Wang et al., 2021). 
For instance, Khan et al. combined Raman spectroscopy with partial 
least squares regression (PLSR) model to demonstrate its potential in 
online monitoring of raw milk (Khan et al., 2023). 

Herein, this work conducts research on spectral features based on 
machine learning algorithms. Among them, SVM is an excellent classi-
fier for high-dimensional data classification, extreme learning machine 
(ELM) is a single hidden layer feedforward neural network algorithm 
with high learning efficiency and generalization ability, CNN is a new 
type of neural network algorithm with strong feature extraction ability 
and excellent generalization ability. Therefore, by combining these 
three distinctive machine learning algorithms with Raman spectroscopy, 
the relationship between Raman features and algorithms were investi-
gated and explored. 

2. Experimental section 

2.1. Samples and equipment 

The dairy product samples selected for the experiment were 

purchased from different manufacturers at Suguo Supermarket in 
Nanjing, China. Among them, Dingxin dairy products were produced by 
Heilongjiang Zhaodong Tianlong Dairy Co. Ltd. and labeled as brand 1, 
Puzhen dairy products were produced by Inner Mongolia Yinuo Halal 
Food Co. Ltd. and labeled as brand 2, and Xueyuan dairy products were 
produced by Inner Mongolia Wulanchabu City Jining Xueyuan Dairy Co. 
Ltd. and labeled as brand 3. There were 40 samples of each brand. 

The Raman spectra of dairy samples were collected using a portable 
laser Raman spectrometer (ProTT-EZRaman-D3, Enwave Optronics, 
Irvine, CA, USA) and baseline calibration was performed using the in-
strument’s built-in control software. Each dairy sample was placed in a 
powder state in a small hole of a 96 well plate, and then the Raman 
spectrometer laser probe was placed closely above the sample for laser 
irradiation and sample signal collection. The spectral acquisition pa-
rameters included laser wavelength of 785 nm, laser power of about 450 
mW, charge-coupled device temperature of − 85 ◦C, laser exposure time 
of 50 s, spectral resolution of 1 cm− 1, spectral range of 250–2339 cm− 1, 
and one spectrum was collected for each sample. The ambient temper-
ature was about 20 ◦C and the humidity was about 50%. Raman spectra 
were collected directly without any chemical pretreatment. 

2.2. Data processing 

The SVM, ELM, CNN algorithms, normalization and Euclidean dis-
tance calculation involved in the experiment were all implemented 
using the Matlab platform (MathWorks, Natick, MA, U.S.A.). The rele-
vant MATLAB calculation program can be found in the supporting 
documents. The computing platform was a personal laptop, configured 
as central processing unit (CPU) Intel(R) Core(TM) i5-8250U CPU@1.60 
GHz 1.80 GHz, and random access memory 24.0 GB. 

2.2.1. SVM algorithm 
A brief introduction to the relevant algorithms is as follows. For the 

SVM algorithm, assume a training set (T) at first, T =
{
(x1, y2),⋯,

(
xm,

ym
)}

∈ (X × Y)m, where xi ∈ X = Rn,yi ∈ Y = {1, − 1}(i = 1,2,⋯,m), as 
well as xi is the Raman spectral data, and yi is the brand category label 
for dairy products. In classification operations, the multi classification 
problem is transformed into a binary classification problem between any 
two types of samples for calculation. Choose the appropriate kernel 
function K(x, x́ ) and parameter C, construct and solve the optimization 
problem min

α
1
2
∑j

i=1
∑m

j=1yiyjαiαjK
(
xi, xj

)
−
∑m

j=1αj, s.t.
∑m

i=1yiαi = 0, 

0 ≤ αi ≤ C, i = 1,⋯,m (1), and obtain the optimal solution α∗ =

(α1
∗,⋯, αm

∗)
T (2). The radial basis function is used as a kernel function 

in this work. Choose a positive component of α∗ (0 < αj
∗ < C) and 

calculate the threshold b∗ = yj −
∑m

i=1yiαi
∗K
(
xi − xj

)
(3). Construct a 

decision function to calculate the brand discrimination results of 

experimental samples f(x) = sgn
(
∑m

i=1αi
∗yiK(x, xi)+b∗

)

(4) (Xiaofeng 

et al., 2023; Zheng-Yong, 2020). 
In the experimental operation, the “SVMcgForClass” function is used 

to optimize the grid parameters, and a 5-fold cross validation method is 
set. The optimization conditions for the kernel function parameter g and 
penalty coefficient c are cmin = -10, cmax = 10, gmin = -10, gmax = 10, and 
the search range is [2− 10, 210]. The step values are all 0.5. Finally, the 
optimal kernel function parameter g is about 0.00097656, and the 
penalty coefficient c is about 33.3333 for whole Raman spectroscopy of 
dairy products. 

2.2.2. ELM algorithm 
For the ELM algorithm, Assuming there are m experimental samples 

(xi,yi), here xi = [xi1, xi2,⋯, xin]
T
∈ Rn, yi =

[
yi1, yi2,⋯, yim

]T
∈ Rm. 

For a single hidden layer neural network with L hidden layer nodes, 
there exists 
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∑L

f=1
βf g
(
λf ⋅ xi + bf

)
= oi (5)  

here i = 1, 2, …, n, g
(
λf ⋅xi +bf

)
is the activation function, λf =

[
λf1, λf2,⋯, λfn

]T is the input weight of the f -th hidden layer unit, and bf 

is the bias of the f -th hidden layer unit, βf =
[
βf1,βf2,⋯, βfm

]T 
is the 

output weight of the f -layer. λf ⋅xi represents the inner product of λf and 
xi. 

The optimization objective of the neural network is to minimize 
output errors, expressed as: 

∑L
f=1
⃦
⃦oi − yi

⃦
⃦ = 0 (6). There are λf , xi, and 

bf such that: 
∑L

f=1βf g
(
λf ⋅xi +bf

)
= Wi (7). Additionally, H⋅ β = W (8), H 

is the output of the hidden layer node, β is the output weight, and W is 
the expected output. 

H=

⎡

⎣
g(λ1⋅x1 + b1) ⋯ g(λL⋅x1 + bL)

⋮ ⋯ ⋮
g(λ1⋅xn + b1) ⋯ g(λL⋅xn + bL)

⎤

⎦

n×L  

β=

⎡

⎣
β1

T

⋮
βL

T

⎤

⎦

L×m

and W=

⎡

⎣
y1

T

⋮
yn

T

⎤

⎦

n×m  

Where, m is the number of outputs, H is the hidden layer output matrix, 
and W is the training set objective matrix. (Song et al., 2023, Zhen-
g-Yong et al., 2023). 

In the experimental operation, the “elmtrain” function is used for 
ELM creation and training, with the number of hidden layer neurons set 
to 400 and the activation function of hidden layer neurons using the 
“Sigmoidal” function. 

2.2.3. CNN algorithm 
For the CNN algorithm, set each research object category to have m 

observation samples, where X is the input spectral data and Y is the 
output data, denoted by the following equation, where c is the category. 

X=
{
xi,1, xi,2,⋯, xi,n

}m
i=1,Y =

{
yi,1, yi,2,⋯, yi,c

}m

i=1 

Convolutional layers learn features from input samples. Perform 
convolution operation between the input sample and the convolution 
kernel, shift the convolution results, and use activation function for 
nonlinear transformation. The calculation method is as follows: 

xr
k = f

(
∑

i∈Rk

xr− 1
i ∗ ωr

i,k + br
k

)

(9) 

In the formula, r is the sequence number of the layer, xr
k is the k-th 

feature output of the r layer, xr− 1
i is the output of the r − 1 layer and the 

input of the r layer, ωr
i,k is the convolutional filter of the i-th layer, br

k is 
the deviation, and Rk is the set of input feature maps. f( ⋅) is an activation 
function (Lu et al., 2023, Dian et al., 2020). 

In the experimental operation, taking whole spectral data processing 
as an example, the main parameters are set as follows: the size of the 
input layer is set to [2090, 1, 1], the convolutional layer uses 128 con-
volutional kernels of size [64, 1] for feature extraction, the activation 
function uses “rectified linear unit (relu)” function, and in the maximum 
pooling layer, a pooling window and step size of [32,1] are set. The fully 
connected layer sets three output categories and ultimately transforms 
the sample dimension into [1, 1, 3], indicating that the data features of 
the sample are classified into three categories. Subsequently, through 
the Softmax layer, the probability distribution of samples belonging to 
each category can be obtained. 

2.2.4. Normalization 
For normalization, the formula is z =

(zmax − zmin)×(x− xmin)
xmax − xmin

+ zmin (10); 

here x is the Raman spectral data that needs to be normalized, and z is 
the normalized data. The xmin, xmax, and zmin, zmax are the lower and 
upper limits of the interval for the raw data and normalized data, 
respectively. Since this work normalizes the data to [− 1, 1], so zmin = −

1, and zmax = 1. 

2.2.5. Euclidean distance 

For Euclidean distance, the calculation formula is d(u, v) =
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑n

i=1(ui − vi)
2

√

(11). The d is the Euclidean distance between the 
Raman spectral data of two samples u and v. 

3. Results and discussion 

3.1. Discriminative analysis of dairy products based on the whole Raman 
spectroscopy combined with different machine learning algorithms 

The Raman spectroscopy of dairy products can characterize the rich 
component information of the sample and has advantages such as fast, 
non-destructive, and portable data acquisition. As shown in Fig. 1, the 
Raman spectral peaks of dairy products are relatively sharp, mainly 
derived from proteins, fats, and carbohydrates (Weihua et al., 2022). 
The possible attribution of each peak is shown in Table 1. Dairy products 
from different brands have high similarity in their spectra, and their 
peak positions are very close. It can be used as important spectral 
characterization data and combined with machine learning algorithms 
to investigate the classification of similar samples. 

Directly import the whole Raman spectra into SVM, ELM, and CNN 
algorithms in sequence. Randomly select 70% of dairy product sample 
data as the training set, and the remaining 30% of sample data as the test 
set. Perform 10 operations to obtain the average recognition accuracy. 
The recognition accuracy calculation results of the whole spectra com-
bined with SVM, ELM, and CNN are 33.3%, 92.5%, and 100%, and the 
time required for the three algorithms also varies, approximately 
consuming 2000 s, 1 s, and 700 s respectively. The results show that 
combining the original whole spectra directly with SVM algorithm 
cannot achieve effective discrimination of dairy products. The reason for 
the low recognition accuracy of the SVM algorithm may be that the 
dimensional difference of the original data is in the range of 0–3000. 
Such a large dimensional interval results in a large solution error for 
SVM, which in turn leads to inaccurate classification results. Based on 
existing reports, subsequent spectral preprocessing is necessary for SVM 
algorithm to effectively discriminate (Wang et al., 2023). The ELM 

Fig. 1. Raman spectra of dairy products of (a) brand 1, (b) brand 2 and (c) 
brand 3. 
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algorithm has obvious advantages in computational speed and high 
recognition accuracy. The CNN algorithm has its own feature extraction 
ability, the highest recognition accuracy and moderate computation 
time (Chen et al., 2022). 

3.2. Discriminative analysis of dairy products based on feature spectrum 
combined with different machine learning algorithms 

Normalization processing is expected to remove the influence of 
spectral data dimensionality and improve the discrimination accuracy of 
the classifier. This work normalizes spectral data to the range of − 1 to 1, 
and then imports the data into three machine learning algorithms. The 
results show that the SVM algorithm improves the recognition accuracy 
to 100%, the ELM algorithm improves the recognition accuracy to 
94.4%, and the CNN recognition accuracy remains at 100%. The 
computation time is about 1750s, 1s, and 750s, respectively. It is shown 
that normalization processing has a good effect on improving the 
recognition accuracy of experimental data and different machine 
learning algorithms. 

Subsequently, the recognition accuracy changes are studied by 
combining different spectral characteristic peaks with different machine 
learning algorithms, as shown in Table 2. The division of feature in-
tervals here is mainly based on the sample characteristic peaks shown in 
Fig. 1 and Table 1, and the intervals covering each peak are selected. The 
results clearly show that different feature bands have various contri-
butions to classification algorithms, and at the same time, the same 
feature band also has certain differences in recognition accuracy cor-
responding to different classification algorithms. For the SVM algorithm, 
the top three bands in the Raman feature interval ranked by recognition 
accuracy are 1410–1500 cm− 1, 890-980 cm− 1, and 1100-1180 cm− 1, 
respectively. For the ELM algorithm, the top three Raman feature in-
tervals are 1410–1500 cm− 1, 1050-1100 cm− 1, and 810-890 cm− 1, 

respectively. For the CNN algorithm, the top three Raman feature in-
tervals are 1410–1500 cm− 1, 890-980 cm− 1, and 810-890 cm− 1, 
respectively. 

The feature bands with high recognition accuracy can also provide us 
with some material information about differences in dairy product 
classification. The top nine spectral intervals with high recognition ac-
curacy based on SVM algorithm are shown in Fig. 2. The corresponding 
spectral peak attribution analysis is as follows. The 550-630 cm− 1 band 
can mainly be derived from glycosidic ring skeletal deformations, the 
810-890 cm− 1, 890-980 cm− 1, 1050-1100 cm− 1, and 1100-1180 cm− 1 

bands can mainly be attributed to glycosidic bonds. The 1290-1320 
cm− 1 band can mainly be derived from lipids, the 1320-1410 cm− 1 band 
can mainly be derived from carbohydrate molecules, and the 1410-1500 
cm− 1 band can mainly be derived from fats and carbohydrates. The 
1630-1710 cm− 1 band can mainly originate from the C––C stretching 
vibration of unsaturated fatty acids and the C––O stretching vibration in 
the amide I group CONH of proteins (Almeida et al., 2011, Rodrigues 

Table 1 
The main peak tentative assignments of the Raman spectra of the different 
brands of dairy products.  

Raman 
shift 
(cm− 1) 
brand 1 

Raman 
shift 
(cm− 1) 
brand 2 

Raman 
shift 
(cm− 1) 
brand 3 

Assignment Possible 
component 
attribution 

362 365 363 lactose Lactose 
423 425 426 glucose Glucose 
487 487 486 δ(C–C–C) + τ(C–O) Carbohydrate 
518 516 519 glucose Glucose 
570 570 568 δ(C–C–O) + τ(C–O) Carbohydrate 
719 716 717 ν (C–S) Protein 
776 776 775 ν (C–C–O) Carbohydrate 
861 860 859 δ(C–C–H) +

δ(C–O–C) 
Carbohydrate 

920 921 921 δ (C–O–C) +
δ(C–O–H) + ν (C–O) 

Carbohydrate 

1007 1006 1008 Ring-breathing 
(phenylalanine); 
ν(C–C)ring 

Protein 

1029 1025 1026 ν (C–O) + ν (C–C) +
δ (C–O–H) 

Carbohydrate 

1078 1080 1080 ν (C–O) + ν (C–C) +
δ (C–O–H) 

Carbohydrate 

1129 1130 1128 ν (C–O) + ν (C–C) +
δ (C–O–H) 

Carbohydrate 

1270 1266 1267 γ (CH2) Carbohydrate 
1310 1303 1305 τ (CH2) Fat 
1337 1338 1336 ν (C–O)+δ (C–O–H) Carbohydrate 
1461 1460 1461 δ (CH2) Fat, 

Carbohydrate 
1660 1664 1660 ν (C––O) amide I; ν 

(C––C) 
Fat, Protein 

1751 1747 1750 ν (C––O)ester Fat 

ν: stretching vibration; δ: deformation vibration; τ: twisting vibrationg; γ: out-of- 
plane bending vibration. 

Table 2 
The recognition accuracy of different Raman spectral feature intervals combined 
with various machine learning algorithms.  

Raman shift interval 
(cm− 1) 

SVM (accuracy, 
%) 

ELM (accuracy, 
%) 

CNN (accuracy, 
%) 

280–390 94.4 87.2 98.3 
390–460 89.2 84.2 93.3 
460–500 81.1 71.1 96.9 
500–550 86.4 71.9 90.3 
550–630 97.8 91.1 98.3 
630–690 84.2 71.9 84.2 
690–745 66.7 52.5 66.8 
745–810 85.3 64.7 85.0 
810–890 98.9 96.4 98.6 
890–980 99.7 93.1 98.9 
980–1015 76.9 63.1 89.2 
1015–1050 83.1 78.6 92.2 
1050–1100 99.2 98.6 98.3 
1100–1180 99.4 94.7 96.7 
1180–1225 76.4 64.7 76.4 
1225–1290 92.2 87.5 95.0 
1290–1320 98.3 93.3 95.8 
1320–1410 98.6 91.1 96.7 
1410–1500 100 99.4 99.7 
1500–1630 84.7 70.3 93.6 
1630–1710 99.2 89.4 98.3 
1710–1780 83.9 63.6 96.1 
1780–2339 68.9 59.7 90.8  

Fig. 2. Raman spectral feature bands of dairy products of (a) brand 1, (b) brand 
2 and (c) brand 3. 
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et al., 2016; Zheng-Yong et al., 2019). There are also some spectral 
feature regions that exhibit lower recognition accuracy when combined 
with algorithms, such as 690-745 cm− 1 and 980-1015 cm− 1, which can 
be derived from proteins, and 1780-2339 cm− 1, which mainly belong to 
the spectral noise region without obvious spectral peaks. 

In addition, due to the fact that the feature bands are only a part of 
the original data, the operation time of each classifier is significantly 
reduced. Except for a few feature bands (280-390 cm− 1, 1500-1630 
cm− 1, 1780-2339 cm− 1) that exceed 100 s, the operation time of all 
other bands in SVM is within 100 s. The ELM operation time is only 
within 0.3 s, and the CNN operation time is only within 50 s. 

Based on the combination of the single spectral feature interval and 
the algorithm mentioned above, multiple spectral peaks are selected to 
make a significant contribution to the recognition accuracy. Further 
research is conducted on the impact of spectral interval fusion on the 
algorithm’s recognition accuracy. The experiment fuses the spectral 
intervals of each algorithm’s recognition accuracy contribution with the 
top three bands, and the top nine spectral feature intervals based on SVM 
algorithm’s recognition accuracy contribution in sequence. The change 
in recognition accuracy is shown in Table 3. It can be seen that different 
algorithms have achieved optimal recognition in certain fusion seg-
ments. For example, the SVM algorithm has a recognition accuracy of 
100% in the 890-980 cm− 1, 1410-1500 cm− 1 fusion spectral range, 
which takes about 200 s. The ELM algorithm also has a recognition 
accuracy of 100% in the 890-980 cm− 1, 1410-1500 cm− 1 fusion spectral 
range, which takes less than 0.3 s. The CNN algorithm has a recognition 
accuracy of 100% in the 890-980 cm− 1, 1050-1180 cm− 1, 1410-1500 
cm− 1 fusion spectral range, which takes about 80 s. The optimal 
recognition results based on CNN algorithm are shown in Fig. 3. This 
research result shows that appropriate feature spectral interval fusion, 
combined with corresponding machine learning algorithms effectively, 
can significantly improve recognition accuracy and maintain higher 
computational efficiency compared to full spectral data. 

3.3. Further statistical analysis of spectral feature intervals 

To further understand the statistical patterns of the Raman spectral 
features mentioned above, a quality fluctuation control chart analysis 
based on the Raman spectral band at 1410-1500 cm− 1 is conducted 
firstly. The calculation steps are as follows. The first step is to calculate 
the spectral mean of dairy product brand 1 as the best estimate of its true 
value. The second step is to calculate the Euclidean distance between 

each sample of brand 1 and this mean, and use this result to substitute it 
into the individual value moving range control chart operation rule to 
obtain the control limit of individual value and moving range, then draw 
the corresponding control chart. The third step is to calculate the 
Euclidean distances of each sample from brand 2 and brand 3 with the 
mean of brand 1, and plot them on the control chart, as shown in Fig. 4. 
It can be seen that based on the spectral feature interval that contributes 
the most to this recognition accuracy, there are quality fluctuations in 
each sample of brand 1, and they all fluctuate normally around the 
centerline within the control limit. In the sample of brand 2, there are 
eleven outliers in the individual value control chart and seven outliers in 
the moving range control chart. In brand 3, all forty points in the indi-
vidual value control chart are outliers, and there are fifteen outliers in 
the moving range control chart. Therefore, it reflects that there is indeed 
a certain difference in this spectral range among the three brands, but 
there are also a certain number of samples from other brands that still 
exist within the control range of brand 1, which intuitively shows a 
certain statistical fluctuation pattern of the samples. 

Secondly, two spectral feature intervals of 1410–1500 cm− 1 and 890- 
980 cm− 1, as well as the spectral feature interval of 1100–1180 cm− 1, 
are selected to perform Euclidean distance calculations with the spectral 
mean of brand 1 as the best estimate of truth. Specifically, the Euclidean 
distance between each sample of brand 1 and its mean under various 
spectral feature interval conditions is calculated, as well as the 
Euclidean distance between each sample of brand 2 and brand 3 and the 
mean of brand 1, then draw the results as shown in Figs. 5 and 6. It can 
be seen that under the conditions of 1410–1500 cm− 1 and 890-980 
cm− 1, there is a certain degree of difference between brand 1 and brand 
2, 3 in the two-dimensional space. In the three-dimensional space of 
1410-1500 cm− 1, 890 980 cm− 1 and 1100-1180 cm− 1, there is also a 
certain degree of difference between brand 1 and brand 2, 3. Displaying 
the distribution differences between samples under the conditions of 
feature spectral intervals, and revealing the spectral feature basis for 
efficient recognition of machine learning algorithms. 

4. Conclusions 

In this work, SVM, ELM, CNN algorithms and Raman spectroscopy 
are combined to investigate the discrimination spectral features of dairy 
products. It was found that (a) the optimal spectral feature interval of 
different machine learning algorithms is not the same, (b) a small 
amount of feature spectral interval fusion can improve the recognition 
accuracy and computational efficiency of the algorithm to a certain 
extent, and (c) Raman spectroscopy, as a data input for machine learning 

Table 3 
Recognition accuracy of different Raman spectral feature fusion intervals com-
bined with various machine learning algorithms.  

Raman shift interval (cm− 1) SVM 
(accuracy, %) 

ELM 
(accuracy, %) 

CNN 
(accuracy, %) 

890-980, 1410-1500 100 100 99.4 
890-980, 1100–1180, 1410- 

1500 
100 99.4 99.4 

1050-1100, 1410-1500 100 99.7 99.7 
810-890, 1050–1100, 1410- 

1500 
100 99.7 98.3 

810-980, 1410-1500 100 98.9 99.4 
890-980, 1050–1180, 1410- 

1500 
100 99.7 100 

890-980, 1050–1180, 
1410–1500, 1630-1710 

100 100 100 

810-980, 1050–1180, 
1410–1500, 1630-1710 

100 100 99.2 

810-980, 1050–1180, 
1320–1500, 1630-1710 

100 100 99.7 

810-980, 1050–1180, 
1290–1500, 1630-1710 

100 100 99.7 

550-630, 810–980, 
1050–1180, 1290–1500, 
1630-1710 

100 100 100  

Fig. 3. Recognition results of dairy products based on the CNN (y-axis: label 1 
represents brand 1, label 2 represents brand 2, and label 3 represents brand 3). 
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algorithms, has different contribution rates among different spectral 
feature intervals. Spectral feature intervals with high discriminative 
ability are expected to be visually displayed in terms of sample spatial 
distribution through statistical distribution analysis. Therefore, the 
entire set of feature spectral analysis strategies established in this article 
will help researchers further understand the characterization basis for 
different categories of dairy products. 
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Fig. 4. Quality fluctuation individual value of brand 1 (a), brand 2 (b), and brand 3 (c) and moving range of brand 1 (d), brand 2 (e), and brand 3 (f) based on 
Euclidean distance of Raman spectral feature interval (1410-1500 cm− 1). UCL = upper control limit; LCL = lower control limit; MR = the average value of moving 
range control chart. x = the average value of individual control chart. 

Fig. 5. A Euclidean distance two-dimensional map of dairy products of (a) 
brand 1, (b) brand 2 and (c) brand 3 based on the Raman spectral feature in-
tervals (x-axis:1410-1500 cm− 1 and y-axis: 890-980 cm− 1). 

Fig. 6. A Euclidean distance three-dimensional map of dairy products of (a) 
brand 1, (b) brand 2 and (c) brand 3 based on the Feature Raman spectral 
feature intervals (x-axis:1410-1500 cm− 1, y-axis: 890-980 cm− 1 and z- 
axis:1100-1180 cm− 1). 
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