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ABSTRACT: Metabolomics is likely an ideal tool to assess tobacco smoke
exposure and the impact of cigarette smoke on human exposure and health. To
assess reproducibility and feasibility of this by UPLC−QTOF-MS, three
experiments were designed for the assessment of smokers’ blood. Experiment I
was an analysis of 8 smokers with 8 replicates. Experiment II was an analysis of
62 pooled quality control (QC) samples from 7 nonsmokers’ plasma placed as
every tenth sample among a study of 613 samples from 160 smokers. Finally, to
examine the feasibility of metabolomic study in assessing smoke exposure,
Experiment III consisted of 9 smokers and 10 nonsmokers’ serum to evaluate
differences in their global metabolome. There was minimal measurement and
sample preparation variation in all experiments, although some caution is
needed when analyzing specific parts of the chromatogram. When assessing
QC samples in the large scale study, QC clustering indicated high stability,
reproducibility, and consistency. Finally, in addition to the identification of nicotine metabolites as expected, there was a
characteristic profile distinguishing smokers from nonsmokers. Metabolites selected from putative identifications were verified by
MS/MS, showing the potential to identify metabolic phenotypes and new metabolites relating to cigarette smoke exposure and
toxicity.
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■ INTRODUCTION

Tobacco smoking is a major cause of morbidity and mortality
in developed countries.1 There are more than 4500 identified
chemicals2 and over 60 potential or probable human
carcinogens in cigarette smoke.2 The complex mixture of
cigarette smoke has been classified by IARC (The International
Agency for Research on Cancer) as a Group 1 known human
carcinogen.3 The Institute of Medicine (IOM) in 2000, at the
request of the Food and Drug Administration (FDA),
considered whether harm reduction approaches through
reducing toxin exposures in smoke via modified-risk tobacco
products (MRTPs) could feasibly enhance tobacco control for
smokers who will not or could not quit.4 They concluded that
such an approach was feasible. Recently, the FDA has been
given legislative authority over tobacco products, including the
ability to establish performance standards (e.g., regulating the
amount of carcinogen emissions and exposure to smokers
through product design changes) and evaluating manufacturers’
health claims of MRTPs.5 In the last several years, there has
been a renewed interest by the tobacco companies to
manufacture these.6 While tobacco product design changes
developed by the manufacturers or mandated by the FDA can
be screened in the laboratory for changes in smoke chemical

constituents and toxicology,7 ultimately the impact of such
changes must be evaluated in humans using biomarkers.
However, there are only a limited number of biomarkers that
assess exposure, and none that have been sufficiently validated
for lung cancer risk.8 Given the wide variety of tobacco
toxicants, a broad range of biomarkers needs to be developed
and validated to assess the impact of cigarette design changes
on human exposure and health.
The best available cigarette smoke biomarkers are chemically

specific, reflecting only a narrow range of known toxicants.
These target polycyclic aromatic hydrocarbons (e.g., benzo(a)-
pyrene), tobacco-specific nitrosamines (e.g., NNN, NNK),
aromatic amines, and volatile hydrocarbons (e.g., benzene, 1,3-
butadiene and acrolein).9−11 Among these, polycyclic aromatic
hydrocarbons (PAHs) and tobacco-specific nitrosamines
(TSNAs) are considered the major causative agents in cigarette
smoke contributing to lung cancer,12−14 and for cancer risk
overall.15 1,3-Butadiene is a potent lung carcinogen in
experimental animals.15 Acrolein is a suspected human
carcinogen and carries the highest level of risk for respiratory
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effects in experimental animals,15 while benzene is a known
human leukemogen.16

Metabolomics is an ‘omics technology that provides a
simultaneous assessment of numerous molecules (i.e., the
metabolome) allowing for the quantification of individual
metabolites and the identification of a phenotypic profile for
clusters of metabolites.17−19 It provides information about
metabolites from exogenous toxin exposures and those from
cellular endogenous pathways as a result of the toxic
exposures.17 In contrast to currently available smoke exposure
biomarkers that are mostly chemically specific,13 metabolomics
can provide information allows for broader phenotype
assessments incorporating profiles within and across disease
pathways. Separately, metabolomics provide phenotypic in-
formation about the cell’s environment and mechanistic
pathways that genomics and transcriptomics do not.20,21

Metabolomics is becoming an important component of systems
biology, especially in determining the global metabolic profile
by detecting thousands of small and large molecules in various
media ranging from cell cultures to human biological fluids such
as urine, saliva, and blood.18,22−25 More and more modern
instrumentations and technologies are emerging for the
metabolomics research, such as gas chromatography−mass
spectrometry (GC−MS), liquid chromatography−mass spec-
trometry (LC−MS), high-performance liquid chromatography
coupled with electrochemical coulometric array (LCECA), and
nuclear magnetic resonance (NMR)-based study.26 Each
platform has its specific strengths and weaknesses. For example,
GC−MS has great separation efficiency and resolution but
analyzes only the volatile metabolic compounds;27 LCECA has
great reproducibility and sensitivity but is low-throughput and
provides only limited chemical structure information;19,28,29

NMR is a fast and reliable nondestructive detector but has poor
resolving power and poor sensitivity requiring larger amount of
analyte compared to mass spectrometry.19,29,30 LC−MS is an
important tool with great flexibility in metabolomics compared
to the other methods.31 It is often used to identify the low-
abundance metabolites for a targeted study or to obtain the
largest metabolomics profile for a global approach. With the
development of Ultrahigh Pressure Liquid Chromatography
(UPLC), better chromatographic resolution and peak capacity
compared to HPLC is achieved, and therefore it has become
the platform of choice in our study.19,32

There has been a great increase in the research of
metabolomics, and a number of studies have shown the utility
in assessing human disease risk.33−35 However, while some
studies show the utility in urine samples,36−39 little has been
shown to validate the reproducibility of global metabolomics
profile using LC−MS on human blood samples.40 Thus, this
study assesses Ultra Performance Liquid Chromatography
coupled to Quadrupole with Time-of-Flight Mass Spectrometry
(UPLC−QTOF-MS) method for use in metabolomics and
applies the procedure to human samples from smokers and
nonsmokers.

■ MATERIALS AND METHODS

Reagents and Chemicals

All reagents and solvents were of HPLC grade. 4-nitrobenzoic
acid (4-NBA), debrisoquine (as debrisoquine sulfate), cotinine,
(±)-nicotine, 1,11-undecanedicarboxylic acid and 3-hydrox-
ycoumarin were purchased from Sigma-Aldrich (St. Louis,
MO); pseudooxynicotine, 3-hydroxycotinine, and cotinine N-

oxide were purchased from Toronto Research Chemicals
(North York, ON, Canada); acetonitrile (ACN) and water
were purchased from Fisher Optima grade (Fisher Scientific,
Waltham, MA).

Experimental Design

Three experiments were conducted. In Experiment I, in order
to test the variations of UPLC−QTOF-MS assay, eight
smokers’ plasma were split into two aliquots (5 μL), and one
aliquot was sampled consecutively 5 times, immediately
followed by the second aliquot sampled three times. A water
blank was sampled between each of the subjects. The eight
subjects were sampled consecutively, followed by a repeat of
the experiment for the first two subjects. Replicate comparison
analysis is indicated below.
Experiment II takes advantage of a quality control procedure

used for ensuring assay consistency during the course of a large
sample set analysis. Here, a pooled sample from 7 nonsmoker
subjects undergoing therapeutic phlebotomy were placed as
every tenth sample among a sample set of 613 independent
samples from 160 smokers; 62 injections of the pooled control
were analyzed. Replicate comparison analysis is indicated
below.
Experiment III was intended to determine if there was a

metabolomic result difference between smokers and non-
smokers. There were nine smokers and ten nonsmokers; the
latter recruited from a three-arm study validating biomarkers in
smokers, former smokers, and nonsmokers.

Subjects

Smokers: Blood samples were obtained from 160 cross-
sectional study of smokers intended to characterize cigarette
smoke exposure and the development and validation of
biomarkers. These individuals were healthy and had no history
of cancer. As an eligibility criterion, they had a stable smoking
pattern for at least 6 months of 10 cigarettes per day or more.
There were 613 samples from these subjects that were analyzed
in a single session. Interspersed with these samples were
replicates as indicated in Experiment II. Non-Smokers: Two
groups of nonsmokers were utilized. The samples in the first
group, used for the laboratory validation studies for Experiment
II, were nonsmokers who were undergoing therapeutic
phlebotomy for hemachromatosis or myeloproliferative dis-
eases. The former had low iron levels and both groups had
stable disease. Their plasma was pooled and aliquots were
interspersed with the smokers’ samples in every tenth aliquot.
The second group, used to assess metabolomic differences
between smokers and nonsmokers for Experiment III, used
nonsmokers from a study of biomarker validation in smokers,
former smokers, and nonsmokers from the Tobacco Product
Assessment Consortium (TobPRAC). These were healthy
persons who smoked less than 100 cigarettes in their lifetime
and recruited by IRB-approved local media.
Demographics of all the participants are listed in

Supplementary Tables 1 to 3 in the Supporting Information.
Blood was collected as serum or plasma (heparin green top
tubes) as indicated.

UPLC−QTOF-MS Analysis

Sample aliquots were mixed with 195 μL of 66% ACN
containing the internal standards debrisoquine and 4-NBA. The
samples were centrifuged at 16000× g for 10 min at 4 °C to
remove particulates and precipitated proteins. One-hundred
fifty microliters of the supernatant was then transferred into an
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autosampler vial, followed by UPLC−QTOF-MS analysis.
Samples were injected onto a reverse-phase 50 × 2.1 mm
ACQUITY 1.7-μm C18 column (Waters, Milford, MA) using
an ACQUITY UPLC system (Waters, Milford, MA) with a
gradient mobile phase consisting of 2% ACN in water
containing 0.1% formic acid (A) and 2% water in ACN
containing 0.1% formic acid (B). Each sample was resolved for
10 min at a flow rate of 0.5 mL/min. The gradient consisted of
100% A for 0.5 min then a ramp of curve 6 to 60% B from 0.5
to 4.0 min, then a ramp of curve 6 to 100% B from 4.0 to 8.0
min, hold at 100% B until 9.0 min, then a ramp of curve 6 to
100% A from 9.0 to 9.2 min, followed by a hold at 100% A until
10 min. The column eluent was introduced directly into the
mass spectrometer by electrospray. Mass spectrometry was
performed on a Q-TOF Premier (Waters, Milford, MA)
operating in either negative-ion (ESI−) or positive-ion (ESI+)
electrospray ionization mode with a capillary voltage of 3200 V
and a sampling cone voltage of 20 V in negative mode and 35 V
in positive mode. The desolvation gas flow was set to 800 L/h
and the temperature was set to 350 °C. The cone gas flow was
25 L/h, and the source temperature was 120 °C. Accurate mass
was maintained by introduction of LockSpray interface of
sulfadimethoxine (311.0814 [M + H]+ or 309.0658 [M − H]−)
at a concentration of 250 pg/μL in 50% aqueous acetonitrile
and a rate of 150 μL/min. Data were acquired in centroid mode
from 50 to 850 m/z in MS scanning. The metabolite
identifications were confirmed by comparing the retention
time under the same chromatographic conditions and by
matching the fragmentation pattern of the parent ion from the
biological sample to that of the standard metabolite using
tandem mass spectrometry (UPLC−QTOF-MS/MS).

Data Analysis

The raw data from UPLC−QTOF instrument were converted
to Network Common Data Format (NetCDF) files. They were
then preprocessed using XCMS41 for peak detection, retention
time correction and peak matching to obtain a peak list in
which each peak is represented by its m/z value, retention time
and intensities (peak area) across samples. Preprocessed data
sets were analyzed using Matlab (MathWorks, Natick, MA) and
Metaboanalyst (www.metaboanalyst.ca)42 to perform scatter
plot, hierarchical clustering analysis and principal component
analysis (PCA). R was used for ANOVA (Analysis of Variance)
and coefficients of variation analysis in Experiment I and
Random Forest classification. Significant features were searched
against the Madison-Qingdao Metabolomic Consortium Data-
base (MMCD)43 and the Human Metabolome Database
(HMDB)44 with the mass accuracy of 10 parts per million to
identify putative metabolite identifications in Experiment III.

■ RESULTS AND DISCUSSION

For the metabolomic experiments to provide sound biological
insights into pathobiology, it is imperative to demonstrate that
the variability of metabolomics measurements is within
acceptable limits. Previously, the reproducibility of the LC−
MS platform for the metabolomic analysis of urine samples has
been examined from unspecified healthy subjects,39 which
indicated that the within-day reproducibility of UPLC−QTOF-
MS system is sufficient to ensure data quality in global
metabolomic studies, after sufficient equilibration of the
system.36,39 In this study, the reproducibility of LC−MS-
based metabolomic experiments using blood samples of
smokers and nonsmokers is examined. The use of blood,

while more difficult to collect compared to urine, is
conceptually a better matrix for biomarkers because it is not
dependent on renal excretion, for example, a need to adjust for
urinary creatinine or stability of a metabolite in urine in vivo and
ex vivo. For blood, there is a choice of serum or plasma; the
former will include metabolites that result from coagulation and
blood processing, and so includes compounds not existing in
vivo. Significant differences for plasma versus serum have been
noted by Wedge et al.,45 where they found correlations of many
metabolites including glycerophosphocholines, creatinine,
erythritol and glutamine in the biological pathways with the
prognosis of small cell lung cancer in plasma but not in serum,
indicating the clinical feasibility of plasma for metabolomics
study. A recent study comparing metabolite profiles in both
biofluids has reported a higher concentration of metabolites in
serum, and a better reproducibility in plasma.46 However, the
overall reproducibility was good in both biofluids. For smoke
exposure in particular, more nicotine-related metabolites were
seen in serum samples while better stability were observed in
the plasma. The choice of serum versus plasma in our study was
dictated by the availability of large volumes of sample needed
for the numerous replicate experiments. The data indicate,
however, that the choice for serum versus plasma was not
important for the purposes of validation and reproducibility.
The reproducibility analysis is performed in three parts: the

first utilizes plasma from 8 smokers in Experiment I to analyze
the reproducibility of the LC−MS-based metabolomics data
over a short period of time. The various factors that affect the
quality of the data are examined and their respective
contributions to the data variability are analyzed. As part of
Experiment I, immediately following the multiple injections of
the 8 smokers, the samples from the first two subjects were
reinjected 5 times and 3 times. Thus, the replicates followed the
initial 64 chromatographic runs and 13 h in time. Results of
these latter two subjects are compared against the first analyses
to examine the effect of running time and potential carry-over
on the data. Next, the reproducibility of LC−MS platform over
multiple days is examined using Experiment II through a QC
analysis similar to the approach by Gika, et al.36 After
establishing the reproducibility of LC−MS-based metabolomics
data for plasma samples, Experiment III was conducted to
validate the use of metabolomics for the assessment of smoke
exposure, as recommended by Hatsukami, et al.47

1. Factors Affecting Data Quality and Their Contributions
to Variability

Previously in LC−MS-based proteomics experiments, it is
assumed that the variability of the intensity of a peak can be
attributed to either sample preparation variation or machine
measurement.48,49 For the two aliquots of each Si, i = 1, 2,...,8 in
Experiment I, their difference is mainly due to the sample
preparation variation. And for the repeated injections of each
aliquot, their difference is derived from the measurement noise,
which results from variability in the chromatography and the
mass spectroscopic measurements. We refer to the variability
due to biological differences among subjects as “inter-individual
variation”. For the first 8 biological subjects S1−S8, it can be
shown that there is minimal sample preparation variability and
measurement noise but large differences due to the
interindividual variation.
The intensity of each peak from the peak-wise variation in

the metabolomics data can be modeled as
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= μ + ε + ε + εyijk i j(i) k(ij) (1)

where yijk is the log transformation of the observed intensity of
the ith biological subject (i = 1, 2, ...,8), the jth aliquot (j = 1,
2), and the kth injection (k = 1,2,...,5 if j = 1, k = 1,2,3 if j = 2);
μ represents the average concentration of each peak; εi, εj(i) and
εk(ij) follow the normal distribution with mean zero and
variances σB

2, σS
2, and σM

2 respectively, and εi, εj(i) and εk(ij) are
mutually independent. A random effects analysis of variance
(ANOVA) model was used to estimate the variations σB

2, σS
2,

and σM
2 , which characterize the contributions of the

interindividual difference, sample preparation difference and
measurement noise to the variability of the data.
The variability due to chromatography and machine

measurement error36 was first assessed by visually inspecting
the total ion chromatograms (TICs) of the repeated runs from
the same aliquot. The TIC is a direct representation of the raw
LC−MS data without preprocessing. As a result, the assessment
of the variability will not be affected by different choices of
preprocessing schemes. In Figure 1, the TICs of the five runs

from the first aliquot of S1 are compared with each other. It was
found that there was perfect qualitative reproducibility for all
five runs from the same biological subject and aliquot.
Then the peak list (list of peaks) from preprocessing was

used to assess the variability among the repeated injections
from an aliquot. For the first aliquot of biological subject S1 to
S8, the logarithmic intensities of all the peaks from the first
injection were compared against the logarithmic intensities of
all the peaks from the other injections using scatter plots in
Figure 2. The scatter plots of the peak intensities from two
injections are largely on the diagonal line and exhibits a high
correlation (Pearson Correlation =0.98; p < 0.001), indicating a
high resemblance between the repeated injections. Since the
five repeated injections span a time of 57.5 min, it is evident
that the LC−MS system is stable over a short period of time.
The variance calculated from the ANOVA model and the

coefficient of variation were compared along with m/z values
and retention times to see if the measurement error of the LC−
MS system is more significant over a particular region of
chromatogram and mass spectrum, as sample preparation
variation and interindividual variation should not be affected by
chromatogram or mass measurement. Generally, the largest
variation appears at the beginning (less than 25 seconds) of the
chromatogram run (Figure 3). The reason for the large

variation at the beginning of the chromatogram may be
attributed to the high aqueous gradient of the reverse-phase
chromatography that cannot retain the very polar compounds
or hydrophilic metabolites in the beginning of the elution.50 If
this area is considered to be important, it likely can be resolved
by using HILIC (hydrophilic interaction liquid chromatog-
raphy).51 The variation toward the end of the chromatogram is
often observed partly due to baseline shift and can result in an
overestimate of the intensities of the analytes.31 Thus, we have
discarded the last two minutes of the chromatography during
the preprocessing of the data. As shown in Figure 3, the
retention time of peaks only go up to 480 s, where the
variability of data is moderate. We also examined the variance
along with peak intensities. The variation caused by the
measurement noise shows a significant negative correlation
(Spearman correlation = −0.66; p < 0.001, see Supplementary
Figure 1, Supporting Information) with peak intensity. It is
understandable as the noise effect is less severe on high-
intensity peaks and it is relatively easy to detect and quantify
high-intensity peaks. Coefficients of variation (CV) were
determined. Overall, the mean CV for the measurement
noise was 0.02, which ranged from 0.003 to 0.297. Similar to
the above, the greatest CVs were in the areas at the beginning
of the chromatogram. The correlation coefficient for the CV in
relation to peak intensities is shown in Figure 4 (Spearman
correlation = −0.785; p < 0.001). Those metabolites with CV
more than 10% have been removed from the analysis for
biomarker discovery.
The scatter plot also was used to examine the variability due

to sample preparation. The repeated injections from each
aliquot were averaged to obtain the mean intensity of each peak
for an aliquot. The logarithmic intensities of all peaks of the
first aliquot of the eight biological subjects were compared with
the logarithmic intensities of peaks of the second aliquot of the
biological subjects. The two aliquots show a high degree of
resemblance as the intensities are largely on the diagonal line
(Supplementary Figure 2, Supporting Information) and exhibits
a high correlation (Pearson Correlation = 0.99; p < 0.001). The
results demonstrate that the sample preparation does not
significantly affect the quality of the LC−MS data. Hierarchical
clustering of the 8 subjects each with 8 injections (five plus
three injections) from Experiment I is shown in Figure 5a. The
clustering clearly distinguishes biological subjects but not
injections from different aliquots. The result confirms that the
variability due to sample preparation is generally equal to or
smaller than the measurement error, so it is sometimes masked
by the measurement error.

2. Effects of Running Time and Carry-overs on Data
Variability

In Experiment I, the first two biological subjects S1 and S2 were
repeated at the end of the experiment as S1′ and S2′, with
separate sample preparations and injections. Between S1 (S2)
and S1′ (S2′), there were 56 other sample runs, and they were
more than 10 h separated in time. The effects of run time and
carry-overs on data variability can be evaluated by comparing
S1 vs S1′ and S2 vs S2′. The logarithmic intensities of the four
aliquots from S1 and S2 were compared with those of the four
aliquots from S1′ and S2′. A high degree of resemblance is
evident between S1, S2 and S1′, S2′ (Supplementary Figure 3,
Supporting Information) and exhibits a high correlation
(Pearson Correlation = 0.97; p < 0.001), which showcases

Figure 1. Total ion chromatogram of the five injections of the first
aliquot of S1.
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that the LC−MS platform is stable after a moderate time period
(more than 10 h).
We then analyzed a new hierarchical clustering adding

experimental replicates (S1′ and S2′) that were run at the end
of the experiment, and the result showed that the same sample’s
analytical replicates were clustered together (S1 to S1′, and S2
to S2′, see Figure 5b). Thus, the increased running time and
carry-overs of the sample analyzed between them does not

significantly affect the data reproducibility. The estimated
variances are shown as the box plot in Figure 6 and the variance
and coefficient variation are summarized in Table 1. The results
confirm that the variations between measurement error and
sample preparation variation are comparable, while they are
smaller than the interindividual variations, even if these
replicates were analyzed 13 h apart.
From the model equation (1), we can deduce that the

variance of the mean intensity of all the biological subjects is

Figure 2. Evaluation of the variation due to the measurement noise. Scatter plots of logarithmic intensities of the five injections of the first aliquot of
S1 to S8 represents (a) first injections vs second injections, (b) first injections vs third injections, (c) first injections vs fourth injections, and (d) first
injections vs fifth injections.

Figure 3. Distribution of the estimated measurement error in CV (%)
over m/z values and retention times. Each dot represents a single peak.
The dot size and color corresponds to the CV value: the larger the dot,
and the brighter the color of the dot, the larger the CV value of the
individual peak.

Figure 4. Scatter plot of the estimated measurement noise in
coefficient of variation (%) versus the mean intensities of peaks over
S1 to S8.
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where I is number of biological subjects, j is the number of
aliquots per subject and k is the number of injections per
aliquot. This means that the variability of the mean of the
observed peak intensity is dominated by the variation because
of interindividual difference. Thus, the most effective way to
reduce the variability in LC−MS data is to increase the number
of biological subjects under investigation, given the total
number of sample runs. Because of this understanding, in
Experiment II, only one aliquot per subject and one injection
per aliquot are used for the LC−MS-based metabolomics
analysis of 613 biological subjects.

3. Reproducibility of LC−MS platform over multiple days

Experiment II provides the quality control data from a large
metabolomics study of smokers (n = 160) with up to four
separate blood draws before and after two cigarettes each (613
samples). For the quality control, 62 pooled healthy control
samples were prepared by mixing equal volumes (400 μL) of
plasma from seven nonsmokers and were inserted as every 10th
sample of the run. Nonsmokers were used in order to assess
background low level peaks. The pooled aliquot is assumed to
be homogeneous and repeatedly injected across the entire LC−
MS analysis with real biological samples analyzed between
them. In Experiment II, 62 pooled quality control samples were
injected during the analysis of 675 samples, including the 62
pooled samples. The analyses were conducted uninterrupted
over 138 h. The peak list is acquired after peak detection and
alignment using XCMS. It allows more in-depth analysis of
LC−MS data. The preprocessing may help to reduce the
variation in data due to instrument noise as only peak regions
are considered in the analysis. This assesses reproducibility of
the chromatography, quantitation of the spectroscopy, and run-
to-run carryover and cross-contamination while running as a
batch in a chromatographic system.
The reproducibility of the quality control replicates was

analyzed through unsupervised principal component analysis
(PCA) by MetaboAnalyst. PCA has been shown to be an
effective approach to visualize high-dimensional data by
projecting the data point into a low-dimension space. If a
certain degree of platform stability has been attained, the QC
samples should cluster tightly together in the PCA score plot.
PCA of the experimental samples and QC samples has revealed
a pattern as shown in Figure 7, which gives an indication about
the reproducibility of the data. Although there are some

Figure 5. Hierarchical clustering of all metabolites (a) from subject 1
(S1) to subject 8 (S8) and (b) from S1 to S8 plus the analytical
replicates S1′ and S2′. Heat map colors represent relative values, in
which red represents values above the mean, black represents the
mean, and green represents values below the mean of a row
(metabolite) across all columns (samples).

Figure 6. Box-plot of the estimated variances due to interindividual
variation, sample preparation and measurement noise.

Table 1. Summary of the Measured Variance and Coefficient
Variation in Human Plasma Samples

variance CV

mean (medium) mean (medium)

Interindividual variation 0.068 (0.021) 0.032 (0.025)
Sample preparation variation 0.016 (0.002) 0.011 (0.007)
Measurement noise 0.021 (0.005) 0.019 (0.013)
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variations among the QC samples, they occupy a relatively
constrained space in the PCA score plot. When we compare
our study (675 injections with 62 QCs, total run time 138 h)
with the validation guideline for urine samples from Gika et
al.36 and the same experiment presented by Want et al.38 (130

injections with 16 QCs, total run time 29 h), the performance
of our QC samples showed little variation in tight clustering
until samples run later in time. The deviation from the QC
cluster might be due to the time-related drift in instrumental
performance over a long time span in the large scale study,52,53

or the matrix effect due to the largely peptide/protein-based
plasma samples compare to urine.54 Figure 8 is the hierarchical
clustering analysis of samples and QCs shown as a heatmap
using Pearson’s correlation for the similarity measure
(distance), and clustering algorithms using Ward’s linkage
(clustering to minimize the sum of squares of any two clusters).
The result demonstrated that our platform is capable of
discriminating the metabolome from clusters of QC samples
and experimental samples, which again provides confidence in
the quality of our pooled healthy controls throughout the run.

4. Biomarkers Indicative of Smoking Behavior

There is wide interindividual variation for smoking behavior,
which is affected by several factors such as race,55 gender,56

psychological factors57 and genetic background.58 Metabolomic
profiling may identify differences in exposure and response,
reflecting inherent biological differences. This could also lead to
better prevention and early detection strategies. Metabolomics
has the power to simultaneously detect carcinogen metabolites
and endogenous metabolites affected by smoke exposure. Thus,
both exposure and effect can be assessed. To examine the
feasibility of a metabolomic study in assessing smoke exposure,
Experiment III of 9 smokers and 10 nonsmokers was done
using serum to evaluate differences of their global metabolomic
profiles. Random Forests analysis was used to perform

Figure 7. Scores plot between the selected principle components
(PCs) showed difference between samples and QCs in their
metabolomic profiles. The explained variances captured by each PC
were shown in brackets.

Figure 8. Clustering result shown as heatmap (distance measure using pearson, and clustering algorithm using ward) of the pooled QC samples and
experimental samples.
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supervised classification and feature selection, and top 50
important features were selected with 100% accuracy by
multidimensional scaling plot (Figure 9a) and can be visualized
according to their rank importance (Figure 9b). To
preliminarily identify the metabolites in Experiment III, the
Madison-Qingdao Metabolomic Consortium Database and the
Human Metabolome Database were searched; 169 putative
features from the positive mode and 53 from the negative mode
were identified. Then, 12 candidate metabolites were manually
selected based on their putative identifications and availability
of chemical standards for comparisons, as listed in Table 2.
Validation for these candidate metabolites were then done by
acquiring MS/MS spectra. As expected, the MS/MS spectra of
nicotine, cotinine, 3-hydroxycotinine and cotinine N-oxide
were verified and matched well with those from authentic
compounds in our serum samples (Figure 10 and Supple-
mentary Figure 4, Supporting Information). Nicotine is the
major addictive component in cigarette smoke.59 In humans, it
is primarily metabolized to cotinine by cytocrome P450 2A6

(CYP2A6) enzyme and further metabolized by the same
enzyme to 3′-hydroxycotinine.60,61 Thus, the ratio of cotinine
and 3′-hydroxycotinine reflect a stable CYP2A6 metabolic
activity for nicotine metabolism.62 Pseudooxynicotine, 1,11-
undecanedicarboxylic acid and 3-hydroxycoumarin were also
verified by MS/MS identification. Pseudooxynicotine is an
amino ketone product of nicotine by soil bacteria63,64 and was
reported to be the direct precursor to the tobacco-specific lung
carcinogen NNK in the bacterial systems.65 It was shown in
vitro by Hecht et al. that the incubation of nicotine with human
liver microsomes produced pseudooxynicotine through 2′-
hydroxylation of nicotine63 but has not been identified in
humans. Since microflora has been found to play a crucial role
in human metabolome,66,67 tobacco-related metabolites metab-
olized by bacteria could have contributions to carcinogenesis
that hadn’t been thought of before. Nicotine-related metabo-
lites including nicotine, cotinine, 3-hydroxycotinine, cotinine
N-oxide (a minor metabolite of nicotine) and pseudooxynico-
tine validated by MS/MS were all significantly higher in

Figure 9. Top 50 metabolites selected from Random Forests. (a) Forest accuracies were calculated and the sample classifications were presented by
Multidimensional scaling (MDS) plot. In this plot, nonsmokers (red) and smokers (blue) were well separated in serum samples. (b) Visualization of
the top metabolites across all samples identifies the rank importance of the ions.

Table 2. Candidate metabolites selected from 222 putative identifications differentiating smokers versus non-smokers

mode metabolite ID
observed
m/z m/z

RT
(min) mass difference (in ppm)

smoker vs
nonsmokers HMDB ID

Positive Cotinine 177.10 176.09 0.35 4.89 ↑ HMDB01046
3-Hydroxycotinine 193.10 192.09 0.36 4.92 ↑ HMDB01390
Cotinine N-oxide 193.10 192.09 0.36 4.92 ↑ HMDB01411
Pseudooxynicotine 179.12 178.11 0.71 3.43 ↑ HMDB01240
Nicotine 163.12 162.12 0.51 6.32 ↑ HMDB14330
Cysteine-S-sulfate 201.99 200.98 3.44 9.25 ↓ HMDB00731
7a,12a-dihydroxy-3-oxo-4-cholenoic acid 405.26 404.26 4.89 2.60 ↓ HMDB00447
Trans-3-hydroxycotinine glucuronide 369.13 368.13 0.37 6.70 ↑ HMDB01204

Negative Aminoparathion 260.05 261.06 3.62 7.36 ↑ HMDB01504
1,11-Undecanedicarboxylic acid 243.16 244.17 3.60 0.75 ↓ HMDB02327
3-Hydroxycoumarin 161.02 162.03 4.44 6.90 ↓ HMDB02149
Alpha-CEHC 277.14 278.15 4.47 1.92 ↓ HMDB01518
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intensity among smokers compare to virtually zero among
nonsmokers (Figure 11). In our results, 3-hydroxycoumarin
and 11-undecanedicarboxylic acid were seen in both groups but
higher in peak areas among nonsmokers compare to smokers

(Figure 11). 3-Hydroxycoumarin is the metabolic product of
the natural compound coumarin which can be found in plants
and spices. Metabolism of coumarin in humans is mainly
carried out by CYP2A6 to 7-hydroxycoumarin68 but also can be

Figure 10. MS/MS spectrum from authentic compounds of cotinine (a1), hydroxycotinine (b1), pseudooxynicotine (c1), and 1,11-
undecanedicarboxylic acid (d1). MS/MS spectrum obtained from serum samples of smoker (a2, b2, c2) or nonsmoker (d2) were also presented
for comparison.
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metabolized by CYP3A4 to 3-hydroxycoumarin.68 Nicotine is
mainly metabolized by CYP2A6 enzyme, and thus could
increase bioactivation of CYP2A6 and the 7-:3-hydroxycoumar-
in ratio among smokers. However, most of the reports on 3-
hydroxycoumarin were done in rodent models and thus needs
further clarification in human. 11-Undecanedicarboxylic acid is
a dicarboxylic acid with a 13-carbon dibasic acid (tridecane-
dioic) occurring in plant and animal tissues. The relationship of
11-undecanedicarboxylic acid to cigarette smoke is still
unknown, maybe through altering the carboxylic acid
metabolism in the tobacco leaf or during the manufacture of
cigarettes.
Our results further show the feasibility and potential of the

metabolomics profiling to identify new biomarkers of cigarette
smoke exposure and lung cancer risk. Given that cigarette
smoke is a complex mixture, it is possible that metabolic
profiles will provide additional information for tobacco-related
disease risk different from existing chemically specific
biomarkers, such as those reported by Hecht et al.13 Also,
broad detection methods such as used here can screen for
unanticipated changes in smoke exposure as cigarette designs
change. For example, the technology used to decrease some
constituents might increase those of others (e.g., for the Eclipse
cigarette,8 acrolein and CO increased69). Another reason for
needing a broad biomarker such as a metabolomics profile of
exposure and risk is to help tailor prevention and early
detection strategies for former and current smokers. While this
study will not directly assess biomarkers for lung cancer risk,
the first step in developing these is the development of
biomarkers of smoke exposures.47

■ CONCLUSIONS
Metabolomics provides information about the metabolic status
of living systems and can provide phenotypic information about
the cell’s environment and mechanistic pathways, as well as
having clinical utility including as a risk biomarker.70−72 It is
inexpensive and high-throughput, and has the potential to
identify new biomarkers of cigarette smoke exposure and the
consequent disease risk. Such biomarkers will assist in the

evaluation of tobacco products and performance standards, and
for identifying smokers at risk for lung cancer. Upon the basis
of our study using UPLC−QTOF-MS, low variability is
observed in measurement variation and sample preparation
variation. When applying QC samples to the large scale study,
QC clustering presents high stability of the platform but not the
ones run later in time.
Various factors including the stability and maintenance of

individual instrument, sample preparation techniques, and the
choice of column could affect the performance of the
chromatography result. Therefore, we recommend that for
future metabolomics studies, especially large scale epidemio-
logical studies, a separate experiment to assess the variability of
the platform before applying precious human samples is needed
so as not to exceed the results reported herein. After
determining the required sample size, the number of aliquots
and injections needed according to the variability of the specific
platform, a pooled QC sample set to be run in between the
experimental samples throughout the run is crucial in order to
further assess the repeatability of the experiment. After
preprocessing and analyzing the data, metabolites with CV no
more than 10−15% should be considered for the biomarker
discovery.
Metabolomics can potentially be used to better characterize

smoking-related disease risks to enhance prevention and early
detection methods, and by the FDA in the regulation of
tobacco products. The recent authority to the FDA over
tobacco products allows the FDA to mandate product
performance standards governing smoke exposure to toxic
constituents and also requires the FDA to evaluate
manufacture’s health claims for modified-tobacco products of
purported reduced exposure.5 The FDA decisions, however,
will need to be supported by scientific studies and a better
understanding of cigarette smoke toxicology. It also will require
support through human studies and biomarkers that reflect the
complex exposure to tobacco smoke. Today, though, there are
only a few biomarkers of exposure and no validated biomarkers
of cancer risk.73 As proof of principle, several new biomarkers
were identified herein that have not thus far considered to be

Figure 11. Box plots of peak areas for seven candidate metabolites among smokers and nonsmokers. The points outside the quartiles are outliers.
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biomarkers of tobacco smoke exposure. Thus, metabolomics
has the potential to develop a metabolic phenotype in healthy
smokers of smoke exposure and disease risk.
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