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Abstract

In the present work we extend and analyze the scope of our recently proposed stochastic model for transcriptional
regulation, which considers an arbitrarily complex cis-regulatory system using only elementary reactions. Previously, we
determined the role of cooperativity on the intrinsic fluctuations of gene expression for activating transcriptional switches,
by means of master equation formalism and computer simulation. This model allowed us to distinguish between two
cooperative binding mechanisms and, even though the mean expression levels were not affected differently by the acting
mechanism, we showed that the associated fluctuations were different. In the present generalized model we include other
regulatory functions in addition to those associated to an activator switch. Namely, we introduce repressive regulatory
functions and two theoretical mechanisms that account for the biphasic response that some cis-regulatory systems show to
the transcription factor concentration. We have also extended our previous master equation formalism in order to include
protein production by stochastic translation of mRNA. Furthermore, we examine the graded/binary scenarios in the context
of the interaction energy between transcription factors. In this sense, this is the first report to show that the cooperative
binding of transcription factors to DNA promotes the ‘‘all-or-none’’ phenomenon observed in eukaryotic systems. In
addition, we confirm that gene expression fluctuation levels associated with one of two cooperative binding mechanism
never exceed the fluctuation levels of the other.
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Introduction

At the transcriptional level gene expression is mainly controlled

by the transcription factor (TF) proteins that bind specifically to

regulatory binding sites on the DNA [1,2]. TFs influence

transcription rates by interacting with other components of the

core transcriptional apparatus, including RNA polymerase. Due to

the fact that TFs bind to DNA regulatory sites in a stochastic

fashion, the transition between states of the cis-regulatory systems

(CRS) is a stochastic process. Since the number of TF molecules

and the number of regulatory sites are too small, the deterministic

assumptions, which are valid in macroscopic systems, fail to

describe a mesoscopic system such as this [3]. Therefore, due to

the fundamentally random nature of chemical reactions, trajecto-

ries of individual cells are noisy and do not follow a smooth

deterministic course. It is known that the gene expression response

of an individual cell to a regulatory signal may be graded or binary

[4–6]. In the graded response, the output varies smoothly with the

input stimulus, whereas in the binary response, also termed the

‘‘all-or-none’’ phenomenon, gene expression response mainly

occurs at either low or high levels. In the latter case, the resulting

heterogeneous response of an ensemble of cells leads to a bimodal

distribution of the protein level. This is a mechanism that can

contribute to phenotypic diversity in genetically identical cell

populations and is critical for increasing population survival in a

fluctuating environment [7]. The bimodal response of gene

regulatory networks can arise from closed loops (e.g., a two-gene

system whose proteins mutually repress their transcriptional

activity) or a single gene (where the gene expression product

induces its own expression). These systems present bistability and

have been reported previously [8–11]. Additionally, the ‘‘all-or-

none’’ gene expression response has also been experimentally

observed in some eukaryotic systems that do not involve bistability

[4,5,12–14], where gene expression often occurs in stochastic

bursts. This suggests that the binary responses observed in

inducible gene expression could be explained by fluctuations in

the binding of TFs to DNA [6,15].

Contrariwise to prokaryotic RNA polymerases, eukaryotic

polymerases require the prior assembly of general TFs at the

typical eukaryotic promoter [16,17]. These factors assemble in a

particular order, beginning with the binding of TFIID to the

TATA box. The ordered assembly provides several stages at which

the initiation of transcription can be regulated [18,19]. Thus,

eukaryotic TFs can either facilitate or hinder the assembly of the

transcriptional complex. Consequently, it is of paramount

importance to contemplate the potential diversity of the CRS

architecture and functionality when considering the various known

mechanisms by which proteins and DNA interact [20]. However,

most of the existing stochastic models for gene regulation are based

on transitions between two CRS states (active and inactive) [21–

26]. Despite their simplicity, these models extract valuable

information about gene expression fluctuation. For example, they

have illustrated that graded responses arise from fast chemical
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kinetics, whereas slow kinetics lead to a binary output [3].

Nevertheless, simple models may not be suitable for studying the

role of different mechanisms that participate in complex

transcriptional regulation processes.

Recently we proposed a mathematical model for transcriptional

regulation in cooperative activator switches, which considers a

CRS with several regulatory binding sites for a single kind of

activator molecule [27]. In this study, by means of the master

equation approach, we derived analytical expressions for the first

two moments of the steady-state probability distribution for

mRNAs and identified two cooperative binding mechanisms

[27]: (i) the recruitment mechanism (RM) where the interaction

between TFs increases the probability of binding another TF to

DNA; (ii) the stabilization mechanism (SM), where the interaction

between TFs decreases the unbinding rate of TFs from DNA.

These mechanisms affect the fluctuation level in different ways,

but not the mean response [27]. In the present paper, we

demonstrated what we previously suggested by examination of

some regions of the parameters space [27]: that the stabilization

cooperative binding mechanism always presents a level of

fluctuation greater than or equal to the recruitment mechanism.

Furthermore, in this paper we incorporate two novel general-

izations to our previous model: (i) the capacity to understand

cooperative mechanisms for repressor or biphasic switches, by

considering that bound TFs can repress transcriptional complex

formation and modulate transcriptional initiation in different ways

[28]; (ii) the inclusion of analytical expressions for the first two

moments of the steady-state probability distribution for proteins,

enabling contrastation of theoretical and experimental data. In

addition, this is the first study to show that cooperative binding

plays an important part in determining the transition from graded

to binary responses. In this sense, we establish the parameter space

regions where each cooperative binding mechanism presents a

graded or a binary response. Thus, our findings show that, as well

as slow kinetics [3], cooperativity plays a key role in determining

the transition from graded to binary responses.

Methods

A General Framework for Complex CRS Modeling
Here we present a framework for study models with many states

and an arbitrary number of transitions between the different states.

This extension of our previous model [27] includes the stochastic

production of proteins.

In principle, the CRS states can represent nucleosome

organization, DNA loops, TFs bound or unbound to regulatory

sites, RNA polymerase binding, etc. Figure 1 depicts a particular

outline for this type of complex model, considering eight possibles

states, denoted by s~1,2, . . . ,N~8, and fourteen allowed

transitions. In general, the CRS can make transitions from a

given state s to state r with probability ts,r. Some CRS states are

able to synthesize mRNAs at a state-dependent rate, a1,s. Each

mRNA generates proteins, at a constant rate a2. Thus the state of

the system is specified by three stochastic variables: the chemical

state of the CRS s, the number of mRNAs m and the number of

proteins n. s,m and n are integers, where m,nw0 and s is 1, . . . ,N.

The model also assumes both mRNAs and proteins are degraded

at rates c1 and c2, respectively.

Since our model assumes transcriptional regulation as a

stochastic process, the theory of stochastic processes is required

to analyze the resulting heterogeneous response of an ensemble of

cells to a particular signal. Like other authors [21–23,26,27,29],

we used the master equation approach to study the average gene

expression response in the steady state. We can write the

probability of finding, at any given time t, the system in the state

(s,m,n) as a vector Pm,n tð Þ~ P1,m,n tð Þ,P2,m,n tð Þ, . . . ,PN,m,n tð Þð Þ.
The time evolution for this probability is governed by the following

master equation:

_PPs,m,n~a1,s Ps,m{1,n{Ps,m,nð Þ

zc1 (mz1)Ps,mz1,n{mPs,m,n½ �

za2m Ps,m,n{1{Ps,m,nð Þ

zc2 (nz1)Ps,m,nz1{nPs,m,n½ �

z
XN

r~1

ts,rPr,m,n,

ð1Þ

where ts,r is the transition probability per time unit from state r to

state s. The last term on the right-hand side of Eq. (1) describes the

CRS dynamics, while the others correspond to the production and

degradation of mRNAs and proteins. Unlike the master equation

for the previous model [27], Eq. (1) has a new random variable n

corresponding to proteins and two new terms associated with their

production and degradation.

The Steady-state Solution
A time-dependent solution of Eq. (1) is very difficult to obtain

even in simpler models. Nevertheless, we are mainly interested in

the steady-state solution for mRNA and protein mean levels and

their fluctuations. By elaborating on the approach developed in

[27], we were able to compute the first two moments of these

Figure 1. Schematic diagram of a complex cis-regulatory
system. The model illustrated in this diagram includes eight states
that are denoted by s. The allowed transitions between CRS states are
indicated by arrows. A transition from state s to state r can occur with
probability ts,r . States with s§5 have been associated with no null rates
of mRNA production a1,s, which depends on s. Each mRNA generates
proteins at a constant rate a2 . Both mRNAs and proteins are linearly
degraded at rates c1 and c2 , respectively.
doi:10.1371/journal.pone.0044812.g001
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quantities. The mean levels are measured through the first

moment of the number of mRNAs m and proteins n,

m~
X

m

mPm ð2Þ

n~
X

n

nPn, ð3Þ

where Pm~
P

n,s Ps,m,n is the marginal probability of the system to

have produced m mRNAs, regardless of both the CRS state and

the number of proteins for that state, while Pn~
P

m,s Ps,m,n is the

marginal probability of the system to have n proteins, regardless of

both the CRS state and the number of mRNAs for that state. The

fluctuations are measured through the corresponding variances,

related to the second moments,

s2
m~m2{m2 where m2~

X
m

m2Pm ð4Þ

s2
n~n2{n2 where n2~

X
n

n2Pn ð5Þ

The summation limits were suppressed for the sake of

readability. From now on, every sum over mRNAs or proteins

will run from m,n~0 to m,n~?, while the sum over CRS states

will be from s~1 to s~N.

Following [27], the moments of jth order can be written in

terms of their associated partial moments. Note that the partial

moments of order zero are the marginal probabilities for the

operator to be in state s at time t, Ps, regardless of the number of

mRNAs or proteins present at this time, i.e.,

m0
s~Ps~

P
m,n Ps,m,n,

mj~
X

s

mj
s where mj

s~
X
m,n

mjPs,m,n for mRNAs ð6Þ

nj~
X

s

nj
s where nj

s~
X
m,n

njPs,m,n for proteins ð7Þ

From Eq. (1) we can derive a set of ordinary differential equations

for the time evolution of the partial moments for any j. As there is

no feedback, the equations for the partial moments factorize into

independent sets of linear equations, which can easily be solved.

For j~0,1, and 2 they are

j~0 _PPs~
X

s’
tss’Ps’

n
ð8Þ

j~1
_�mm�mms ~

X
s’
tss’ms’za1,sPs{c1ms

_�nn�nns ~
X

s’
tss’ns’za2ms{c2ns

8<
: ð9Þ

j~2

m2

:

s
~
X

s’
tss’m2

s’{2c1m2
sz2a1,smszc1msza1,sPs

n2

:

s
~
X

s’
tss’n2

s’{2c2n2
sz2a2mnszc2nsza2ms

mn
:

s
~
X

s’
tss’mns’{(c1zc2)mnsza2m2

sza1,sns:

8>>>>>>><
>>>>>>>:

ð10Þ

From these we can readily find first-order differential equations

governing the time evolution of the first moments and variances

_�mm�mm ~ {c1 mz
X

s
a1,s Ps

_�nn�nn ~ {c2 nza2 m

(
ð11Þ

_ss2
m ~ {2c1 m2zc1 mz2c1 m2z

z
X

s
½2a1,s msza1,s(1{2m)Ps�

_ss2
n ~ {2c2 n2zc2 nz2a2 mnza2 m

8>>><
>>>: ð12Þ

Equations (11) immediately reduce, in their steady states, to.

m�~
1

c1

XN

s~1

a1,sPs� n�~
a2

c2

m�, ð13Þ

where the above � denotes the steady-state solution for the random

variable. The steady-state solution for the probability vector P�
corresponds to the normalized eigenvector related to the zero

eigenvalue of the CRS transition matrix, TP�~0. From Eqs (12)

for the steady-state variances we find

s2�
m ~m�{m2

�z
1

c1

XN

s~1

a1,sms� ð14Þ

s2�
n ~n�{n2

�z
a2

c2

mn�, ð15Þ

where from the last differential equation for the j~2 partial

moments, Eqs (10), the second order moment in its steady state

mn� can be related to the steady-state first-order partial moments

of m and n by

mn�~

a2m�z
XN

s~1
a1,s

a2

c1

ms�zns�

� �
c1zc2

, ð16Þ

and where �mms� and �nns� are determined as the solution of the linear

equations

X
s’

ts,s’{c1ds,s’ð Þms’�~{a1,sPs� ð17Þ

Cooperativity and Bimodality in Gene Expression
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X
s’

ts,s’{c2ds,s’ð Þns’�~{a2ms�: ð18Þ

Expressions (13)–(18) are general in the sense that they are valid

for any CRS, whatever the details of their dynamics. The

expressions for mRNA have been previously reported in [27].

Here we incorporate the expressions of mean and standard

deviation for proteins, which will allow contrasting models with

experiments as many times as experimentalists assess protein

levels. The expression for protein fluctuations predicted here does

not differ only in an offset from the mRNA fluctuation, as was

found in a previous study that considers a many-state CRS [29].

This model assumes that each mRNA generates a burst of

proteins, whose size is geometrically distributed. Indeed, our

resulting expressions for steady-state fluctuations of mRNAs and

proteins, expressed in the form of normalized variance, conform to

the general equation described previously by Paulsson [24], but

with a more complicated term for the activation-inactivation

transitions. Thus, our results expand upon previous studies that

were either limited to the modeling of promoter state transitions as

a two-state on/off switch [3,21,24,26] or which excluded

translation when more than two promoter states were modeled

[27,30].

Modeling Genetic Switches
The expressions of the previous subsection are independent of

the specific form of the CRS transition matrix T̂T and of the

number of states N . In this section, we will specify the CRS states

and the form of the transition matrix T̂T associated with a particular

CRS that is suitable for modeling the transcriptional regulation of

switches. For the sake of simplicity, we will consider only eight

states (N~8) as sketched in Fig. 1. In order to study the

cooperative regulation our model includes three regulatory

binding sites for the same TF (N~3), but the generalization to

an arbitrary number of sites is straightforward. As in [27], the

states s~1,2,3,4 represent states with zero, one, two, and three

binding sites occupied by TFs, respectively. The states s§5
correspond to transcriptional preinitiation complex formation,

where all components required for transcription are assembled in

the CRS. For simplicity, we consider that TFs do not bind or

unbind after the formation of the preinitiation complex; the

allowed transitions between the CRS states are indicated by

arrows in Fig. 1. Once the core transcriptional apparatus is

formed, the synthesis of one mRNA copy begins at rate a1,s. Each

mRNA generates proteins at a constant rate a2. Our model also

assumes that both mRNAs and proteins are linearly degraded at

rates c1 and c2, respectively. In the model we can distinguish four

regulatory layers. Layer I corresponds to CRS dynamics of TF

binding to/unbinding from DNA, layer II corresponds to

preinitiation complex formation, layer III corresponds to mRNA

production/degradation, while layer IV corresponds to protein

production/degradation.

In order to obtain the explicit expressions of the steady-state

solutions in terms of the parameters of the system, we need to

specify the CRS transition matrix T̂T. The TFs can bind to

regulatory sites with a probability proportional to TF concentra-

tion c, following the law of mass action for elementary reactions.

Thus, the transition probabilities t12~ck12,t23~ck23 and

t34~ck34, while transition rates tij to and from other states of

the operator are denoted simply as kij . In this case the transition

matrix T̂T can be written as

T̂T~

{(ck12zk15 ) k21 0 0 k51 0 0 0

ck12 {(k21zck23zk26 ) k32 0 0 k62 0 0

0 ck23 {(k32zck34zk37 ) k43 0 0 k73 0

0 0 ck34 {(k43zk48 ) 0 0 0 k84

k15 0 0 0 {k51 0 0 0

0 k26 0 0 0 {k62 0 0

0 0 k37 0 0 0 {k73 0

0 0 0 k48 0 0 0 {k84

0
BBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCA

ð19Þ

whose associated steady-state solutions of the partial probabilities

Ps
�involved in Eq.(13) were calculated in [27]. The explicit

expression for levels of mRNAs in the steady state is

m�~
1

c1

a1,5K5za1,6K2K6cza1,7K2K3K7c2za1,8K2K3K4K8c3

(1zK5)zK2(1zK6)czK2K3(1zK7)c2zK2K3K4(1zK8)c3

ð20Þ

where Ks~
ks{1,s

ks,s{1
for s~2,3,4 and Ks~

ks{4,s

ks,s{4
for s~5,6,7,8.

Closed expressions for the variances can also be obtained for Nƒ3
but are too long to be reported here. As in this paper we deal with

steady states only, hereafter we write m to denote m�.
The working hypothesis in our model is that TFs bound to DNA

alter the probability of transcriptional complex formation.

Consequently, states s~1, . . . ,4 are characterized by different

kinetics for the formation of the preinitiation complex. For

simplicity, we consider that the sites are functionally identical. The

last assumption implies that the model does not distinguish among

states with the same number of TFs bound to the regulatory

binding sites. Thus, in our model, the states of CRS are more

related to the occupancy number rather than to the binding status

of each site. This additional simplification reduces the number of

states accessible to the CRS and allows us to explore the role of

cooperative binding in the noise expression without considering a

combinatorial number of states. In this model, with several states

able to transcribe, it will be useful to define the transcriptional

efficiencies em for each occupational number i as the rate of

mRNA production when there are i TFs bound to DNA, i.e.,

em ið Þ~a1,iz5 � kiz1,iz5=kiz5,iz1 for i~0,1,2,3.

As in the model the regulatory sites are assumed to be

functionally identical, we can introduce a relationship between TF

binding/unbinding when there is no interaction between the TFs.

Thus, if the probability per time unit that a single TF molecule

binds to a regulatory site is p, we have ko
s,sz1~(N{sz1)p, with

s~1,2,3, and u indicates that there is no interaction between TFs.

Similarly, unbinding rates are given by ko
sz1,s~sq, where q is the

probability per time unit that a single TF molecule unbinds from

an occupied site.

A further relationship in layer I can be obtained from the

principle of detailed balance, which establishes a relationship

between the kinetics and the thermodynamic properties of the

system [31]. Thus, we will assume that the probability for a TF

molecule to bind to a given regulatory site arises from: (i) the free

energy of binding a TF to the specific site DGDNA, (ii) the free

energy of interaction between TF molecules bound to adjacent

sites DGI. Thus, when there is no TF interaction, we have

cko
s,sz1=ko

sz1,s~e{
DGDNA

RT , for s~1,2, . . . N, ð21Þ

ð19Þ

Cooperativity and Bimodality in Gene Expression
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where ko
s,sz1 represents the transition rate from state s to state

sz1 when there is no interaction between TFs (ko
sz1,s represents

the rate of reverse transition) and where R is the gas constant and

T is the absolute temperature. In general, the TF molecules

interact with each other, i.e., DGIƒ0. If we now assume that each

new bound TF interacts with all TFs already bound to the DNA

sites, and furthermore, that this energy is the same for all of them,

we have

ks,sz1

ksz1,s
~eas

ko
s,sz1

ko
sz1,s

, ð22Þ

where e~e{
DGI
RT represents the intensity of the interaction between

TFs and as represents the number of interactions, which, because

of our assumption, will be as~s{1 with s~1,2, . . . ,N.

Relationship (22) leaves an extra degree of freedom, because the

interaction between TFs can increase the binding rate ks,sz1,

increasing the ability for the recruitment of new TF for DNA

binding, or it can diminish the unbinding rate ksz1,s, increasing

the stability of the TF bound to DNA. The first case was denoted

as the RM, while the second case was denoted as the SM [27]. In

order to understand the effect of these cooperativity binding

mechanisms on the regulatory response and their associated

fluctuations, we will first consider these mechanisms separately.

Thus, using relation (22) and the relations for binding/unbinding

rates, we obtain

ks,sz1~e s{1ð Þ Nz1{sð Þp

ksz1,s~sq, ð23Þ

for the first mechanism, while for the second mechanism we have

ks,sz1~ Nz1{sð Þp,

ksz1,s~e 1{sð Þsq: ð24Þ

Additionally to the two cooperativity binding mechanisms

mentioned above, introduced for the first time in [27], we will

here consider the case where both mechanisms are acting

simultaneously. In this case, we can write the free energy of

interaction as DGI~DGRMzDGSM, where DGRM corresponds to

the free energy that increases the ability for new TF recruitment

for DNA, while DGSM corresponds to the portion of the free

energy that diminishes the unbinding rates ksz1,s. Thus, in this

more general scenario, we can write the kinetic constants of layer I

as

ks,sz1~e
s{1ð Þ

RM Nz1{sð Þp

ksz1,s~e
1{sð Þ

SM sq, ð25Þ

where eRM~e{
DGRM

RT , and eSM~e{
DGSM

RT , noting that

e~eRM|eSM. These thermodynamic relationships allow us to

write the kinetic parameters of layer I in terms of three parameter

p, q and e.

In the next section we will study the transcriptional response of

CRS when the TF concentration c is increased. The mean

response can be characterized by three parameters: (i) the

saturation value (known as Vmax), which is defined as

limc?? m(c); (ii) the half-maximum concentration (denoted here

by Kd ), which is defined as the concentration c at which

m(c)~Vmax=2 (i.e., Kd is a root of the polynomial of degree N);

(iii) the steepness nH , which is defined as

nH~
4

Vmax

dm(c)

d( ln c)
Dc~Kd

:

When these definitions are applied to a Hill function

H(c)~VmaxcnH =(cnH zK
nH
d ), one can determine the three

parameters (Vmax,Kd ,nH ) related to H(c). The above definition

allows us to characterize the sigmoidal response given by Eq. (20)

analytically, avoiding a nonlinear fitting procedure. Additionally,

we characterize the fluctuation around the mean transcript

number by the value of standard deviation, given by Eqs. (12)

and (15), at c~Kd , which is denoted by smax.

Results

Activator, Repressor and Biphasic Switches
In [27] we reported two different cooperative binding

mechanisms for activator switches. Here we expand the

proposed model to include different types of switches by

appropriately setting kinetic rates in layer II and/or in layer

III. For example, a repressor switch is obtained if the

transcriptional efficiencies em ið Þ decrease monotonically with

the occupancy number i. This means that, in the example of

Fig. 1, a1,5k15=k51wa1,6k26=k62wa1,7k37=k73wa1,8k48=k84. On

the other hand, if there is a nonmonotonic dependence of em ið Þ
with i we are dealing with a switch with biphasic response to the

TF.

The kinetic parameter values used here are listed in Table 1.

For typical experimental conditions, e~6 corresponds to DGI
~11

kcal/mol. This value is similar to the interaction energy between

two l-repressor molecules [32] and a bit higher than the free

energy associated with the cooperative binding of E2 proteins

(DGI*0:7 kcal/mol.) [33]. The binding and unbinding rates of

TFs are consistent with the measured values for the lac repressor

[34], and for E2 [35], when the TF concentration is given in nM

and mM, respectively. Other parameters are assigned plausible but

arbitrary values, due to the absence of kinetic information with

regard to the other state transitions.

Here we consider activator and repressor switches where the

kinetic rates for preinitiation complex formation increase or

decrease linearly with the occupancy number, respectively.

Figure 2 depicts the average number of mRNA copies SmT and

the associated standard deviations sm as a function of the

transcription factor concentration c, obtained analytically for both

cooperative binding mechanisms for activator (A) and repressor (B)

switches. Both cooperative binding mechanisms present the same

SmT response. The behavior of the mean and the standard

deviation related to the repressor is very similar to the activator

response but as expected, with the x-axis reflected. The regulatory

functions of examples 2A and 2B present steepness of 1:94 and

{1:94, respectively, and the same saturation value. However,

activator and repressor differ in the Kd value and in the noise level.

For the kinetic parameters used in this case the repressor

(Kd~0:98) is less sensitive than the activator (Kd~0:25). We also

Cooperativity and Bimodality in Gene Expression
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observe that the peak of sm associated with the repressor is slightly

smaller than that associated with the activator.

Figure 3 illustrates two examples of biphasic switches when the

transcriptional efficiency em ið Þ does not depend monotonically on

the occupancy number i. In Fig. 3A the modulation of the

transcriptional efficiency occurs in layer II, while in Fig. 3B the

biphasic response to the TF is obtained by the modulation of the

rates a1,s (i.e., layer III). In both cases mean responses are biphasic.

Again the mean response does not depend on the cooperative

binding mechanism which is acting. In Fig. 3A the fluctuation

level, estimated by the standard deviation sm associated with the

SM has peaks near the two values of the concentrations where the

response is half the maximum, while in the RM case sm presents

only one peak. The fluctuation level around the second half-

maximum concentration depends strongly on the acting cooper-

ative binding mechanism. In order to observe the effect of the

second type of transcriptional efficiency modulation, we keep the

same overall transcription rates by setting ks,sz4~1:5 for all s,

a1,5~a1,8~0:01, and a1,6~a1,7~2:0. In this case, depicted in

Fig. 3B, the mean response decreases and the standard deviation

has only one peak with higher amplitude than in the previous case

in which the modulation is acting over the kinetic rates related to

layer II. We also compare the fluctuation levels associated with

these two types of biphasic switches for different transcriptional

efficiencies. In this sense, we compute the coefficient of variation

CV , as noise measurement (defined as CV~s=m) at the TF

concentration c where SmT reaches the maximum, as a function of

the overall transcriptional efficiency em. In the case of a biphasic

switch with modulation of the layer II kinetics, different values of

em are obtained by increasing the rates ks,sz4 and keeping a1,sz4

constant. For a biphasic switch originated by the modulation of

layer III kinetics, this is done by increasing the rates a1,sz4 keeping

the kinetic rates ks,sz4 constant. When comparing the respective

cooperative binding mechanisms at different transcriptional

efficiencies (Fig. 4), we found that the biphasic switch with the

latter modulation is always noisier than that where the biphasic

response occurs due to the kinetics of layer II.

In order to study how the response of CRS (i.e., the mean and

the fluctuations of the mRNA level) depends on the cooperativity

parameter e and on the unbinding rate q, we computed three

parameters to characterize the mean response and one to

characterize the fluctuation around the mean (see subsection

Table 1. Kinetic parameters.

TF binding and unbinding (Layer I) Preinitiation complex formation (Layer II)

activator repressor biphasic

p 0.25 k15 0.00 1.50 0.01

q 0.75 k26 0.50 1.00 2.00

e 6.00 k37 1.00 0.50 2.00

k48 1.50 0.00 0.01

ks,s24 0.50 0.50 0.50

Production and degradation rates

mRNA (Layer III) a1,s 1.50 c1 0.03

Kinetic parameter values for figures. The time unit is min and the concentration is an arbitrary unit.
doi:10.1371/journal.pone.0044812.t001

Figure 2. Activator and repressor switches. Average number of mRNA copies SmT (black lines) and the associated standard deviations sm (blue
lines), as a function of TF concentration c in steady state for two different types of switches: activator switch (A), repressor switch (B). The standard
deviations corresponding to the recruitment mechanism are indicated with solid lines, while dashed lines correspond to the stabilization mechanism.
Vertical gray dashed lines are at c~Kd . See Table 1 for parameter values.
doi:10.1371/journal.pone.0044812.g002
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Modeling genetic switches). The binding rate p only affects the

dissociation constant Kd as reported in [27]. Figure 5 illustrates the

activator response behavior of smax, i.e. sm Kdð Þ, as a function of

the unbinding rate q (Fig. 5A) and as a function of e (Fig. 5B). In

this case it is observed that smax corresponding to the RM does not

exceed that associated with the SM. smax decreases sigmoidally

with q. The saturation value at low q and the half-maximal q-value

increase with e as can be seen in the inset of Fig. 5A. In fact, for the

noncooperative case, smax is lower than for the cooperative cases

at low and intermediate values of q, but equal at high values of q.

On the other hand, smax increases sigmoidally with e (Fig. 5B);

again, smax corresponding to the RM does not exceed that

associated with the SM, but both saturate to the same value at

high values of e. The curves of Fig. 5A and 5B were computed by

evaluating the analytic expression for smax, while the symbols were

obtained by simulation using the Gillespie method [36]. Figure 5

also illustrates the behavior of the dissociation constant Kd and the

steepness nH vs. the unbinding rate q (panel C) and e (panel D). As

expected, the sensitivity decreases with the unbinding rate but

increases with e. On the other hand, the steepness nH depends

only on e and not on q or p (data not shown). As expected, nH

(blue line) increases with and saturates at 3 at a high value of . A

CRS with N~2 activation sites saturates at 2 (data not shown).

Thus, in the limit DGI??, we can recover the Hill function from

the expression of the mean response (Eq. 22). A similar behavior is

observed for a repressor switch, Fig. 6, with the exception of the

steepness nH as a function of e (Fig. 6D). In this case nH decreases

with and saturates at 23 at high interaction energy, as expected

for a negative regulator. Further differences between Fig. 5 and

Fig. 6 are the sensitivity and the fluctuation level. For these

parameter values the repressor is less sensitive and noisier than the

activator, as we noted in Fig. 2.

Comparing the Cooperative Binding Mechanisms
Results presented up to this point suggest that the SM is

associated with a level of noise greater than, or at least equal to,

the RM. Now we are interested in determining whether this

behavior is a general feature of these mechanisms or if a different

scenario can be expected in some regions of the parameter space.

In order to address this question we computed the difference

between the variances of SM and RM. For the sake of simplicity

we considered a switch with two binding sites. Such simplification

is sufficient to consider the effects of the binding cooperative

mechanisms and to reduce the number of CRS states to six

allowing an analytical approach. That is, referring to Fig. 1, we set

Figure 3. Biphasic switches. Average number of mRNA copies SmT (black lines) and the associated standard deviations sm (blue lines) as a
function of TF concentration c in steady state for two biphasic switches: the biphasic response originated by layer II modulation (A) and by layer III
modulation (B). The standard deviations corresponding to the recruitment mechanism are indicated with solid lines, while dashed lines correspond to
the stabilization mechanism. For the last mechanism sm has two peaks only in panel A. Parameters for panel A are listed in Table 1. Panel B
parameters are ks,sz4~1:5 a1,5~a1,8~0:01 and a1,6~a1,7~2:0, while the rest of the parameters correspond to those in Table 1.
doi:10.1371/journal.pone.0044812.g003

Figure 4. Modulation of layer III generates more fluctuation
than modulation of layer II. Coefficient of variation (CV~sm=SmT)
associated with the above-mentioned biphasic switches as a function of
the overall transcription rate em~Sem(i)Ti . Black lines correspond to the
CV from biphasic switches with layer II modulation, while blue lines
correspond to biphasic switches with layer III modulation. Solid lines
correspond to RM, while dashed lines correspond to SM.
doi:10.1371/journal.pone.0044812.g004
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k34~k43~k48~k84~0, so as to keep only CRS states with

s~1,2,3,5,6 and 7. Noticing that the mean values �mm� do not

depend on the acting mechanism, such difference is given by

s2
SM{s2

RM~
1

c1

XN

s~1

a1,s(m
SM
s� {mRM

s� ),

where �mms� are solutions to Eq. (15), with the corresponding

transition matrix T̂T, given by Eq. (19) for RM, and by Eq. (20) for

SM. If we consider a switch with a1,s~0 for s~1,2,3 as discussed

previously, then the difference between the variances of SM and

RM can be written as

s2
SM{s2

RM

~2e(e{1)c2p2q a1,6k26(c1zk73zk37){a17k37(c1zk62zk26)½ �f |

| c1(c1zk51zk15)z2cp(c1zk51)½ �zq(c1zk62)|

| a1,5k15(c1zk73zk37){a1,7k37(c1zk51zk15)½ �g2=f0, ð26Þ

where the denominator f0 is a parameter dependent factor, which

is the sum of positive terms and consequently it is always positive

definite. The difference between the variances of SM and RM can

be written as

Ds2~s2
SM{s2

RM~2e(e{1)c2p2q
f 2
1

f0
: ð27Þ

The above expression for Ds2 is positive for all the parameter

space whenever ew1, thus supporting the presumption that

follows from our numerical results, i.e., that, for a switch, such as

the one depicted in Fig. 1, but with two sites, the fluctuation level

associated to the RM never exceeds the fluctuation level associated

with the SM.

In live organism, it is more plausible than these cooperative

binding mechanisms act simultaneously rather than in an

excluding manner, as illustrated for a clearer interpretation. In

this context, we also consider some cases where both RM and SM

are acting together. Figure 7 depicts the standard deviation sm for

an activator switch with the same as Fig. 2, but each fluctuation

curve corresponds to different contributions from each mecha-

Figure 5. Activator response. (A) smax as a function of the unbinding rate q for the RM (gray) and the SM (black). Inset: smax as a function of q for
the RM (gray) and the SM (black) obtained with e~10000. The dotted line depicts the noncooperative case (~1). (B) smax as a function of the
cooperativity parameter e for the RM (gray) and the SM (black). (C) The dissociation constant Kd (black) and the steepness nH (blue) as a function of
the unbinding rate q. (D) The dissociation constant Kd (black) and the steepness nH (blue) as a function of the cooperativity parameter e. Parameters
are the same as in Fig. 2A except for the varying parameter in each case. Lines correspond to analytic solutions and symbols to simulations.
doi:10.1371/journal.pone.0044812.g005
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nism. The solid light-gray line corresponds solely to the SM, the

dashed light-gray line corresponds to a contribution of 75% from

SM and 25% from RM, the dotted black line corresponds to equal

contributions from each mechanism, the dashed dark-gray line

corresponds to a contribution of 25% from SM and 75% from

RM, and the solid dark-gray line corresponds solely to the RM.

From this plot, we can observe that fluctuations have a

proportional dependence on the mechanism contributions.

Graded and Binary Responses
While the influence of the different mechanisms in which

cooperativity can affect the gene expression response is evident

from Figs. 5 and 6, their effects are even more dramatic when the

steady-state distribution function is studied. In Fig. 8 we compare

the recruitment and stabilization mechanisms along several kinetic

rates that render the same mean response function using the same

kinetics as in the previous activator case (see Table 1), but with

e~12. By multiplying all parameters related to a particular

regulatory layer by a factor, we alter the fluctuation level, but not

the mean response that depends on ratios rather than on

individual kinetic rates. The first panel of row A, A1, is the time

series of the mRNA number in one cell generated by stochastic

simulations using the parameter values of the RM case. The

associated histogram (panel A2) shows the number of times a cell

shows a given number of mRNAs measured every 10 minutes over

a population of 20000 cells. Panels A4 and A5 are the time series

and histogram, respectively, of the mRNA number generated by

stochastic simulations for the SM case. All time series and

histograms in Fig. 8 were obtained using c~Kd . For comparison,

in panel A3 of Fig. 8 we depict the noise strength Q~s2
m=m as a

function of mr~m=Vmax, corresponding to the RM case and the

SM case. Interestingly, the mechanism acting by stabilization

which reduces the unbinding rates, presents a bimodal distribution

(panel A5), while the cooperative recruitment mechanism with the

same parameters p, q and e, is associated with a unimodal

distribution (panel A2). In the panels corresponding to row B the

kinetic rates of layer I were amplified by a factor of 10. In this case,

the fluctuation levels diminish considerably for both mechanisms.

The opposite occurs when the TF binding/unbinding rates

decrease (panels of row C). For slow binding/unbinding rates

our model predicts that the level of fluctuation increases and the

histogram associated with the RM case becomes bimodal. In

panels corresponding to row D, the kinetic rates of layer II were

amplified by a factor of 10, which does not have much influence

over the histograms. Nevertheless, slower rates in this layer

promote a higher level of fluctuation, as shown in the panels of

row E, in a similar way to slow rates in layer I depicted in the

panels of row C. In the panels corresponding to row F, the kinetic

Figure 6. Repressor response. (A) smax as a function of the unbinding rate q for the RM (gray) and the SM (black). Inset: smax as a function of q for
the RM (gray) and the SM (black) obtained with e~10000. The dotted line depicts the noncooperative case (e~1) (B) smax as a function of the
cooperativity parameter e for the RM (gray) and the SM (black). (C) The dissociation constant Kd (black) and the steepness nH (blue) as a function of
the unbinding rate q. (D) The dissociation constant Kd (black) and the steepness nH (blue) as a function of the cooperativity parameter e. Parameters
are the same as in Fig. 2B except for the varying parameter in each case.
doi:10.1371/journal.pone.0044812.g006
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rates of layer III were amplified by a factor of 10. At high

production and degradation rates, the fluctuation level of the

system produces mRNAs in a burst fashion for both mechanisms,

which are not very distinguishable in this regime. Contrariwise,

when the kinetic rates of this layer decrease by the same factor, the

histograms are narrow and unimodal in both cases. We have also

noted that the scaling of layer III has opposite consequences to the

scaling of layers I and II. The time series and histograms were

obtained at mr~0:5. Nevertheless, the panels in column 3 show

that differences between the two cooperative mechanisms are in

general greater at low mr (^0:2) and disappear when mr reaches

one.

Figure 8 illustrates that both binding cooperative mechanisms

are able to produce both unimodal and bimodal distributions

depending on the kinetic parameters. This feature depends on the

relationship between kinetic rates in layers I and III. In fact,

bimodal behavior appears when the kinetics of layer I is slower

than the kinetics of layer III. This was also observed in simpler

models [3]. For a given kinetic relationship between these layers,

there exists a region in the parameter space (q,e) related to

bimodal distribution. Parameter p does not affect this distribution

feature (data not shown). Figure 9 shows the bimodal regime for

both mechanisms is in region I (low q), while the unimodal regime

is in region II (high q). The region denoted by I-II corresponds to a

region in which the unimodal regime of the RM and the bimodal

regime of the SM coexist. Interestingly, the interface between

these two regions depends on the acting cooperative binding

mechanism and when the RM is acting, lower values of q are

required to get a unimodal distribution. In Figs. 9B–9E we can see

the dynamic behavior and histogram for q{e values indicated by

a star in the phase diagram (e~10, q~0:6, c~Kd~0:13 and

other values are the same as in Table 1 for the activator). Thus,

bimodality can also be a consequence of the cooperative binding

mechanism. But at sufficiently lower unbinding rates q, cooper-

ative binding is not necessary to reach bimodal response.

Discussion

Despite the rich variety of gene regulatory mechanisms acting at

the transcriptional level [16,17,20,28], most models consider only

one or two states for the CRS. These models approximate the

transcriptional control by using a regulatory expression function

(Hill function in [11,22,37,38] or an ad-hoc function to fit the

model to the experimental data in [29,30]).

We have shown that cooperative regulatory function can be

derived from a model based on the law of mass action for

elementary reactions [27], which allows understanding the

consequences of TF cooperative interactions from first principles.

For example, we have shown that response steepness depends on

the energy involved in the interaction between TFs. However, this

analysis was restricted to activator switches. Consequently, in this

study we have generalized our previous approach in order to

model repressor and biphasic switches. In our model, the basic

components of the CRS can be arranged in different ways to

modulate gene expression in response to a given signal. For

example, a repressor molecule bound to DNA can block further

assembly by interacting with general factors of the transcriptional

complex [28,39]. This aspect can be modeled in our approach,

representing a repressor switch with cooperative response. Many

features of the response associated with this switch are analogous

to others reported previously for cooperative activator switches

[27]. For example, as expected, the Hill function with integer

exponent is recovered for infinity interaction energy [40,41].

Furthermore, we show that, for switches such as the one depicted

in Fig. 1, fluctuation levels associated with the recruitment

cooperative binding mechanism never exceed those associated

with the stabilization mechanism.

We also show two types of switches related to a biphasic

response, namely, the CRS that allows full activation when the

regulatory TF occurs within a narrow concentration band. The

biphasic response has been reported underlying a variety of

mechanisms [42–44]. For example, Kruppel in Drosophila acts as

an activator at low levels but dimerizes at high concentrations and

acts as a repressor in the same binding site [45]. Recently, it was

observed that E3f1 had a biphasic response to MYC [44]. Yet

another mechanism known as transcriptional interference [46] was

reported to respond biphasically [47]. Our model illustrates that

biphasic responses can also arise from two other mechanisms: (i)

when an intermediate occupancy number of binding sites

promotes the formation of the transcriptional complex, while

inhibition occurs at low and high binding site occupancy numbers;

(ii) when the transcriptional complex has a poor ability for

RNAPol recruitment or activation and a consequent low rate of

mRNA synthesis at low and high occupancy numbers. The former

mechanism appears to be associated with a lower fluctuation level

than the latter.

It is commonly accepted that systems that present bistability

(i.e., two stable steady states under the same external conditions)

are associated with a bimodal response. In this sense, some

mathematical models provide examples for that [23,48]. However,

Walcsak et al. showed that an open regulatory cascade with

Figure 7. Effects of mixing cooperative mechanisms. Standard
deviations of the number of mRNA copies, sm , as a function of TF
concentration c. Curves correspond to an activator switch with the
same parameters as in Fig. 2A but each fluctuation curve corresponds
to different contributions from each mechanism. The solid light-gray
line corresponds solely to the SM (i.e., eSM~6 and eRM~0), the dashed
light-gray line corresponds to 75% and 25% contributions from SM and
RM, respectively (i.e., eSM^~3:83 and eRM^1:57), the dotted black
line corresponds to equal contributions from each mechanism (i.e.,

eSM~eRM~
ffiffiffi
6
p

), the dashed dark-gray line corresponds to 25% and
75% contributions from SM and RM, respectively (i.e., eSM^~1:57 and
eRM^3:83), and the solid dark-gray line corresponds solely to the RM
(i.e., eRM~6 and eSM~0).
doi:10.1371/journal.pone.0044812.g007
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sufficiently strong regulation can also constitute a mechanism for

bimodality [49]. More recently and from a perspective of

population balance, it has been shown that bistability is neither

sufficient nor necessary for bimodal distributions in a population

[50].

On the other hand, the all-or-none phenomenon has been

observed in inducible gene expression and has been attributed to a

purely stochastic origin. Several stochastic models of gene

expression suggest that fluctuations in the binding/unbinding of

TFs to/from DNA can explain both graded and binary responses

to inducing stimuli [3,51–54]. Pirone and Elston showed that the

slow transitions are responsible for binary responses, whereas fast

transitions produce graded responses [51]. Even though their

model contemplates several regulatory binding sites, they do not

consider the effects of cooperative binding on the inducible

response. In the context of cooperativity, Sanchez et al. developed

a repressor model that includes two regulatory sites [55]. In their

model, cooperativity acts by decreasing the unbinding rate and is

equivalent to our SM case. These authors found that induced

responses change from long-tailed to bimodal distribution when

the cooperative factor increases (see Fig. 3C in [55]). When SM is

acting, simulation results from our model are in agreement with

this previous observation which could be expected because, in this

case, cooperativity is slowing CRS transitions. Notably, our model

suggests that bimodal distributions are also promoted by the

cooperative RM when cooperativity is reflected in binding rate

increases, which in turn accelerate CRS transitions. To our

knowledge, this has not been previously reported and adds new

insight to the origin of bimodality and the effects of cooperative

binding on gene expression. In particular, our finding that

cooperative binding promotes bimodal distributions could explain

the bimodal response observed in a stably integrated NF-AT

construct in clones of the Jurkat T-cell line [56]. NF-AT molecules

bind cooperatively to DNA as has been reported in [57,58] and

the construct employs three tandem copies of the NF-AT-binding

site. The phase diagram obtained for our model shows that

bimodal distribution can be obtained for high interaction energy

between TFs even for high unbinding rates in SM. The unimodal

and bimodal phases in the q,e-space are delimited by a cooperative

binding mechanism dependent curve. Thus, there is a region in

the space parameter (q,e) where SM shows a bimodal response

while RM is associated with an unimodal regime.

Summarizing, our results with regard to the stochastic model for

gene expression suggest that the gene expression regulatory

architecture is measurably reflected in its associated mean

response and intrinsic noise profiles.

Figure 8. Comparing two cooperative mechanisms. Panels on columns 1, 2 and black lines of panels on column 3 correspond to the RM, where
bound TFs increase the binding rate of new TFs to DNA. Panels on columns 4, 5 and gray lines of panels on column 3 correspond to SM, where the
interaction between TFs decreases the unbinding rate of TFs from DNA. Time series of mRNA number generated from stochastic simulations
(columns 1 and 4). Histograms that show the number of cells with a given number of mRNAs are also shown (columns 2 and 5). Strength noise Q as a
function of mr for both mechanisms (column 3). The above features were studied at different kinetic rates. Row A corresponds to the same kinetics
shown in Fig. 2A. Rows B and C, all kinetic rates of layer I were multiplied by a factor of 10 and 0:1, respectively. Rows D and E, all kinetic rates of layer
II were multiplied by factors of 10 and 0:1, respectively. Rows F and G, all kinetic rates of layer III were multiplied by a factor of 10 and 0:1, respectively.
All simulations were performed using Table 1 parameter values, except for e~12 and c~0:14.
doi:10.1371/journal.pone.0044812.g008
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