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Abstract: The electrical properties of silicone composite films filled with silver (Ag) nanoparticle-
decorated multi-walled carbon nanotubes (MWNT) prepared by solution processing are investigated.
Pristine MWNT is oxidized and converted to the acyl chloride-functionalized MWNT using thionyl
chloride, which is subsequently reacted with amine-terminated poly(dimethylsiloxane) (APDMS).
Thereafter, APDMS-modified MWNT are decorated with Ag nanoparticles and then reacted with
a poly(dimethylsiloxane) solution to form Ag-decorated MWNT silicone (Ag-decorated MWNT-
APDMS/Silicone) composite. The morphological differences of the silicone composites containing Ag-
decorated MWNT and APDMS-modified MWNT are observed by transmission electron microscopy
(TEM) and the surface conductivities are measured by the four-probe method. Ag-decorated MWNT-
APDMS/Silicone composite films show higher surface electrical conductivity than MWNT/silicone
composite films. This shows that the electrical properties of Ag-decorated MWNT-APDMS/silicone
composite films can be improved by the surface modification of MWNT with APDMS and Ag
nanoparticles, thereby expanding their applications.

Keywords: multi-walled carbon nanotube; acylation; modification; film; electrical conductivity

1. Introduction

Carbon nanotubes (CNTs) are formed from concentrically-rolled graphene sheets with
asymmetric helicity instead of the initially proposed scroll-like roll, therefore, CNTs have
special mechanical, electrical, thermal, and optical properties [1–5]. The sp2 carbon atoms
in the carbon skeleton provide excellent high electronic and thermal conductivity, and
chemical stability [6]. Compared to other conducting carbons, CNTs have a high aspect
ratio and high specific surface area, therefore only a small amount can be used in forming
a conductive path in composites. Multi-walled carbon nanotubes (MWNT)-hybridized
metal nanoparticles have recently received extensive attention including single-electron
transistors, molecular diodes, memory elements, and logic gates [7–14]. Among them,
Ag-decorated CNTs especially gained attention owing to their potential applications as
optical limiters and advanced materials [15–17]. However, CNTs do not disperse well
in most organic solvents, resulting in poor homogeneity when mixed with a polymer
matrix [18]. One way to improve the dispersibility of CNTs in organic solvents is to modify
the surface of the CNTs by introducing functional groups that enhance interaction with the
solvents [19–21]. Before any modification, the CNTs are first purified by acid treatment,
where impurities are dissolved leaving the CNT surface-functionalized with carboxylic acid
groups. However, the acid treatment damages the CNT causing a reduction in electrical
conductivity of the CNT [19–22]. Since defective sites inevitably accompany modification

Materials 2021, 14, 948. https://doi.org/10.3390/ma14040948 https://www.mdpi.com/journal/materials

https://www.mdpi.com/journal/materials
https://www.mdpi.com
https://orcid.org/0000-0001-5186-566X
https://orcid.org/0000-0003-2943-4104
https://doi.org/10.3390/ma14040948
https://doi.org/10.3390/ma14040948
https://doi.org/10.3390/ma14040948
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/ma14040948
https://www.mdpi.com/journal/materials
https://www.mdpi.com/1996-1944/14/4/948?type=check_update&version=2


Materials 2021, 14, 948 2 of 8

of CNT, acid treatment conditions need to be optimized to minimize the damage on the
CNT, thereby minimizing the reduction in electrical conductivity. In this study, MWNT
were modified by an acylation reaction [22] and consequently coated with silicone oil
under sonication. Then, silicone-modified MWNT was reacted with Ag nitrate, based on
the wet chemical reaction, to form Ag-decorated MWNT. The Ag-decorated MWNT was
employed as a conductive filler material in a silicone matrix to get a composite film with
higher electrical conductivity. The as-prepared Ag-decorated MWNT silicone composite
has the potential to be used as a conductive filler in the electrical packaging industry.

2. Materials and Methods
2.1. Materials

The MWNT (>95%, length = 10–50 µm; diameter = 10–20 nm) were supplied by Han-
wha Nanotech Co., Seoul, Korea. Thionyl chloride (Samchun Chemical Co., Seoul, Korea)
was used as a reacting agent without any purification. Tetrahydrofuran (THF, Duksan Chem-
ical Co., Ansan, Korea) was used for dissolving amino terminated poly(dimethylsiloxane)
(APDMS, Functional group equivalent: 2200 g/mol, Shin-Etsu Co., Tokyo, Japan). N-
methyl-2-pyrrolidone (NMP, Samchun Chemical Co., Seoul, Korea) was used as a reducing
agent to reduce silver nitrate (Sigma Aldrich., Co., St. Louis, MO, USA) to Ag nanoparticles.
Poly(dimethylsiloxane) (PDMS, Momentive Performance Materials Co., Waterford, NY,
USA) dissolved in THF with a functional group equivalent of 2200 g/mol was used as the
silicone matrix.

2.2. Synthesis of Ag Nanoparticle Decorated MWNT

A total of 1 g of the MWNT was dispersed in a mixture of HNO3 and H2SO4 (1:3
v/v) under mechanical stirring for 2 h at 80 ◦C. The mixture was filtered and washed
with distilled water until pH 7, and dried at 80 ◦C for 24 h in an oven (Fisher Scientific,
Pittsburgh, PA, USA). The acid-treated MWNT (MWNT-COOH) was reacted with excess
thionyl chloride under reflux for 24 h to obtain an acyl chloride-functionalized MWNT
(MWNT-COCl). After filtering and subsequent washing with distilled water until pH 7,
0.05 g of the MWNT-COCl powder was suspended in 100 mL solution of APDMS under
sonication to form amide functionalized MWNT (MWNT-APDMS). Excess APDMS was
removed by sonicating the MWNT-APDMS in THF and then filtered and dried. The
silicone layer on the MWNT-APDMS surface was cured at 270 ◦C (the curing temperature
was determined using DSC). To decorate the MWNT-APDMS with Ag nanoparticles, the
MWNT-APDMS were dispersed in a silver nitrate solution (0.4 M in NMP) using a bar
sonicator (Fisher Scientific, Pittsburgh, PA, USA) for 3 min and then mechanically stirred
for 60 min at 140 ◦C. The Ag-decorated MWNT-APDMS were filtered and repeatedly
centrifuged 3 times at 1000 rpm for 10 min using NMP as a dispersant. The precipitate was
dried at 230 ◦C in a furnace. The same procedure was followed for decorating MWNT-
COOH with Ag nanoparticles.

2.3. Sample Preparation

The Ag-decorated MWNT-APDMS were suspended in PDMS/THF solution (1:6 v/v)
under sonication in an ice bath for 10 min. The Ag-decorated MWNT-APDMS/Silicone
composite films were then coated on polyethylene terephthalate (PET) by dispersing 20 mL
of the mixture uniformly onto a 15 mm × 15 cm PET film before curing at 80 ◦C for 1 h and
at 150 ◦C for 3 h in an oven.

2.4. Measurements

The infrared spectra were measured using a Fourier Transform Infrared Spectrometer
(FT-IR, FTS-60, Bio-Rad Co., Philadelphia, PA, USA). A Transmission Electron Microscope
(TEM, Tecnai 20, Eindhoven, Netherlands) was used to determine the morphologies at an
accelerating voltage of 200 kV. Scanning Electron Microscopy images were taken using a
Field Emission Scanning Electron Microscopy (FESEM, Hitachi S-4300, Tokyo, Japan). Ther-
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mal stability was determined using Thermogravimetric analysis (TGA, Q50, TA instrument
Co., New Castle, DE, USA) at a rate of 10 ◦C/min, a temperature range of 25–100 ◦C in air
atmosphere. The electrical conductivity was evaluated according to the four-probe method
(Loresta-GP, Mitsubishi Chemical Co., Tokyo, Japan).

3. Results and Discussion

Figure 1 illustrates the modification of the MWNT and Figure 2 shows the FT-IR
spectrum of pristine MWNT, MWNT-COOH, MWNT-COCl, and MWNT-APDMS. In com-
parison with pristine MWNT, the characteristic peaks in Figure 2b at 1620~1640 cm−1

and 3300–3600 cm−1 are attributed to the C=O stretching vibration and O–H stretching
vibration of the carboxylic groups derived from acid treatment [22]. This shows that
the MWNT was successfully oxidized by the acid mixture to form MWNT-COOH. In
Figure 2c, the peak at 430 cm−1 is due to the –C(O) –Cl stretching vibration formed when
the MWNT-COOH were converted to MWNT-COCl by reacting with thionyl chloride [22].
In Figure 2d, the peaks at 800~820 and 1000~1200 cm−1 are attributed to stretching vi-
bration of Si–(CH3)2 and Si–O–Si, respectively [23]. Furthermore, the Si–CH3 stretching
vibration at 1250~1300 cm−1 is also observed [23]. Additionally, peaks at 1620~1640 and
1500–1550 cm−1 due to the C=O stretching vibrations and N–H bending vibrations were
observed in the spectrum corresponding to amide bonding [22]. The existence of these
characteristic peaks gave direct proof for the covalent attachment.
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Figure 1. Schematic procedure for the preparation of multi-walled carbon nanotubes-amine-terminated poly(dimethylsiloxane)
(MWNT-APDMS).

Figure 3a shows an FESEM image of the MWNT–APDMS before washing with the
THF solvent. The APDMS were agglomerated owing to excess APDMS which is further
revealed by the TEM image in Figure 3b. However, there is a reduction in agglomeration
after removal of excess APDMS by THF solvent as shown by both the SEM and TEM images
(Figure 3c,d). After washing off the excess APDMS, the APDMS was neatly decorated on
the surface of the MWNT.

Both the MWNT–COOH and MWNT–APDMS were decorated with Ag nanoparti-
cles for comparison and their TEM images are shown in Figure 4. Figure 4a shows the
MWNT–COOH decorated with Ag nanoparticles which appear as spherical black dots,
however, the TEM image for the Ag–decorated MWNT–APDMS (Figure 4b) shows more
Ag nanoparticles homogeneously dispersed and strongly attached on the MWNT surface
because the terminal–NH2 functional group forms stronger attractive forces with the Ag
nanoparticles. This happens because of the coordinate bonding between the Ag+ ions
and amine groups resulting in monodispersive attachment of Ag nanoparticles on the
MWNT surface [24].
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Figure 5a shows the thermal stability of MWNT–COOH, MWNT–APDMS, Ag–decorated
MWNT–COOH, and Ag–decorated MWNT–APDMS. The MWNT–COOH is stable up
to ∼517.5 ◦C where it rapidly decomposes until there is ∼2.4 wt.% of the residue left
at ∼681.3 ◦C. The residue is due to the presence of metallic catalysts used during the
production of MWNT by the catalytic chemical vapor deposition method [25–27]. The
MWNT–APDMS shows a two–stage thermal decomposition profile. The first stage starts at
∼390.7 ◦C up to ∼681.3 ◦C, then the second stage begins and rapid decomposition follows
until there is ∼15.5 wt.% of the residue left at ∼721.3 ◦C. The first decomposition stage
happens because, as temperature increases, condensed phase oxidation of APDMS happens
that leads to further tight crosslinking of the polymer, thereby enhancing its thermal
stability. As the temperature continues to rise, the tightly cross–linked polymer starts to
decompose leaving silica residue from the siloxane backbone and the metallic catalysts used
in synthesizing the MWNT leading to an increased residue weight (∼15.5 wt.%) [28]. From
this, it can be inferred that the composition of APDMS is ∼13.1 wt.%. The Ag–decorated
MWNT–COOH were stable up to ∼390.7 ◦C and started to rapidly decompose up to
∼440.8 ◦C, the same trend was observed for the Ag–decorated MWNT–APDMS, however,
the former had a ∼76.5 wt.% and the latter ∼91.5 wt.% of residue left owing to the greater
percentage composition of the Ag nanoparticles in the Ag–decorated MWNT–APDMS.
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MWNT content.

The surface electrical conductivities were done for silicone composite films containing
1–4 wt.% of each of MWNT–COOH, Ag–decorated MWNT–COOH, and Ag–decorated
MWNT–APDMS (Figure 4b). It was expected that the Ag nanoparticles would enhance
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the electrical conductivity of MWNT because Ag is inherently electrically conducting. The
conductivity (σ) of the composite films was calculated using Equation (1).

σ =
T

LW

(
1
R

)
(1)

where the T, L, and W indicate thickness, length, and width (all in cm) of thin–film, respec-
tively, and R is the resistance (Ω). Generally, as the content of the modified MWNT in the
silicone composite increases, the conductivity increases because MWNT are electrically con-
ducting. However, the silicone composite with Ag–decorated MWNTs showed significantly
higher conductivities because of the presence of Ag nanoparticles. The silicone compos-
ite with the Ag–decorated MWNT–APDMS showed the highest conductivity because it
has more Ag nanoparticles than the Ag–decorated MWNT–COOH. The MWNT–APDMS
provides a better surface for attachment of amine groups that form coordinate bonding
with the Ag nanoparticles [24]. This study shows that the Ag–decorated MWNT–APDMS
can be used as a conducting filler in polymer composites with comparable performance as
shown in the comparisons table (Table 1).

Table 1. Comparison of electrical conductivity of MWNT/Ag composite materials.

Composite % of CNT/Ag in
Polymer Matrix

Electrical Conductivity
(S cm−1) Reference

CNT/Ag in epoxy resin 0.10% 30.53 [25]
CNT/Ag in epoxy resin 65% 102.04 [29]

Ag–CNT/PS (polystyrene) 10 0.65 [30]
Ag@C/MWNT – 3.85 [31]
Ag/MWNT in
polypropylene 3 ~4.5 × 10−4 [32]

MWNT/PDMS 0 1.83 × 10−6 [33]
Ag/MWNT in silicone

composite 4% 0.92 This work

4. Conclusion

This study presents a method to decorate MWNT with Ag nanoparticles and then
use them to improve the conductivity of silicone composites. The method included acid
treatment of MWNT followed by acylation reaction and grafting of APDMS and there-
after decoration with Ag nanoparticles. Silicone–based composite films were filled with
MWNT–COOH, Ag–decorated MWNT–COOH, and Ag–decorated MWNT–APDMS and
the electrical conductivity results showed that films filled Ag–decorated MWNT–APDMS
had higher conductivity compared to the rest, owing to the large number of Ag nanoparti-
cles attached to the surface of the modified MWNT. This study also shows the practical
application of the Ag–decorated MWNT in electronic devices. Among them, our work will
play a more positive role in silicon–related battery technology due to the silicone–based
synthetic material and excellent affinity with the silicone binder.
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