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Introduction

Intervertebral disc degeneration (IDD) is a major 
contributor of low back pain (1). IDD is a disc disease of 
adjacent vertebrae in which the degeneration of the discs 
and surrounding area is caused by structural damage (2). 

IDD has significant effects on human health; however, the 
mechanism underlying its onset and progression remain 
ambiguous (3). Nucleus pulposus cells (NPCs) are the 
major component of intervertebral discs, and changes in the 
behaviors of NPCs determine the function of intervertebral 
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discs (4). Ineffective conservative and surgical treatments 
have driven the emergence of cell-based therapies (5). The 
regulatory mechanism underlying the survival and apoptosis 
of NPCs needs to be determined to develop novel therapies 
for IDD.

Panax notoginseng (Burk) F. H. Chen, also known as 
Sanqi, is a traditional Chinese medicine with multiple 
pharmacological effects, including anti-inflammation, anti-
oxidation, anti-insomnia, and anti-depression effects (6). As 
the main ingredient of Panax notoginseng (Burk) F. H. Chen, 
panax notoginseng saponin (PNS) has also been shown to 
have various biological roles in multiple human diseases. 
For example, Liu et al. have stated that PNS exacerbates cell 
apoptosis in retinoblastoma through phosphatidylinositol-3-
kinase and protein kinase B signaling (7). PNS also confers 
skeletal muscle insulin sensitivity in diabetes (8). PNS eases the 
senescence and apoptosis of osteoarthritic chondrocytes (9). 
Further, PNS protects cortical neurons from oxidative stress 
stimulated by hypoxia/reoxygenation (10). More importantly, 
PNS has been reported to inhibit osteoclatogenesis and 
alleviate IDD by suppressing aberrant osteoclast activation 
in porous cartilaginous end plates (11). However, it is not 
yet known whether PNS also functions as an essential 
modulator in the progression of IDD.

MicroRNAs (miRNAs) are a series of small, endogenous 
RNAs without any protein-coding capacity (12). Numerous 
studies have identified the dysregulation of miRNAs 
as a potential hallmark of cancers and diseases (13-16). 
Additionally, there is emerging evidence that miRNAs are 
associated with proliferation, apoptosis, inflammation, and 
the extracellular matrix in IDD and are thus useful clinical 
biomarkers for IDD (17-20). miR-640 serves as a promoter 
in IDD by mediating the nuclear factor-kappa beta (NF-κB)  
and WNT signaling pathway (21). miR-150-5p prevents 
the development of IDD via a competing endogenous 
RNA (ceRNA) mechanism (22). Additionally, miR-222-
3p is upregulated and drives the progression of IDD by 
targeting cyclin-dependent kinase inhibitor 1B (23). Multiple 
studies shown that miRNAs may have a critical effect on 
PNS and its ingredients (24,25). Thus, miRNAs might be 
the potential target of PNS. Given this, we speculated that 
PNS may be implicated in IDD by modulating miR-222-3p 
expression.

This study sought to examine the effects of PNS on the 
biological activities of interleukin-1 beta (IL-1β)-induced 
NPCs and determine the interaction between PNS and 
miR-222-3p in IDD. We present the following article in 
accordance with the MDAR reporting checklist (available at 

https://atm.amegroups.com/article/view/10.21037/atm-22-
3203/rc).

Methods

Cell culture

The human NPCs (hNPCs) provided by Tongpai Biological 
Technology Co., Ltd. were maintained in Dulbecco’s 
modified Eagle’s medium (Gibco, NY, USA) with 10% 
fetal bovine serum (Gibco, Gaithersburg, MD, USA) and 
1% antibiotics (Sigma-Aldrich, St. Louis, MO, USA), and 
kept in an atmosphere of 5% carbon dioxide at 37 ℃ for the 
culture. To establish the cell apoptosis model, 75 ng/mL of 
IL-1β (PeproTech, Rocky Hill, USA) was used to pretreat 
the hNPCs at 37 ℃ for 24 h (26). Afterwards, PNS (50, 
100, 200, or 400 µg/mL) was added to the cells for 24 h of 
incubation (9,11,27,28).

Cell Counting Kit-8 (CCK-8)

To measure cell viability, the hNPCs were plated into  
96-well plates for 24 h of cultivation at 37 ℃. Next, 10 µL 
of CCK-8 solution (APExBIO) was added into each well for 
an additional 2 h of incubation. Afterwards, a microplate 
reader (Molecular Devices, LLC, USA) was used to detect 
the absorbance (450 nm) value.

Terminal deoxynucleotidyl transferase dUTP nick end 
labeling (TUNEL) assays

TUNEL assays were employed to examine cell apoptosis 
in the IL-1β-induced hNPCs. After treatment or 
transfection, the hNPCs were collected and washed with 
phosphate buffered solution, and then fixed with 1% 
paraformaldehyde (Solarbio) at room temperature for  
15 min.  Subsequently,  50 µL of  the TUNEL kit 
(Elabscience, Wuhan, China) was added to the hNPCs 
and incubated for 1 h at 37 ℃ and 4',6-diamidino-2-
phenylindole (DAPI) was used for the nuclei staining. 
The images from 3 fields of view were observed under a 
fluorescence microscope (BIO, Minneapolis, MN, USA; 
magnification, ×200).

Western blot assays

Total protein extracted from the hNPCs was prepared 
using ristocetin-induced platelet aggregation lysis buffer 
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(Epizyme Biotech, Shanghai, China). A bicinchoninic 
acid kit (Beyotime, China) was used to quantify the total 
protein. Next, 40 µg of the protein sample was subjected 
to electrophoresis in 10% sodium dodecyl-sulfate 
polyacrylamide gel electrophoresis and transferred onto 
polyvinylidene fluoride membranes (Millipore, MA, USA). 
Then, 5% non-fat milk was used to impede the membranes 
for 1 h at room temperature. Later, the membranes were 
treated overnight at 4 ℃ with the following primary 
antibodies: anti-B cell lymphoma-2 (Bcl-2; cat. no. ab32124; 
1:1,000; Abcam, USA), anti-Bcl-2 associated X (Bax; cat. 
no. ab32503; 1:1,000; Abcam), anti-cleaved caspase 3 (cat. no. 
ab32042; 1:500; Abcam), anti-caspase 3 (cat. no. ab32351; 
1:5,000; Abcam), anti-glucose regulating protein 78 
(GRP78; cat. no. ab108615; 1:1,000; Abcam), anti-inositol-
requiring protein 1 alpha (IRE1α; cat. no. #3294; 1:1,000; 
Cell Signaling Technology, USA), anti-X-box binding 
protein 1 (XBP1; cat. no. ab109221; 1:1,000; Abcam), anti-
activating transcription factor 6 (ATF6; cat. no. ab227830; 
1:1,000; Abcam), anti-C/EBP homologous protein (CHOP; 
cat. no. #5554; 1:1,000; Cell Signaling Technology), and 
anti-glyceraldehyde-3-phosphate dehydrogenase (GAPDH; 
cat. no. ab9485; 1:2,500; Abcam), and anti-β-actin (cat. no. 
ab8227; 1:1,000; Abcam). Subsequently, the membranes 
were incubated with goat anti-rabbit IgG secondary 
antibody (cat. no. ab6702; 1:1,000; Abcam) for 1 h at 
room temperature. Protein signals were detected using an 
enhanced chemiluminescence reagent (Affinity Biosciences, 
OH, USA), and band intensity was determined using 
Image-Pro Plus software (Media Cybernetics, Inc., USA). 
GAPDH and β-actin were used as the loading control.

Enzyme-linked immunosorbent assay (ELISA)

Tumor necrosis factor-alpha (TNF-α; cat. no. ab181421) and 
interleukin 6 (IL-6; cat. no. ab178013) levels were detected 
by corresponding ELISA kits procured from Abcam in 
accordance with manufacturer’s guidelines. A microplate 
reader (Molecular Devices, LLC) was used to examine the 
absorbance at 450 nm.

Immunofluorescence (IF)

After fixation with 4% paraformaldehyde for 15 min at 4 ℃ 
and permeabilization with 0.1% Triton X-100 for 10 min, 
the hNPCs were impeded by 1% bovine serum albumin 
(BSA) blocking solution for 1 h, and then cultivated with 
primary antibodies against NF-κB p65 (cat. no. ab32536; 

1:100; Abcam) overnight at 4 ℃. On the 2nd day, goat 
anti-rabbit IgG secondary antibody (cat. no. ab6702; 
1:1,000; Abcam) was added and incubated for another  
1 h at room temperature. After which, 1 mg/mL of DAPI 
was used to counterstain the cell nuclei for 10 min. Images 
were observed under a confocal microscope (CarlZeiss, 
Oberkochen, Germany; magnification, ×100).

Reverse transcription-quantitative polymerase chain 
reaction (RT-qPCR)

Total RNA was obtained from the hNPCs using TRIzol 
reagent (Nanjing Jiancheng Bioengineering Institute, 
Nanjing, China). Next, complementary deoxyribonucleic 
acid was generated by the reverse transcription of RNA 
through M-MLV Reverse Transcriptase (Promega, 
Wisconsin, Madison, WI, USA). RT-qPCR was conducted 
with the application of the GoTaq® qPCR Master Mix 
(Promega, Beijing, China) on the ABI 7500 real-time PCR 
system (Applied Biosystems, Hayward, CA, USA). The 
PCR thermocycling conditions were as follows: 10 min at 
95 ℃, followed by 40 cycles of 95 ℃ for 15 sec and 60 ℃ for 
30 sec. The following primer sequences were used for PCR: 
miR-222-3p: forward, 5'-CGGCACGGGCCGAGGC-3' 
and reverse, 5'-AGTGCAGGGTCCGAGGTATT-3'; U6: 
forward, 5'-AAAGCAAATCATCGGACGACC-3', and 
reverse, 5'-GTACAACACATTGTTTCCTCGGA-3'. 
Relative miR-222-3p expression was normalized to U6 using 
the 2−ΔΔCt method (29).

Cell transfection

miR-222-3p mimic and miR-negative control (NC) 
were obtained from RiboBio Co., Ltd. (Guangzhou, 
China). In accordance with manufacturer’s protocol, 
the aforementioned plasmids were transfected into the 
hNPCs at a final concentration of 50 nM with the aid of 
Lipofectamine 2000 (Thermo Scientific, Wilmington, DE, 
USA). The hNPCs were harvested for further analysis after 
48 h of transfection.

Statistical analyses

All the data are presented as the mean ± standard deviation 
(SD). The statistical analysis was performed using SPSS 
software (version 220.2; IBM Corp., USA), and graphs 
were generated using GraphPad Prism 6.0 (San Diego, 
CA, USA). All experiments were independently repeated 
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in triplicate and all experimental data were biologically 
repeated in triplicate. A one-way analysis of variance was 
used to perform variation comparisons among multiple 
groups followed by a Tukey’s post-hoc test. Differences 
between two groups were compared using the Student’s 
t-test. A P value <0.05 was considered statistically 
significant.

Results

PNS enhances the viability of IL-1β-treated hNPCs in a 
concentration-dependent manner

To determine the role of PNS in IDD, the hNPCs were 
treated with different concentrations of PNS (i.e., 50, 100, 
200, and 400 µg/mL), and cell proliferation was then assessed 
using CCK-8 assays. As Figure 1A showed, PNS exerted 
no obvious effect on the viability of the hNPCs. Notably, 
the viability of the hNPCs was significantly reduced by  
IL-1β, but gradually enhanced by PNS in a concentration-
dependent manner (see Figure 1B). In brief, PNS facilitated 
the proliferation of the IL-1β-induced hNPCs.

PNS weakens the apoptotic ability of IL-1β-exposed hNPCs 
in a dose-dependent manner

The experimental results of the TUNEL assays revealed 

that IL-1β stimulated a significant amount of apoptosis in 
the hNPCs, but this effect was abrogated by increasing 
concentrations of PNS (see Figure 2A,2B). Similar results 
were also observed in the western blot analysis. Bcl-2 
expression was downregulated while Bax and cleaved caspase 
3/caspase 3 expressions were upregulated in the IL-1β-
induced hNPCs. After PNS was administrated to the IL-
1β-stimulated hNPCs, elevated Bcl-2 protein level and 
reduced Bax and cleaved caspase 3/caspase 3 protein levels 
were observed (see Figure 2C,2D). In short, PNS appeared 
to have anti-apoptotic effects in the IL-1β-induced hNPCs.

PNS eases the IL-1β-evoked inflammatory response in 
hNPCs

The levels of proinflammatory cytokines, including TNF-α 
and IL-6, were detected using ELISA kits. Based on the 
experimental results, the increase in TNF-α and IL-6 levels 
in the IL-1β-induced hNPCs decreased following the 
addition of PNS (see Figure 3A). Additionally, as the IF 
assays showed, IL-1β stimulated the nuclear translocation of 
NF-κB p65, which was impeded by PNS in a concentration-
dependent manner (see Figure 3B). As 200 µg/mL of PNS 
had better effects in all groups, it was used in the subsequent 
experiments. In summary, PNS ameliorated the IL-1β-
triggered inflammatory response and nuclear translocation 

lL-
1β

 + 20
0 μ

g/
m

L P
NS

40
0 μ

g/
m

L P
NS

lL-
1β

 + 10
0 μ

g/
m

L P
NS

20
0 μ

g/
m

L P
NS

***

150

100

50

0

150

100

50

0

***

lL-
1β

 + 50
 μg

/m
L P

NS

10
0 μ

g/
m

L P
NS

C
el

l v
ia

bi
lit

y 
(%

 o
f c

on
tr

ol
)

C
el

l v
ia

bi
lit

y 
(%

 o
f c

on
tr

ol
)

lL-
1β

50
 μg

/m
L P

NS

Con
tro

l

Con
tro

l

A B

Figure 1 PNS enhances the viability of IL-1β-treated hNPCs in a concentration-dependent manner. (A) CCK-8 assays were used to 
estimate the viability of hNPCs after the administration of PNS. (B) The effect of PNS on the viability of IL-1β-treated hNPCs was assessed 
by CCK-8 assays. ***P<0.001. PNS, panax notoginseng saponin; IL-1β, interleukin-1 beta; hNPCs, human nucleus pulposus cells; CCK-8, 
Cell Counting Kit-8.
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Figure 2 PNS decreases the apoptotic ability of IL-1β-exposed hNPCs in a dose-dependent manner. (A,B) TUNEL assays were applied 
to evaluate the effect of PNS on the apoptosis of IL-1β-stimulated hNPCs (×200). (C,D) The protein expressions of apoptosis-related 
factors were analyzed by western blot. **P<0.01; ***P<0.001. IL-1β, interleukin-1 beta; PNS, panax notoginseng saponin; TUNEL, 
terminal deoxynucleotidyl transferase dUTP nick end labeling; DAPI, 4',6-diamidino-2-phenylindole; Bcl-2, B cell lymphoma-2; Bax, Bcl-2 
associated X; GAPDH, glyceraldehyde-3-phosphate dehydrogenase; hNPCs, human nucleus pulposus cells.
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of NF-κB p65 in the hNPCs.

PNS alleviates IL-1β-stimulated endoplasmic reticulum 
(ER) stress in hNPCs

ER stress has been shown to play an enormous role in 
the onset and progression of IDD (30). Thus, the protein 

levels of ER stress-related factors, including GRP78, IRE1α, 
XBP1, ATF6, and CHOP, were also analyzed by western 
blot. We found that IL-1β treatment distinctly increased 
the protein levels of GRP78, IRE1α, XBP1, ATF6, and 
CHOP, but this effect was reduced by PNS (see Figure 4). In 
conclusion, PNS served as a suppressor in ER stress in the 
IL-1β-exposed hNPCs.

Figure 3 PNS eases the inflammatory response of hNPCs treated by IL-1β. (A) The levels of TNF-α and IL-6 were examined by ELISA 
assays. (B) The nuclear translocation of NF-κB p65 was detected by IF assays (×100). *P<0.05; **P<0.01; ***P<0.001. TNF-α, tumor 
necrosis factor-alpha; IL-1β, interleukin-1 beta; PNS, panax notoginseng saponin; IL-6, interleukin 6; NF-κB, nuclear factor-kappa 
beta; DAPI, 4',6-diamidino-2-phenylindole; hNPCs, human nucleus pulposus cells; ELISA, enzyme-linked immunosorbent assay; IF, 
immunofluorescence.

Control    lL-1β      lL-1β + 50 μg/mL PNS              lL-1β + 100 μg/mL PNS            lL-1β + 200 μg/mL PNS

lL-
1β

 + 20
0 μ

g/
m

L P
NS

lL-
1β

 + 20
0 μ

g/
m

L P
NS

lL-
1β

 + 10
0 μ

g/
m

L P
NS

lL-
1β

 + 10
0 μ

g/
m

L P
NS

*** ***
100

80

60

40

20

0

300

200

100

0

*** ***
*** **

lL-
1β

 + 50
 μg

/m
L P

NS

lL-
1β

 + 50
 μg

/m
L P

NS

TN
F-

α ,
 p

g/
m

L

IL
-6

, p
g/

m
L

lL-
1β

lL-
1β

Con
tro

l

Con
tro

l

NF-κB p65 

DAPI 

Merge

B

A



Annals of Translational Medicine, Vol 10, No 13 July 2022 Page 7 of 14

© Annals of Translational Medicine. All rights reserved.   Ann Transl Med 2022;10(13):748 | https://dx.doi.org/10.21037/atm-22-3203

PNS lessens miR-222-3p expression in the IL-1β-induced 
hNPCs

Based on the RT-qPCR analysis, we also observed that miR-
222-3p was highly expressed in the IL-1β-treated hNPCs, 
while PNS significantly reduced miR-222-3p expression (see 
Figure 5A). To upregulate miR-222-3p, miR-222-3p mimic 
was transfected into the hNPCs, and the overexpression 
efficiency was tested. We found that miR-222-3p expression 
was successfully enhanced in the miR-222-3p mimic group 
relative to the miR-NC group (see Figure 5B). Further, 
the CCK-8 assays revealed that miR-222-3p upregulation 
abrogated the viability of the hNPCs co-treated with both 
IL-1β and PNS compared to those in the IL-1β + PNS 
+ mimic NC group (see Figure 5C). All the above results 
implied that miR-222-3p overexpression hampered the 
viability of the IL-1β- and PNS-cotreated hNPCs.

Overexpression of miR-222-3p exacerbates the apoptosis of 
hNPCs co-treated with both IL-1β and PNS

The transfection of miR-222-3p mimic appeared to boost 
the apoptosis of the hNPCs pretreated with both IL-1β and 
PNS (see Figure 6A,6B). As anticipated, the upregulation of 
miR-222-3p suppressed the Bcl-2 protein level but promoted 
Bax and cleaved caspase 3/caspase 3 protein levels compared to 
the IL-1β + PNS + mimic NC group (see Figure 6C). Taken 
together, miR-222-3p upregulation accelerated the apoptosis 
of the IL-1β- and PNS-co-treated hNPCs.

miR-222-3p elevation offsets the inhibitory effects of PNS 
on inflammation in IL-1β-induced hNPCs

The ELISA assays revealed that the inhibition of IL-
1β-induced inflammation in the hNPCs by PNS was 
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Figure 4 PNS alleviates IL-1β-stimulated ER stress in hNPCs. Western blot was adopted to analyze the protein levels of GRP78, IRE1α, 
XBP1, ATF6, and CHOP. *P<0.05; **P<0.01; ***P<0.001. GRP78, glucose regulating protein 78; IRE1α, inositol-requiring protein 1 alpha; 
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Figure 5 PNS decreases miR-222-3p expression in IL-1β-induced hNPCs. (A) miR-222-3p expression was tested by RT-qPCR. (B) RT-
qPCR was employed to check the overexpression efficiency of miR-222-3p. (C) Cell viability was evaluated by CCK-8 assays. **P<0.01; 
***P<0.001; ns, not significant. IL-1β, interleukin-1 beta; PNS, panax notoginseng saponin; NC, negative control; hNPCs, human nucleus 
pulposus cells; RT-qPCR, reverse transcription-quantitative polymerase chain reaction; CCK-8, Cell Counting Kit-8.

counteracted by miR-222-3p, as the downregulated TNF-α 
and IL-6 levels in the IL-1β-treated hNPCs caused by 
PNS were both restored by miR-222-3p (see Figure 7A). 
Additionally, the suppressed nuclear translocation of NF-
κB p65 in the IL-1β- and PNS-co-treated hNPCs was 
stimulated by the overexpression of miR-222-3p (see  
Figure 7B). Overall, PNS appears to mitigate the IL-1β-
evoked inflammatory response and nuclear translocation of 
NF-κB p65 in hNPCs by downregulating miR-222-3p.

PNS relieves IL-1β-stimulated ER stress in hNPCs by 
suppressing miR-222-3p

The western blot analysis revealed that the levels of the ER 
stress-related proteins GRP78, IRE1α, XBP1, ATF6, and 
CHOP were all depleted in the IL-1β- and PNS-co-treated 
hNPCs, but this effect was counteracted after miR-222-3p 
was overexpressed (see Figure 8). Collectively, miR-222-3p 
upregulation offset the suppressive effect of PNS on IL-1β-
stimulated ER stress in hNPCs.

Discussion

Given the complexity of IDD pathogenesis, a large number 
of in-depth studies have conducted and found that NPC 
dysfunction aggravates the progression of nucleus pulposus 
degeneration, which may trigger IDD (4). It has been 

argued that the excessive apoptosis of NPCs is a classical 
pathological change in IDD (31). Additionally, previous 
studies have illuminated that inflammation may be a risk 
factor for NPC apoptosis and is involved in the process of 
IDD (32,33). Additionally, ER stress has been determined to 
be responsible for normal cell metabolism and to provoke the 
apoptosis of NPCs (34,35). During the process of ER stress, 
unfolded or misfolded proteins are prone to accumulate in 
ER, which is referred to as an unfolded protein response (36).  
As major ER stress transduction factors, ATF6 and 
IRE1α can modulate the ability of ER protein folding by 
upregulating GRP78 and XBP1 mRNA splicing (37-39). 
Further, the activation of CHOP, a determinant of ER-
stress-induced apoptosis, is also a signaling event underlying 
ER stress-evoked cell apoptosis (40). Thus, the apoptosis, 
inflammation, and ER stress response of NPCs were 
investigated in the current study.

IL-1β, a known proinflammatory cytokine, is thought 
to be a mediator of apoptosis and extracellular matrix 
degradation in NPCs (41). Thus, most studies use IL-1β to 
induce NPCs to construct IDD cell models. For example, 
a previous study used 160 ng/mL of IL-1β to stimulate 
NPCs to establish an IDD cell model (42). HNPCs have 
also been treated with 10 µg/mL of IL-1β to maintain 
the degeneration of NPCs in IDD (43). In the previous 
study, 75 ng/mL of IL-1β was used to stimulate NPCs to 
establish an apoptosis model of IDD (26). Similarly, we used  
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75 ng/mL of IL-1β to induce the apoptosis of NPCs. The 
experimental results revealed that IL-1β increased the 
levels of the proinflammatory cytokines, including TNF-α 
and IL-6, upregulated the expression levels of ER-stress-
related factors, including GRP78, IRE1α, XBP1, ATF6, and 
CHOP, and reduced the viability but increased the apoptosis 
of hNPCs. Additionally, the nuclear translocation of NF-
κB p65 was also promoted in hNPCs after stimulation by  
IL-1β.

As reported, the apoptosis of IL-1β-induced hNPCs can 
be influenced by multiple factors including higenamine (44), 
tyrosol (45), dezocine (46), Omentin-1 (47) and so on. PNS 
is a traditional Chinese medicine with important clinical 
value (6). Recent progress on the pharmacological effects of 

PNS has pointed out that PNS possesses anti-inflammatory, 
anti-oxidant, anti-aging, anti-insomnia and anti-depression 
pharmacological properties (6,9). A study has shown 
that PNS is of great value in treating cancers, diabetes, 
atherosclerosis, acute lung injury, and cardiovascular 
diseases (48). However, no previous study had explored 
the role of PNS in the phenotype of hNPCs in IDD. In 
the present study, we discovered that PNS strengthened 
cell viability but prohibited cell apoptosis in IL-1β-induced 
hNPCs, as evidenced by the increased Bcl-2 protein level 
and the decreased Bax and cleaved caspase 3 protein levels. 
Further, following the addition of PNS, the downregulated 
TNF-α and IL-6 levels, GRP78, IRE1α, XBP1, ATF6, 
and CHOP expression levels, and the inhibited nuclear 
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Figure 6 Overexpression of miR-222-3p exacerbates the apoptosis of hNPCs co-treated with both IL-1β and PNS. (A,B) TUNEL assays 
were used to evaluate cell apoptosis (×200). (C) The protein expressions of the apoptosis-related factors were analyzed by western blot. 

*P<0.05; ***P<0.001. IL-1β, interleukin-1 beta; PNS, panax notoginseng saponin; NC, negative control; TUNEL, terminal deoxynucleotidyl 
transferase dUTP nick end labeling; DAPI, 4',6-diamidino-2-phenylindole; Bcl-2, B cell lymphoma-2; Bax, Bcl-2 associated X; GAPDH, 
glyceraldehyde-3-phosphate dehydrogenase; hNPCs, human nucleus pulposus cells.
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translocation of NF-κB p65 implied that PNS was capable 
of protecting hNPCs against IL-1β-triggered inflammation, 
nuclear translocation of NF-κB p65, and ER stress.

It has been well established by recent studies that 
miRNAs widely participate in the process of IDD and are 
largely dependent on the modulation of the phenotypes of 
NPCs (17-20). For example, Chen et al. showed that miR-
150-5p was involved in the development of IDD through 

a ceRNA mechanism (22). Lin et al. validated the role of 
the miR-495-3p/IL5RA axis in TNF-α-treated hNPCs (49). 
Additionally, the pro-apoptotic and pro-inflammatory roles 
of miR-222 in hNPCs in IDD have also been highlighted 
(50,51). The upregulation of miR-222-3p has been found to 
be closely associated with colorectal cancer, osteosarcoma, 
non-small cell lung cancer, and diffuse large B-cell 
lymphoma (52-55). Our experimental results suggested 

Figure 7 miR-222-3p elevation offsets the inhibitory effects of PNS on IL-1β-induced hNPCs. (A) Levels of TNF-α and IL-6 were examined 
by ELISA assays. (B) The nuclear translocation of NF-κB p65 was detected by IF assay (×100). **P<0.01; ***P<0.001. TNF-α, tumor necrosis 
factor-alpha; IL-1β, interleukin-1 beta; PNS, panax notoginseng saponin; IL-6, interleukin 6; NC, negative control; NF-κB, nuclear factor-
kappa beta; DAPI, 4',6-diamidino-2-phenylindole; hNPCs, human nucleus pulposus cells; ELISA, enzyme-linked immunosorbent assay; IF, 
immunofluorescence.
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that the high expression of miR-222-3p in IL-1β-exposed 
hNPCs was decreased by PNS. Further, after miR-222-
3p was overexpressed, the viability was inhibited but the 
apoptosis was stimulated in the IL-1β- and PNS-co-treated 
hNPCs, which was consistent with the findings of Liu  
et al. (23). Additionally, our investigation also revealed 
that miR-222-3p upregulation motivated the inflammatory 
response, nuclear translocation of NF-κB p65, and ER stress 
in IL-1β- and PNS-co-treated hNPCs, as evidenced by the 
elevated levels of TNF-α and IL-6 and the expression levels 
of GRP78, IRE1α, XBP1, ATF6, and CHOP.

Conclusions

In summary, our study demonstrated that PNS appeared to 
exert pro-proliferation, anti-apoptosis, anti-inflammation, 
and anti-ER stress effects in IL-1β-pretreated hNPCs in 
IDD by downregulating miR-222-3p. These findings might 
provide novel insights into the therapy for IDD and implied 
the potential application to IDD treatment. However, it 
should be noted that this study has some limitations. First, 
other potential targets involved in the downstream of miR-
222-3p need to be identified in following studies. Second, 
the function of PNS on IDD in vivo needs to be explored.
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Figure 8 PNS relieves IL-1β-stimulated ER stress in hNPCs by suppressing miR-222-3p. Western blot was used to analyze the protein 
levels of GRP78, IRE1α, XBP1, ATF6, and CHOP. *P<0.05; **P<0.01; ***P<0.001. GRP78, glucose regulating protein 78; IRE1α, inositol-
requiring protein 1 alpha; XBP1, X-box binding protein 1; ATF6, activating transcription factor 6; CHOP, C/EBP homologous protein; 
IL-1β, interleukin-1 beta; PNS, panax notoginseng saponin; NC, negative control; ER, endoplasmic reticulum; hNPCs, human nucleus 
pulposus cells.
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