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Abstract 

Alzheimer's disease (AD) is a neurodegenerative disease that affects millions of people worldwide. Mild cognitive impairment (MCI) is an intermediary 

stage between cognitively normal (CN) state and AD. Not all people who have MCI convert to AD. The diagnosis of AD is made after significant 

symptoms of dementia such as short-term memory loss are already present. Since AD is currently an irreversible disease, diagnosis at the onset of disease 

brings a huge burden on patients, their caregivers, and the healthcare sector. Thus, there is a crucial need to develop methods for the early prediction AD 

for patients who have MCI. Recurrent Neural Networks (RNN) have been successfully used to handle Electronic Health Records (EHR) for predicting 

conversion from MCI to AD. However, RNN ignores irregular time intervals between successive events which occurs common in EHR data. In this study, 

we propose two deep learning architectures based on RNN, namely Predicting Progression of Alzheimer’s Disease (PPAD) and PPAD-Autoencoder 

(PPAD-AE). PPAD and PPAD-AE are designed for early predicting conversion from MCI to AD at the next visit and multiple visits ahead for patients, 

respectively. To minimize the effect of the irregular time intervals between visits, we propose using age in each visit as an indicator of time change 

between successive visits. Our experimental results conducted on Alzheimer’s Disease Neuroimaging Initiative (ADNI) and National Alzheimer’s Coor-

dinating Center (NACC) datasets showed that our proposed models outperformed all baseline models for most prediction scenarios in terms of F2 and 

sensitivity. We also observed that the age feature was one of top features and was able to address irregular time interval problem. 

1 Introduction  

Alzheimer’s Disease (AD) is an irreversible neurodegenerative disease that leads to problems in cognitive functioning (e.g., 
memory loss and impaired reasoning) and behavioral changes (e.g., aggression, wandering, and anxiety). Unusual accu-
mulation of amyloid plaques and neurofibrillary tangles in the brain are considered as the main causes of AD (Lee et al., 
2019). According to the World Health Organization (WHO), there are about 40 million AD cases worldwide. In the United 
States, there are about 6 million AD cases, and this number is expected to reach 14 million by 2050 (Venugopalan et al., 
2021; Alzheimer's Association, 2015).  

Mild cognitive impairment (MCI) is an intermediary stage between cognitively normal (CN) state and AD. MCI is deter-
mined through an impairment of memory on standard tests with the absence of significant impairment in daily living ac-
tivities and dementia (Winblad et al., 2004). Using a standardized test, impairment on cognitive is defined as performance 
below 1.5 standard deviations (SD) of the age-, sex- and education-adjusted normative mean; according to the test, MCI 
can be classified based on the severity into early and late MCI.  Early MCI (EMCI) refers to a case when the performance 
is between 1.0 SD and 1.5 SD below the normative mean on the test, whereas late MCI (LMCI) refers to a case when the 
performance is 1.5 SD below the normative mean on the test (Jessen et al., 2014; Aisen et al., 2010). About 15% of MCI 
patients convert to AD per year while 80% of MCI patients convert to AD within about six years (Tábuas et al., 2016). 
MCI cases who progress to AD eventually are called MCI-converter and MCI cases who stay as MCI or revert to CN are 
called MCI-non-converter.  

The diagnosis of AD can be made after significant symptoms of dementia such as short-term memory loss are already 
present. The diagnosis after the onset of the disease creates emotional burden for patients and their family members and 
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economic burden to the healthcare. The estimated healthcare cost for AD was over $300 billion in 2020 (Wong et al., 2020). 
As a result, developing a robust method that can early predict conversion from MCI to AD is crucial for patients to have 
better treatments, interventions to delay or prevent AD progression.  

Electronic Health Record (EHR) is a sequential data represented as temporal sequences of clinical features and has been 
used to train machine learning models to classify and cluster patient records for improving clinical decision making. Tra-
ditional machine learning methods, however, aggregate clinical features; thus ignores temporal relations between these 
sequences. Recurrent Neural Network (RNN) is a deep learning model used to process sequential data and maintains tem-
poral relations between sequences (Goodfellow et al., 2016). Long Short-Term Memory (LSTM) and Gated Recurrent Unit 
(GRU) are RNN variants that have the capability to handle long-term dependencies, which is considered the drawback of 
vanilla RNN. The main difference between the GRU and LSTM is their complexity (i.e., number of learnable parameters). 
The GRU is a less complex architecture than LSTM, thus are more preferable especially when training data is not abundant 
(Greff et al., 2016). 

To identify biomarkers of conversion from MCI to AD, various machine learning methods have been utilized. In (Zhang 
et al., 2012), support vector machine (SVM) was applied with a multi-task learning to identify AD biomarkers and predict 
the 2-years conversion from MCI to AD using baseline measurements from Magnetic Resonance Imaging (MRI) and Cer-
ebrospinal fluid (CSF). The proposed model achieved 73.9% accuracy, 68.6% sensitivity, and 73.6% specificity. In (Cheng 
et al., 2015), a domain transfer learning model was proposed for using not only MCI samples but also AD and CN as 
auxiliary samples to identify biomarkers that can be used for a classification task to distinguish between MCI-converter 
and MCI-non-converter samples. The proposed model achieved 79.4% accuracy, 84.5% sensitivity, and 72.7% specificity. 

Integration of multi-modality data has been performed to improve the performance of predicting conversion from MCI to 
AD by extracting AD biomarkers from each modality. A graph-based semi-supervised learning method that integrates brain 
image data from MRI and Positron Emission Tomography (PET) was proposed to distinguish between EMCI from CN 
cases (Kim et al., 2013). The proposed method achieved 68.5% accuracy, 53.4% sensitivity, and 77% specificity. In (Lee 
et al., 2019), a multi-modal GRU model was trained using longitudinal cognitive performance and CSF biomarkers data, 
and cross-sectional neuroimaging and demographic data to predict MCI to AD conversion. The results showed that the 
proposed model achieved 81% accuracy and an area under the receiver operation characteristics curve (AUC) of 86%. In 
(Venugopalan et al., 2021), an integrative classification method was proposed to classify patients into AD, MCI, and CN. 
The model was trained on clinical and genetic features extracted using stacked denoising auto-encoders and brain image 
features extracted using Convolutional Neural Network (CNN). The results have shown that integrating multi-modality 
data outperforms single modality models. 

In (Nguyen et al., 2020), an RNN model was applied to the longitudinal cognitive performance, MRI, and CFS data of 
1677 samples in Alzheimer’s Disease Neuroimaging Initiative (ADNI) database to predict the diagnosis of patients in the 
future up to six years and achieved better performance than baseline models. In (Li et al., 2019), a deep learning model 
based on an LSTM autoencoder was proposed to extract the hidden temporal pattern in longitudinal data for five cognitive 
measures for one-year follow-up. The new extracted features were combined with baseline hippocampal measures extracted 
from MRI scans to train and evaluate a prognostic model using Cox regression to predict AD progression for MCI individ-
uals. 

In analyzing longitudinal biomedical data, irregular time intervals between clinical visits poses a technical challenge. Deep 
learning methods that can handle sequential data (e.g., RNN) assume that equal intervals between inputs in the sequence. 
To address this issue, Time-Aware LSTM (T-LSTM) was proposed to modify the memory state the current cell state based 
on the time gap between the current and previous cell states (Baytas et al., 2017). The results on progression of Parkinson’s 
disease data showed improved performance than baseline methods. In another study, T-LSTM was evaluated on synthetic 
and real data for Chronic Kidney Disease (Luong et al., 2018). The results showed that T-LSTM autoencoder can be used 
to deal with sequential data to generate the latent space of the longitudinal profile, but the latent space of the longitudinal 
of real data was not able to subtype Chronic Kidney Disease. 

Studies have shown an association between AD and several genes such as CTNNA3, GAB2, PVRL2, and TOMM40. 
Among these, epsilon4 allele of apolipoprotein E gene (APOEɛ4) is the most important genetic risk factor for AD (Chalmers 
et al., 2003). In addition, demographics such as age, gender, alcohol consumption, smoking, depression, head injury, edu-
cation, race, ethnicity, and nutrition have also been reported as nongenetic risk factors (Ikeda et al., 2010; Hall et al., 1998). 
As a result, these genetic and nongenetic risk factors can play role if they are utilized by a predictive model for AD pro-
gression. 

In general, irregular number of visits for patients, irregular intervals between visits, and missing values are common draw-
backs of EHR. Since datasets from AD cohorts suffer from the same drawbacks, there is a crucial need to develop methods 
for early predicting conversion from MCI to AD while addressing such data irregularities. Most of existing methods do not 
consider the irregular time intervals between consecutive visits and give equal weight to sensitivity and specific of the 
model. However, increasing sensitivity (i.e., correctly predicting individuals who would convert to AD) is more important. 
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Moreover, several existing studies do not integrate longitudinal data with cross-sectional demographics data such as gender, 
race, ethnicity, patients’ education, and APOEɛ4. Most tools are also not made publicly availability, which limits their 
application to new datasets.  

In this study, we propose two open-source deep learning models, PPAD and PAD-AE, for early predicting conversion from 
MCI to AD at the next visit and multiple visits ahead for patients, respectively. PPAD and PPAD-AE integrate longitudinal 
features with cross-sectional demographic data. To minimize the effect of the irregular time intervals between visits, we 
propose using age in each visit as an indicator of time change between consecutive visits. In addition, we utilized a cus-
tomized loss function to give more weight on predicting conversion to AD cases, thereby increasing the model’s sensitivity. 
To show robustness of our proposed models, we used two evaluation setups, by which (i) ADNI dataset was used to train 
and test proposed models; (ii) ADNI dataset was used to train proposed models and the National Alzheimer’s Coordinating 
Center (NACC) dataset was used to test proposed models. Our experimental results showed that our proposed models 
outperformed all baseline models for most of the prediction scenarios in terms of F2 and sensitivity. We also demonstrated 
that using age feature improved the model performance by helping address the irregular time interval between consecutive 
visits. We made PPAD and PPAD-AE publicly available at https://github.com/bozdaglab/PPAD under Creative Commons 
Attribution Non-Commercial 4.0 International Public License. 

2 Materials and Methods 

2.1 Datasets 

In this study, longitudinal and cross-sectional data from two datasets were used. The main dataset was ADNI database 
(adni.loni.usc.edu). The ADNI was launched in 2003 as a public-private partnership. The primary goal of ADNI has been 
to test whether serial magnetic resonance imaging (MRI), positron emission tomography (PET), other biological markers, 
and clinical and neuropsychological assessment can be combined to measure the progression of mild MCI and early AD. 
Since it has been launched, the public-private cooperation has contributed to significant achievements in AD research by 
sharing data to researchers from all around the world (Jack et al., 2010; Jagust et al., 2010; Saykin et al., 2010; Trojanowski 
et al., 2010; Weiner et al., 2010; Risacher et al., 2010; Weiner et al., 2013).  

The second dataset was NACC (Besser et al., 2018), which is a large, centralized resource for AD research. It contains data 
from multiple study sites across the United States, including demographic, cognitive, genetic, and MRI data. The database 
is designed to facilitate research on the causes, diagnosis, and treatment of AD.  

In this study, we have used two different experiment setups to train and evaluate our proposed models. In the first setup, 
ADNI dataset was split into training and test datasets to train and test the proposed models. In the second setup, the whole 
ADNI dataset was used to train the proposed models while NACC dataset was used as an external dataset to test the pro-
posed models. 

2.1.1 ADNI dataset for training and testing the proposed models 

To obtain longitudinal and cross-sectional data from all ADNI studies (ADNI1, ADNI2, and ADNI-GO), ADNImerge R 
package was used (https://adni.bitbucket.io/) (McCombe et al., 2020; Jiang et al., 2020). The raw data consisted of 15,087 
records from 2288 unique patients. Each record represents a patient visit that consists of feature values from four data 
modalities namely cognitive performance measurement, MRI, CSF, and demographic, and the diagnosis label (i.e., CN, 
MCI or AD). The dataset had several irregularities: the patients had varying number of visits ranging from 1 to 21; the time 
between consecutive visits for a patient varied from 3 months to 60 months; and several visits had missing feature values. 
To address these issues, we preprocessed the dataset by performing following steps: First, irrelevant features such as name 
of ADNI project and duplicated columns (i.e., the feature that had the same value of another feature with a different name) 
were removed. In total, 55 such features were discarded. Second, all visits with missing values rate >40% were discarded. 
In total, 4979 visits were discarded. Third, 128 patients who do not have APOEɛ4 status were removed resulted in discard-
ing 154 visits. Fourth, all visits with CN diagnosis were discarded since our goal was to analyze progression from MCI to 
AD. We also discarded patients who had only a single visit as it provided no disease progression information. In total, 4195 
visits were discarded. Finally, we discarded 32 features that had missing values in >60% of the records. 

For the remaining features that had missing values, K Nearest Neighbor (KNN) algorithm was employed to impute the 
missing values. Each missing feature was imputed using the average of values from nearest neighbors that had a value for 
that feature. When finding the nearest neighbors, only the records with the same diagnosis (i.e., MCI or AD) were consid-
ered.  The Euclidean distance metric was used and the number of neighbors, 𝑘, was set to five. After imputation, the final 
dataset had 20 longitudinal and five demographics features for 1169 patients and 5759 visits. To train the proposed models, 
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the dataset was randomly split in a stratified manner into 70% train and 30% test data. After splitting, each feature was 
normalized using min-max normalization. For generalization, the whole procedure was repeated for three random splits. 

2.1.2 ADNI dataset for training and NACC dataset for testing the proposed models 

In this setup, we performed data harmonization to collect the overlapping features from ADNI and NACC datasets. To do 
so, first, we obtained three different data modalities from NACC dataset namely cognitive, genetic, and MRI data. Demo-
graphic information including gender, race, ethnicity, and education were in the cognitive data. We obtained APOEɛ4 status 
from genetic data for all the patients in the cognitive data. We could not integrate MRI data features with cognitive data 
due to the low number of overlapping patients, mismatching number and date of visits for overlapping patients, and high 
rate of missing values (> 90%) of overlapping features between ADNI and NACC datasets. At the end, we harmonized 
nine features between ADNI and NACC datasets (Supplemental Table 2). ADNI had 1205 patients and 6066 visits while 
NACC had 8121 patients and 35,423 visits. The same preprocessing steps discussed in the previous section were applied 
to prepare ADNI and NACC datasets. 

2.1.3 Dataset notations 

After preprocessing, we prepared the datasets as a multivariate longitudinal data. Let 𝑀 denote a dataset with 𝑁 samples 
(patients), 𝑀 = (𝑋1, … , 𝑋𝑁) where each sample 𝑋 represents measurements of F features collected over 𝑇 time points (vis-
its):  𝑋 = {𝑥1, 𝑥2, . . . , 𝑥𝑇} 𝜖 ℝ𝑇×𝐹. For each visit 𝑡 = 1,2, . . . , 𝑇, 𝑥𝑡  = {𝑥𝑡

1, 𝑥𝑡
2, … , 𝑥𝑡

𝐹} 𝜖 ℝ𝐹
 
 represents a vector of features 

of sample X at visit 𝑡. For each feature 𝑓 = 1,2, . . . , 𝐹 , 𝑥𝑓  =  {𝑥1
𝑓

, 𝑥2
𝑓

, . . . , 𝑥𝑇
𝑓

} 𝜖 ℝ𝑇 represents the 𝑓 th feature value of 
sample 𝑋 over 𝑇 visits, and 𝑥𝑡

𝑓
 represents the 𝑓 th feature value of sample 𝑋 at visit 𝑡. In 𝑀, each sample has a corresponding 

diagnosis (𝑌1, … , 𝑌𝑁) for each time point:  𝑌 = {𝑦1 , 𝑦2, . . . , 𝑦𝑇} 𝜖 ℝ𝑇×1. For each visit 𝑡 𝜖 {1,2, . . . , 𝑇}, 𝑦𝑡  𝜖 {0, 1} where 0 
denotes MCI and 1 denotes AD. 

2.2 Method 

In this study, we built two RNN-based deep learning models to predict conversion from MCI to AD at the next visit and 
the multiple visits ahead. In both models, we utilized the age feature to alleviate the limitation of RNN models with irregular 
time intervals between consecutive inputs in the sequence. Our proposed models also utilized a customized binary cross 
entropy loss function to give a higher weight to its sensitivity since early prediction of conversion cases correctly is more 
important than making a false positive prediction. In the proposed models, the type RNN cell was a hyperparameter with 
possible choices of LSTM, GRU, Bidirectional LSTM (Bi-LSTM), and Bidirectional GRU (Bi-GRU). 

2.2.1 A Primer on GRU and Bi-GRU 

In GRU, each cell consists of reset (Eq 1) and update gate (Eq 2) though which the cell determines what portion of the 

previous cell state and the current input will be utilized. To compute the hidden state at time point 𝑡, ℎ𝑡, first a candidate 

hidden state, ℎ̃𝑡 is computed (Eq 3) by utilizing the current input vector 𝑥𝑡, the reset gate 𝑟𝑡, and the hidden state at the 

previous time point, ℎ𝑡−1. Then, utilizing the update gate 𝑧𝑡, the current hidden state is computed as a weighted average 

of ℎ𝑡−1 and ℎ̃𝑡  (Eq 4). In Eq 1-4, 𝑊𝑟 , 𝑈𝑟 , 𝑊𝑧, 𝑈𝑧 , 𝑊ℎ , and 𝑈ℎ are the trainable linear transformation matrices; 𝑏𝑟 , 𝑏𝑧 , and 

𝑏ℎ are the bias vectors; 𝜎 is the sigmoid function and ⊙ is the Hadamard product. 

𝑟𝑡 = 𝜎(𝑊𝑟𝑥𝑡 + 𝑈𝑟ℎ𝑡−1 + 𝑏𝑟) (1) 

𝑧𝑡 = 𝜎(𝑊𝑧𝑥𝑡 + 𝑈𝑧ℎ𝑡−1 + 𝑏𝑧) (2) 

ℎ̃𝑡 = tanh(𝑊ℎ𝑥𝑡 + 𝑈ℎ(𝑟𝑡 ⊙ ℎ𝑡−1) + 𝑏ℎ) (3) 

ℎ𝑡 = (1 − 𝑧𝑡) ⊙ ℎ𝑡−1 + 𝑧𝑡 ⊙ ℎ̃𝑡 (4) 

In Bi-GRU, two unidirectional GRUs are used to learn information from previous and later inputs in the sequence while 

processing the current input (Liu et al., 2021). The first GRU is a forward GRU (𝐺𝑅𝑈𝑓), which is explained in the previ-

ous paragraph. The second GRU is a backward GRU (𝐺𝑅𝑈𝑏) which is exactly same to (𝐺𝑅𝑈𝑓) except that the hidden 

state of the cell is computed based on the current and later inputs. In other words, the hidden state of a backward GRU 

cell is calculated based on Eq 1-4 except that all ℎ𝑡−1 terms are replaced with ℎ𝑡+1. To compute the hidden state of Bi-

GRU at time point 𝑡, the hidden states of 𝐺𝑅𝑈𝑓 and 𝐺𝑅𝑈𝑏  are computed and concatenated (Eq 5). In Eq 5, ⊕ denotes the 

concatenation operation. 

Bi-GRU(𝑥𝑡) =  𝐺𝑅𝑈𝑓(𝑥𝑡) ⊕ 𝐺𝑅𝑈𝑏(𝑥𝑡) (5) 

2.2.2 Prediction model for conversion to AD at the next visit 
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To predict AD conversion at the next visit, we developed a framework named Predicting Progression of Alzheimer’s Dis-

ease (PPAD) that consists of a RNN and multi-layer perceptron (MLP) (Figure 1). In this architecture, the RNN compo-

nent learns 𝑥�̂�, a latent representation of the longitudinal clinical data up to 𝑡 visits (Eq 6). Then, the MLP model is 

trained with concatenation of the cross-sectional demographic data (𝐷) and 𝑥�̂� to predict conversion to AD at next visit 

(Eq 7).  

𝑥�̂� = 𝑅𝑁𝑁(𝑋) (6) 

𝑦′ = 𝜎(𝑊1(𝑅𝑒𝐿𝑈(𝑊2(𝑥�̂� ⊕ 𝐷) + 𝑏2)) + 𝑏1) (7) 

In Eq 7, 𝑦′ represents the predicted diagnosis, 𝑊1 and 𝑊2 are the trainable linear transformation matrices, and 𝑏1 and 𝑏2 

are the bias vectors. 

2.2.3 Prediction model for conversion to AD at multiple visits ahead 

For early predicting conversion of AD at multiple visits ahead, we propose another architecture PPAD-AE that composes 

of a RNN autoencoder and an MLP (Figure 2). In this architecture, the RNN component learns a latent representation (𝑥�̂�) 

of the longitudinal clinical data up to 𝑡 visits (Eq 6). Then, the latent representation is used by the decoder component to 

generate representations of multiple visits ahead up to 𝑛 visits. Finally, the MLP model is trained with concatenation of 

the cross-sectional demographic data (𝐷) and the representation of the last generated visit by the decoder to predict con-

version to AD at the (𝑡 + 𝑛)𝑡ℎ visit (Eq 8). 

𝑦′ = 𝜎 (𝑊1 (𝑅𝑒𝐿𝑈(𝑊2(𝑥𝑡+(𝑛−1) ⊕ 𝐷) + 𝑏2)) + 𝑏1) (8) 

2.2.4 Parameter learning and evaluation metrics 

To increase the prediction’s sensitivity for both architectures, all trainable parameters for the RNN, RNN autoencoder, 

and MLP were learned in an integral way using a customized binary cross-entropy loss function (Eq 9) to give more 

weight on predicting conversion to AD cases. We seek by using this customized loss function to minimize the false nega-

tive cases while predicting diagnosis of the future visit which leads to increased sensitivity of the predictive model. 

𝐿𝑜𝑠𝑠 = −
1

𝑁
∑(𝛼 ∙ (𝑦 ∙ 𝑙𝑜𝑔 𝑦′)) + ((1 − 𝛼) ∙ (1 − 𝑦) ∙ 𝑙𝑜𝑔(1 − 𝑦′)) (9) 

In Eq 9, 𝛼 is a real number between 0 and 1 to define the relative weight of positive prediction, 𝑦 is the true diagnosis, 

and 𝑦′ is the predicted diagnosis. In this study, we set 𝛼 to 0.7. Based on the proposed customized loss function, all train-

able parameters for the RNN, RNN autoencoder, and MLP (Eq 7 and 8) were updated while training models in the 

 

Fig. 1 The architecture of PPAD to predict the conversion to AD at the next visit 
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backpropagation. For optimization, all models were trained using Adaptive Moment Estimation (Adam) optimizer and 

the learning rate was set to 0.001. RNN cell, number of epochs, batch size, dropout rate, and L2 regularization are the 

hyperparameters that have been tuned.  For model evaluation, F2 score (Eq 10) and sensitivity were used. 

 

𝐹𝛽 = (1 + 𝛽2) ∙
precision ∙ recall

𝛽2. precision + recall
 

(10) 

In Eq 10, recall is considered 𝛽 times more important than precision. In this study, 𝛽 was set to 2. 

3 Results and Discussion 

In this study, we propose two RNN-based architectures, namely PPAD and PPAD-AE for the prediction of conversion to 

AD at the next visit and the multiple visits ahead, respectively. We evaluated the proposed architectures in two experi-

mental setups. In the first setup, ADNI dataset was utilized to train and test the proposed architectures using the longitu-

dinal multi-modal and the cross-sectional demographic data. The longitudinal data consisted of 20 features from cogni-

tive performance and neuroimaging biomarker data modalities (Supplemental Table 1). The cross-sectional demographic 

data consisted of gender, race, ethnicity, education, and APOEɛ4.  We split data to 70% training and 30% test three times 

and reported the average performance across these splits.   In the second setup, the models were trained on the entire 

ADNI longitudinal and cross-sectional data and tested on NACC data. The longitudinal data consisted of five features 

and the cross-sectional demographic data consisted of gender, race, ethnicity, education, and APOEɛ4 (Supplemental Ta-

ble 2). For both experimental setups, we used age as a longitudinal feature to represent the time difference between con-

secutive visits. To select the optimal values for the hyperparameters (i.e., RNN cell, number of epochs, batch size, drop-

out rate, and L2 regularization), we performed grid search with 5-fold cross validation for each investigated scenario in 

both experimental setups. Supplemental Table 3 and 4 show the best hyperparameter values for PPAD and PPAD-AE for 

all splits in the first experimental setup, respectively. Supplemental Table 5 and 6 show the best hyperparameter values 

for PPAD and PPAD-AE in the second experimental setup, respectively. Supplemental Table 7 and 8 show the number of 

converters and non-converters in each scenario in the first and second experimental setup, respectively. 

3.1 Predicting the conversion to AD at the next visit 

To evaluate PPAD, which predicts conversion to AD at the next visit, we trained it using different scenarios for both ex-

perimental setups. Specifically, we trained four models using two, three, five, and six visits to predict the conversion to 

AD at the next visit (i.e., at the third, fourth, sixth and seventh visit, respectively). For comparison, we trained a T-

LSTM-based architecture using the same training data. Since T-LSTM can handle irregular intervals between visits inter-

nally, to check the effectiveness of utilizing the age feature, we did not use the age feature for T-LSTM. In addition, Ran-

dom Forest- (RF) and SVM-based models were trained as baseline. Since RF and SVM cannot handle longitudinal data, 

they were trained using the same training data used for RNN models after aggregating each feature value by computing 

its mean. For generalization, the whole procedure was repeated 15 times. The results on both experimental setups showed 

that PPAD outperformed all baseline models in terms of F2 (Figure 3A and 3B) and sensitivity (Supplemental Figure 1A 

 

Fig. 2 The architecture of PPAD-AE to predict the conversion to AD at the future visits. 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 31, 2023. ; https://doi.org/10.1101/2023.01.28.526045doi: bioRxiv preprint 

https://doi.org/10.1101/2023.01.28.526045
http://creativecommons.org/licenses/by-nc-nd/4.0/


PPAD 

and 1B). The results also showed that, as expected, training using more visits improved the performance of next visit di-

agnosis prediction for all RNN models. In addition, PPAD outperformed T-LSTM in seven out of eight cases, which 

shows the ability of our model to address the irregular time intervals problem better than T-LSTM. 

3.2 Predicting the conversion to AD at multiple visits ahead  

To evaluate PPAD-AE, which predicts the conversion to AD at multiple visits ahead, we trained it using different scenarios. 
Specifically, we trained four models using two, three, five and six visits to predict the diagnosis at the following second, 

third, and fourth visits ahead. For example, the model that was trained using two visits was evaluated on predicting the 
diagnosis at the fourth, fifth and sixth visits. For generalization, the whole procedure was repeated 15 times. We compared 
PPAD-AE to RF and SVM. T-LSMT was unable to predict multiple visits ahead, thus was not used in this evaluation. We 
observed that PPAD-AE outperformed all baseline models in terms of F2 (Figure 4) and sensitivity (Supplemental Figure 
2) in both experimental setups except for one scenario (Figure 4F and Supplemental Figure 2F). As observed in the PPAD 
results (Figure 3), training the model with more visits improved the prediction performance in general, whereas the perfor-
mance of most models dropped when predicting diagnosis at the farther time points. We also observed that the performance 
of PPAD-AE on NACC dataset was higher than held-out dataset of ADNI. This could be due to using a larger training set 
(i.e., the entire ADNI data) when testing the model on NACC cohort. 

 

Fig. 3 F2 scores for PPAD models to predict conversion to AD at the next visit. (A) Models tested on held-out samples in ADNI after training 

using 2, 3, 5, and 6 visits in ADNI, respectively. (B) Models tested on NACC after training using 2, 3, 5, and 6 visits in ADNI, respectively. 
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3.3 Feature importance Analysis 

We investigated the performance of the proposed models (Figure 1 and 2) to determine feature importance through SHap-

ley Additive exPlanations (SHAP). Figure 5 and Supplemental Figure 3 show the mean absolute SHAP value for the lon-

gitudinal features for the proposed models with first and second experimental setups, respectively.  The results indicate 

that Functional Activities Questionnaire (FAQ) and the logical memory delayed recall total (LDELTOTAL) are the most 

important features to predict conversion to AD in all scenarios. In addition, age is among important features in predicting 

conversion to AD. For example, age was the seventh important feature among 20 features (Figure 5A). 

 

 

Fig. 4 F2 scores for PPAD-AE models to predict conversion to AD at the second, third, and fourth visits ahead. (A, B, C, and D) Models tested on 

held-out samples in ADNI after training using 2, 3, 5, and 6 visits in ADNI, respectively. (E, F, G, and H) Models tested on NACC after training 

using 2, 3, 5, and 6 visits in ADNI, respectively. 

 

Fig. 5 SHAP values for all features used in the first experimental setup using A) 2 B) 3 C) 5 D) 6 visits to train the models. 2_1 means 

trained using two visits to predict conversion to AD at the next visit, 3_2 means trained using three visits to predict conversion at two 

visits ahead, and so on. 
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4 Conclusion 

In this study, we present two deep learning architectures, PPAD and PPAD-AE to predict the conversion to AD in the 

future. We utilized longitudinal cognitive and neuroimaging features and cross-sectional demographic data from two 

large AD databases to evaluate our models. We conducted two experimental setups where ADNI data was used partially 

or completely to train the model and held-out data and NACC data were used to test the models. In both experimental 

setups, our tools outperformed other existing tools and baseline models. We also investigated other tools, but could not 

test them as the code or the tool was not made available.  

By utilizing a customized loss function, we gave higher emphasis on the sensitivity of the models. Because for AD pre-

diction, false positive (predicting someone to convert to AD falsely) is less severe than a false negative (not being able to 

predict a conversion case). PPAD and PPAD-AE are also flexible to incorporate additional features including omics fea-

tures from gene expression, DNA methylation datasets and blood-based biomarker measurements. To increase its usabil-

ity, we make PPAD and PPAD-AE publicly available at https://github.com/bozdaglab/PPAD/. 
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